History and Paradigms of Educational Technology, Part 2

Anders Mørch and Ingrid Elise Rekaa TOOL 5100, theme 3

TOOL5100: CSCL Educational technology

Outline

- Paradigms in educational research
 - Computer-Aided Instruction (CAI)
 - Intelligent Tutoring Systems (ITS)
 - Logo-as-Latin/Microworlds
 - CSCL
- Paper:

Koschmann T. (1996). Paradigm Shifts and Instructional Technology: An Introduction. In: Koschmann T, (Ed). *Computer Supported Collaborative Learning: Theory and Practice of an Emerging Paradigm*. Mahwah, NJ, USA: Lawrence Erlbaum, pp. 1-23.

From last lecture: Wegerif's 4 orientations to learning and educational technology

- Four orientations
 - Behaviorist (--> CAI)
 - Cognitive (--> *ITS*)
 - Constructivist (--> Microworlds)
 - Participatory (--> dialogic approach to CSCL)
- This is slightly different from Wegerif's classification, paralleling Koschmann's paper on paradigms of educational technology we have next week (Theme 3)

Paradigms in educational research

- Koschmann argues that CSCL is a new paradigm in computer-supported teaching and learning
- He gives examples of three other paradigms that are distinct from CSCL and have preceded it
- Paradigm, according to Kuhn (1972):
 - Goes beyond evolution and gradual change (it is abrupt change by "punctuated equilibrium", like a "gestalt-switch")
 - Provides a new set of topics, tools, methodologies, and premises to be researched
 - Members of different paradigms cannot easily communicate with one another using their own scientific terminology

Paradigms of instructional technology

- Computer-aided instruction (CAI)
 - Since ca. 1960
- Intelligent Tutoring Systems (ITS)
 - Since ca. 1970
- Logo-as-Latin/Microworlds
 - Since ca. 1980
- Computer Supported Collaborative Learning
 - Since ca. 1990
- Note: these fields are still active today, but sometimes under new umbrellas and they evolve to meet new needs (e.g. CAI -> instructional design, Logo --> Lego/Logo (Mindstorms)

Computer-Aided Instruction

- Psychological roots in behavioral science
- Focus on support for instruction in teaching situations (e.g. classroom) with the computer
- The teacher's role is to acquire knowledge and find efficient ways to share it with the students
- Often referred to as to as the "acquisition-transmission" metaphor of teaching and learning
- Today often associated with instructional design, such as reusable learning objects and domain-specific repositories that domain experts (e.g. teachers) can search for teaching material

Intelligent Tutoring Systems

- The focus here is, as often in CAI, on computer support for individual learning
- More emphasis on learner than teacher compared to CAI
- Psychological roots in cognitive science and artificial intelligence (e.g. Newell & Simon, 1972)
- The computer provides a cognitive model of human information processing, representing novice and expert problem solving, and can track student performance
- An ITS provides expert advice to students as they solve problems in well-defined domains (e.g. physics, math, medical procedures)

TOOL5100: CSCL Educational technology

Logo-as-Latin/Microworlds

- Instead of learning by being taught, this approach focuses on "learning by doing"
- Psychological roots in the developmental psychology of Piaget and the philosophy of education of Dewey
- Constructionism is a term that is often used as a label for this approach
- The student identifies problems they are interested in and solves them "construction," creating and running microworlds programmed in Logo (Papert, 1980)
- Later efforts have extended this to higher level languages, e.g. using Lego/Logo (e.g. Resnick, 1990)
- High learning curve for average to low achieving students

Lecture 7, 11.03.2008

Computer Supported Collaborative Learning

- Roots in several fields in the social sciences and socially oriented theories of learning (going back to Vygotsky, G. H. Mead, among others)
- Focus on overarching concerns that attempts to bridge the individual-social gap in interaction
- Common perspectives and sources of influence:
 - Social constructivism
 - Sociocultural theories
 - Situated and shared cognition
- We have covered this in Theme 1 of the course

Summary of 4 paradigms

TABLE 1.1

Some Paradigms of Research in Instructional Technology

	Event Marking Emergence of Paradigm	Theory of Learning	Model of Instruction	Research Issue	Paradigmatic Studies Coulsen et al., 1962; Gilman, 1967; Merrill et al., 1980; More & Ralph, 1992; Riding & Chambers, 1992
CAI	Introduction of Coursewriter I (1960)	behaviorist	programmed instruc- tion/instructional design	mat details.	
rts	Carboneli's	Information Processing Theory	one-on-one tutorial, interactive	instructional competence	VanLehn, 1982; Clancey, 1983; Woolf & McDonald, 1984; Koedinger & Anderson, 199
	dissertation (1970)	cognitive constructivist	discovery-based	instructional transfer	Clements & Gulia, 1984; Lehrer & Littlefield, 1993;
Logo-as-Latin	Publication of Mindstorms (1980)		learning		DeCorte et al., 1992; Verzoni & Swan, 1995
CSCL	NATO Workshop (1989)	socially oriented theories of learning	collaborative learning	instruction as enacted practice	Roschelle (ch. 9, this vol.); Glenn et al., 1995; Griffin, Belyaeva, & Soldatova, 1992; Roth (in press)

• See Table 1.1(p. 16) in Koschmann's article

Paradigm shift versus evolution

- In philosophy of science there has been a debate regarding the mechanisms behind the growth of scientific knowledge
 - Does it proceed according to paradigm shifts or by incremental (evolutionary) development over time?
 - The answer can be either/or or both, depending on
 - How we distinguish between different components of a research field and analyze how they change over time
 - Technologies, tools and language (artifacts) may have to be treated differently from premises, practices, and perspectives
 - For those interested: Kuhn and Popper and others have debated the development of Copernicus' model of the solar system

