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Abstract. We review a representative selection of systems that dupper
management of collaborative learning interaction, and chactdrem within a
simple classification framework. The framework distinguishdsvéen mirroring
systems, which display basic actions to collaborators, metdin@giwols, which
represent the state of interaction via a set of key ind&aéod coaching systems,
which offer advice based on an interpretation of those indicaldrs reviewed
systems are further characterized by the type of interadata they assimilate, the
processes they use for deriving higher-level data repreiemistathe variables or
indicators that characterize these representations, and pgheofyfeedback they
provide to students and teachers. This overview of technologigabdities is
designed to lay the groundwork for further research into whichntéagical
solutions are appropriate for which learning situations.
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INTRODUCTION

Over the past decade, we have seen a remarkable inanethgedevelopment and
adoption of network-based technologies that enable traditional andauttictral

distance learners alike to learn collaboratively. These @mwients enhance
traditional distance learning curricula by giving studehes dpportunity to interact
with other students online, on their own time, and wherever thepeatetl to share



knowledge and ideas. But especially for domains in which teamisariitical, do
these collaborative tools provide the kind of supportive environmleatsing
groups need? Is it possible to design environments in which emohafestudents
learns in the presence of a facilitator who helps tmaga and guide the
collaboration, providing clear goals as to what is expected the group process?
In this paper, we review a representative selection of smalsmethodologies that
support collaborative learning interaction, and characterize thghin a simple
conceptual framework. The framework serves to organize andirexp&array of
available collaborative support options.

Understanding and evaluating collaborative learning tools athdadologies is
not a trivial task. During collaborative learning activitiésctors such as students’
prior knowledge, motivation, roles, language, behavior, and group dynsmecsct
with each other in unpredictable ways, making it very diffi¢caltmeasure and
understand learning effects. This may be one reason why the focalabiorative
learning research shifted in the nineties from studying groupacteaistics and
products to studying group process (Dillenbourg, Baker, O’'Malley )& 1995;
Jermann, Soller, & Muehlenbrock, 2001). With an interest in havingnpadt on
the group process in modern distance learning environments, thehfieuscently
shifted again — this time from studying group processes to idegtipmputational
strategies that positively influence group learning. Thift soward mediating and
supporting collaborative learners is fundamentally grounded in ourstadding of
the group activity described by our models of collaborative learningatien.

Because distance learners adapt their interaction to thedsand capabilities
of the available tools, their interaction may also differ frimat of face-to-face
learners, and the way in which we support their interaction diffgr too. Online
collaborative learning environments may never offer the sdkimel of
supportiveness found in the face-to-face classroom, and might negdrto, but
they must still provide students with the kind of rich learningeegpces they
might otherwise obtain in the classroom. In this paper, we exfileradvantages,
implications, and support possibilities afforded by various tedged and
computational models in an array of contexts.

We begin in the next section by describing our conceptual framewuek,
Collaboration Management CycleThis framework will help to organize the
technology support options that we describe in the third sectibfouklauthors of
this article have recently completed their doctoral diasierts in this area, and each
has contributed from his or her experiences to the discussion aiftibal questions
and open issues for future research in the fourth and fiftlosectThese sections
might be used in the development of future theses, to identifyukanswered
research questions and gaps.

THE COLLABORATION MANAGEMENT CYCLE

Managing collaborative interaction means supporting group members’
metacognitive activities related to their interaction. Bynbe facilitated through
activities such as providing on-line dynamic feedback to studemtsoff-line
analyses of the students’ collaboration to instructors. The stjdestructors, or



system might then recommend actions to help students managtieiction by
reassigning roles, addressing conflicts and misunderstandingsdistributing
participants’ tasks, given their levels of expertise.

In distributed computer-supported collaborative learning (CSCL)
environments, the process of collaboration management is assistéaformed by
one or more computational models of collaborative learning intena¢Soller,
Jermann, Muehlenbrock, & Martinez-Mones, 2004). These models provide
functional computer-based representations that help us understgidin, and
predict patterns of group behavior, and support group learning pescekhey can
help us determine how ®iructurethe environment in which the collaboration takes
place, orregulate the student interaction during the learning activities (Jenmna
Soller, & Lesgold, 2004). We very briefly describe the roleahputational models
in structuring the group learning environment, and then focus theneenaif our
discussion on their role in regulating interaction.

The Role of Computational Modelsin Structuring and Regulating I nteraction

Structuring approaches aim to create favorable conditionsduoritg by designing
or scripting the situatiorefore the interaction begins (Dillenbourg, 2002). For
example, we might structure the learning experience byngmyie characteristics
of the participants, the size and composition of the group, or thmitide and
distribution of student roles. We might also strategicallgctea subset of learning
tools, activities, and communication media with desired cheniatts, or change
the appearance of the environment based on the nature of the taskriteng,
problem-solving) or the configuration of the group. A computational model
describing students’ prior behavior under similar conditionshinige used to
strategically construct learning teams and activitiesplan mediation schemes.
Approaches to structuring the learning situation are often baseedwrational
principles or theories, and intended to encourage certain typesgafciion, such as
argumentation or peer tutoring.

Regulation approaches support collaboration by taking actoe the

interaction has begun. Interaction regulation is a complex skilkdlg@ires a quick
appraisal of the situation based on a comparison of the cuitigatian to a model
of desired interaction. In the classroom, the regulation of studesraction is
performed by a teacher, taking into account complex variablesasutie observed
student interaction, various experiences from years of teacmdgkreowledge of
the students’ personalities and typical behaviors. The difficult eliciting the
knowledge needed to account for these complex variables, and determhiaing
manner and degree to which each contributes to the collaboratminle outcome,
has presented significant challenges to the computational modetialgsia, and
assessment of group learning activities. How might a compssess the quality of
knowledge sharing, or measure the degree of constructive conflict bettuelents?
It is too early to tell whether or not we will ever be algeffer the supportiveness
of a human teacher online; however, a few research projecsblegun to explore
the possibilities of enriching CSCL environments with toolsupport and enhance
collaboration management through interaction regulation.



Before leaving our discussion of structuring and regulating apipesawe note
that these methods need not be exclusive, and may even be apul@tert. For
example, a system might mediate the group by dynamically tsting the
environment, while the students, at the same time, attempt tateghkir own
interaction. We now move to a discussion of the four phases iootlaboration
management cycle, designed to organize the array of state-afit functionality
for supporting interaction regulation.

The Phases of the Collaboration Management Cycle

In this section, we present a framework for describing theepsoof collaboration
management, building upon the work of Jermann, Soller, and MuelhenB@2XK) (
and Barros and Verdejo (2000). Collaboration management folloveémale
homeostatic process, illustrated in Figure 1, that continuously cemfize current
state of interaction with a target configuration (the ddsstate). Pedagogical
actions are taken whenever a perturbation arises, in order to bring thm bgsteto
equilibrium. Because the definition of the desired state moaype fully known, and
may also change during the course of group activity, the frankepresented here
provides a general description of the activities involved in prdar-supported
collaboration management, rather than a means for predictiradpodtive learning
outcomes.
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Figure 1. The Collaboration Management Cycle



The framework, orcollaboration management cycls represented by a
feedback loop, in which the metacognitive or behaviorahgeaesulting from each
cycle is evaluated in the cycle that follows. Such feedback looplsecarganized in
hierarchies to describe behavior at different levelsrahgjarity (e.g. operations,
actions, and activities). The collaboration management agcldefined by the
following phases:

Phase 1: Callect Interaction Data

The data collection phase involves observing and recording tleeaction.

Typically, users’ actions (e.g. ‘userl clicked on | agree'.efrischanged a
parameter’, ‘userl created a text node’) are logged and storéatdoiprocessing.
An important decision that must be made in phase 1 as to whethevehaal

model will call for an activity-based analysis, requiring stdrical log of student
actions across time, or a state-based analysis, requiring the loggsrapshots” of
collaborative interaction, without history information (Gassnkmnsen, Harrer,
Herrmann, & Hoppe, 2003).

Phase 2: Construct a Model of I nteraction

The next phase involves selecting and computing one or more higbér-le
variables, termedndicators to represent the current state of interaction. For
example, an agreement indicator might be derived by comparingrtidgem
solving actions of two or more students, or a symmetry indicator maghlt from a
comparison of participation indicators.

Phase 3: Comparethe Current State of | nteraction to the Desired State

The interaction can then be “diagnosed” by comparing the custte of
interaction to a desired model of interaction. We define theatksiodel as a set of
indicator values that differentiate between productive and unpieeunteraction
states. A productive state, given by a desired indicator coafign, typically
corresponds to a representation of interaction that might pdgitim8uence
learning. For instance, we might want learners to be verba@seddiattain a high
value on a verbosity indicator), to interact frequently (i.e. marztdigh value on a
reciprocity indicator), and participate equally (i.e. to mizenthe value on an
asymmetry indicator). We do not further circumscribe desiredaictien because
our objective is to parameterize the analysis process rather thant pheseesults of
a particular interaction analysis.

From an implementation standpoint, the difference between phaaed 3
does not seem significant. From a theoretical perspectiveeveowthese phases
describe the difference between a system that reflectgrtigp’s activities back to
the members, and requires them to manage their own interaction sgattm that
prepares interaction data so that it can be assessed by compd#ds, or analyzed
by researchers in an effort to understand and explain the interaction.

Phase 4. Advise/ Guide the I nteraction

Finally, if there are discrepancies between the current sfat@teraction (as
described by the indicator values) and the desired state of irdaradme remedial
actions might be proposed. Simple remedial actions (e.g. ‘Tagdetour partner



have control for a while’) might result from analyzing a mootettaining only one
indicator (e.g. word or action count), which can be directly compuéed the data,
whereas more complex remedial actions (e.g. ‘Try explaining ctirecept of
generalization to your partner using a common analogy’) might recuome

sophisticated computational analysis.

Phase 4 is not the final phase in this process. Remediatitimebgystem or
human instructor will have an impact on the students’ futoteraction, and this
impact should be re-evaluated to ensure that it produced thedieffects. The
arrows that run from phase 4 back through the illustration regegehe logging
of learners’ actions, to phase 1 indicates the cyclic natfirthe collaboration
management cycle, and the importance of evaluation and reassestniéet
diagnostic level.

Phase 5: Evaluate | nteraction Assessment and Diagnosis

After exiting Phase 4, but before re-entering Phase 1 of toeviiog collaboration
management cycle, we pass through the evaluation phase. Hamgonsider the
guestion, “What is the final objective?”, and assess how well we in&t our goals.
Some systems are aimed exclusively at analyzing and evaustident activity.
Their objective is to explain why students may be experiencing trouble collalgorat
and learning, and help an instructor or online coach target thdiseltés. In some
cases, evaluation may be performed off-line, taking comptateses of interaction
as the units of analysis. Off-line evaluation removes the temporal cotsttwt are
present in dynamic, on-line coaching and evaluation scenarios, altrsuaih
evaluation procedures also introduce some delay in the feedbatkatemn, and
remediation loop. Off-line evaluation may be performed by eithersystem, or a
human evaluator. In the first case, the system improves isadility to diagnose
student performance by directly analyzing students’ actions (e.g. Soller,Sgl(t;
& Lesgold, 2003). In the second case, a human may intervene in tlesptoalter
the method of facilitation or even the model of desired interaction.

In control theory and cognitive science, cognitive architectareslescribed as
hierarchies of referents that begin at the lower levelseafaion and continue
through the higher levels of conceptual knowledge (Robertson & Poh@9§).
The fifth phase in our model corresponds to a higher level of cahabhllows for
changes to the desired state of interaction in the managegwet For the sake of
simplicity, Figure 1 graphically depicts only the four firphases of the
collaboration management cycle representing one full cycle.

When these five phases are realized in a system, they foightmore of a
theoretical base than the embodiment of physical system comparehtsnan-
controlled tasks. In some systems, the phase durations and bosindayievary
significantly, making the phases difficult to identify, wheréa other systems, the
phases might be implemented as concrete, identifiable, softmachiles. For
instance, the first phase — collection of interaction data — coulddlieed as either
the collection of a single new datum that immediately triggbe cycle, or the
accumulation of interaction data over a long period of time,rthet be completed
before entering the next phase. Systems that involve humans ‘ilodpewho
advise or guide the interaction tend towards the latter bedaursan resources are
often not immediately available.



The Locus of Processing: From Mirroring to Guiding

Research in distributed cognition suggests that cognitive anccaugtitive
processes might be spread out and shared among actors iera, sybere these
actors may constitute both people and tools (Hutchins, 1995; Salomon, 1993)
Following this idea, computers might offer support for any orfathe four phases
described in the previous section. The locus of processinglzsstne location at
which decisions are made about the quality of the studentatiteraand how to
facilitate this interaction. Depending on the requirements and gb#he learning
activity, the locus of processing may be located anywhere ontmmgum between
the system, instructors, and collaborating students. For exampéacher, or the
group members themselves, might observe the interaction, coitgpaverent state
with implicit or explicitly agreed upon referents, and propokanges to the
communicative rules or division of labor. In this case, thedarfuprocessing is in
human hands. Alternatively, parts of this process might be marmpga computer
system, thereby shifting the locus of processing towards the computer.

Systems that collect interaction data and construct vigtialis of this data
tend to place the locus of processing at the user level, véhgyetems that advise
and coach aggregate and process this information directtel remainder of this
section, we describe three computer-based support options thasétisecamputer
takes over various phases of the collaboration managemenspmesented in the
previous section.

Mirroring tools automatically collect and aggregate data about
the students’ interaction (phases 1 and 2 in Figlreand
reflect this information back to the user, for exden as
graphical visualizations of student actions or duattributions.
These systems are designed to raise students’ msgrabout
their actions and behaviors. They place the lodysa@cessing

in the hands of the learners or teachers, who sarspare the
reflected information to their own models of dedimeteraction

to determine what remedial actions are needed.

Metacognitivetools display information about what the desired
interaction might look like alongside a visualipati of the
current state of indicators (phases 1, 2 and 3guarE 1). These
systems provide the referents needed by the leaorenuman
coaches to diagnose the interaction. Like mirrotos, users
of metacognitive support tools are responsible rimaking
decisions regarding diagnosis and remediation.

Guiding systems perform all the phases in the collaboration
management process, and propose remedial actidrepgahe
learners. The desired model of interaction and dpgtem’s
assessment of the current state are typically hiddem the
students. The system uses this information to nuasions
about how to moderate the group’s interaction.




Fundamentally, these three approaches rely on the same model actioter
regulation, in that first data is collected, then indicatmes computed to build a
model of interaction that represents the current state, arly fis@me decisions are
made about how to proceed based on a comparison of the current giatemé
desired state. The difference between the three approalobes lies in the locus of
processing. Systems that collect interaction data and constsuelizations of this
data place the locus of processing at the user level, wheystams that offer
advice process this information, taking over the diagnosishefsituation and
offering guidance as the output. In the latter case, the locus afsging is entirely
on the system side.

Selecting and designing the most appropriate computational appfoach
supporting group interaction means evaluating the instructors anteie’ needs
and assessing the available computational resources. Each tfreékesupport
options described in this section presents different advantagkslisadvantages
(described in more detail in the next section), and many catibns of approaches
can be complementary. For example, imagine a system that @migghgsnoves the
locus of processing from the system side to the learneirsitie form of a guiding
tool that becomes a metacognitive tool and finally a mirrotow. As students
observe the methods and standards that the system uses tohessgsgity of the
interaction, they might develop a better understanding of thensgsfgocess of
diagnosis, allowing the responsibility for interaction regulatiobdggrogressively
handed over to the students. Once the students have understood (ked)hése
standards, simply displaying the indicators in a mirroring tool might fieisat.

Models designed to assist human instructors in coaching studegtis look
different from those intended to guide students directly, evetheflocus of
processing looks similar. Dimitracopoulou & Komis (2004) found thatHhers’
most important consideration was their ability to track multiple grougtudents as
they learn synchronously, and identify individual and group difficul&gporting
these teachers might mean providing them with automategs@tiols, targeted at
their specific concerns, or tools that enable them to recmtsand analyze
sequences of past collaborative student activity.

Students, on the other hand, might initially lack the skill imseyht to interpret
the models correctly, and may consequently develop biases abdutamséitutes
effective interaction. For example, students might rely on igmpéocial norms
(status, equality) to manage the interaction by remainimgtsivhile their more
knowledgeable peers perform difficult tasks. Partners rpapd unnecessary time
worrying about whether or not they are participating equaliykihg that equal
participation leads to equal credit. Collaborative learnaidegl by mirroring and
metacognitive tools may need to follow a more introspectiveggsoto develop an
understanding of their interaction than those who are guided bychetear
computer-based coach. The advantage of these tools is thatl¢laosers who
struggle and succeed without intervention may more rapidly laevel
understanding of their interaction, and how to improve their own interadiits s



A REVIEW OF SYSTEMSTHAT SUPPORT COLLABORATIVE
LEARNING

In this section, we discuss representative examples of thpes bf supportive
collaborative learning systems in the context of the collaboration maeageytle.
In the previous section, we described mirroring systems as tivsesflect actions
because they collect activity data in log files and digjill to the collaborators. We
described metacognitive tools as those that monitor the cdtatiéeraction because
they maintain a model of the group activity, and either diagnusénteraction or
provide collaborators with visualizations that they can useeliod®&gnose their
interaction. These visualizations typically include a set ofcatdrs that represent
the state of the interaction, possibly alongside a set ofedesmlues for those
indicators. Finally, we explained that coaching or advising systgmde the
collaborators by recommending actions they might execute to emhtre
interaction. We begin this section with a brief discussion obfit®ns available for
collecting and structuring interaction data, in preparatiorcéiaboration analysis.
We then turn to a deeper discussion of the technology optioesidbrphase of the
collaboration management cycle, and review a number of keynsystithin each
category.

Coallecting & Structuring Interaction Data

The first step in designing and developing collaboration support todétesmining
how student actions should be logged by the system. This me&irgyrdacisions
about the granularity of data to collect (mouse movement, s¢liok object
manipulation), how often actions should be logged, where (e.g. in aelodfil
database, or internal data cache), and in what format. Whitendasd data format
would allow researchers to share and reuse analysis tools adfessnt CSCL
systems more easily, this might also limit their abilityctistomize tools for specific
user groups, or apply special methods for analyzing particuldbinations of data.
In this section, we briefly introduce the work of a few notabkearchers who have
seriously considered CSCL data collection issues, and thersslisow a variety of
mirroring tools have taken advantage of these data collection efforts.

The Object-oriented Collaboration Analysis Framework (OCARKYouris,
Dimitracopoulou, & Komis, 2003) defines a model that representddirs iof the
students’ solution (including those that have been discusseglvantlally rejected)
as a sequenceffPwhere Prepresents the actor, andthefunctional rolerelated to
a particular part of the solution (e.g. the insertion or proposanoftem, the
rejection of a proposal). The functional roles are determined bymaititally
analyzing the logs of student actions, and manually analyzing teofogtudent
dialog. Collecting and structuring data in this way enablesethearcher to analyze
student workspace actions from the point-of-view of the sharedtshjather than
the student actions. OCAF considers objects as entitiesahgttheir own history,
and are owned by actors (learners) who have contributed, imgaiggrees, to the
solution. They independently compile statistics on their use canttibute to the
definition of indicators describing their owners’ collaboratbehavior. Because of



this object-orientation OCAF is restricted to systems in which students cortstruc
solutions composed of well distinguished objects.

Avouris, Komis, Margaritis, and Fiotakis (2004) have developeslysiem
called Synergo, which represents OCAF-modeled activity uadlyt or
diagrammatically. While the former is suitable forauatic processing, the latter is
intended to provide a human with a view of the items and their Yistbe system
also includes a web interface that logs student actions, arldydis@rious views of
the model such as a history of events, or an object-orientedofievery object that
has been inserted in the system. With the help of this tool, therchker can inspect
different aspects of the model, such as the activity of eetdr, or the structure of
the solution.

To facilitate the automatic data collection process, Maztiionés, Guerrero,
and Collazos (2004) define the concept of cblaborative actionin context as an
action that can affect the collaborative process, and can beiysetcby group
members. They explain how a CSCL environment can model and implement
collections of collaborative actions by adapting the standafidvare engineering
commanddesign pattern. The design pattern is a general solution that ariads|
the data collection process, enables data customization, anc assed to define
logging functionality in any type of application (not only those Hratdesigned to
mediate collaborative activity).

The storing and processing capabilities of computers have lomgskeea as an
opportunity for research and evaluation in collaborative lagrri{Dillenbourg,
1999). For example, computer-generated log files may be combined with m
traditional sources of data such as ethnographic observation awodizpes. Neale
and Carrol (1999) present a complex evaluation methodology thatinesnb
automatic tools with field work to evaluate distance learaictiyities. One modern
adaptation of this concept uses web server logs as the obpwlysis. The Server
Log File Analyzer (SLA) (Wasson, Guribye, & Mgrch, 2000) is d tbat analyzes
web server logs to determine when it is possible for a teatmasdrits to collaborate
synchronously (i.e. when two or more of the team's members ayediam at the
same time). SLA also highlights if one team member does nototodor a
significant period of time, thus identifying periods when ewsynchronous
collaboration is not possible. Log file analysis tools, sucBlas, act as mirroring
tools by showing team members representations of their aadivith the next
section, we see how these representations may help stutietetsnine what
behaviors would most likely promote a successful collaboration.

Systemsthat Reflect Actions

The most basic level of support a system might offer invaivaking the students
or teachers aware of participants’ actions, without abgtpar evaluating these
actions. Actions taken on shared resources, or those that takeirplarivate areas
of a workspace may not be directly visible to the collaboratges they may
significantly influence the collaboration. Raising awarenalsut such actions
through mirroring tools may help students maintain a represemtati their

teammates’ activity. A better representation of teamshaetivities might



encourage coordination and enhance one’s own metacognitive progkssesnn,
2004).

PENCACOLAS (PEN Computer Aided COLIAborative System)adio et al.,
1999), a system designed to teach collaborative writing, is ampéxaof an
environment that facilitates formal evaluation while reftegtusers’ actions.
PENCACOLAS enables groups of students, and a teacher, to igerierd
synchronously. It models compositions as problem-solving situatatddllow a
recursive process involving a series of phases (e.g. braimsgompfanning, writing
and revision). Students using the system may also intergothasnously, by
revising their peers’ compositions, or exchanging short mess&ENCACOLAS
records all the students’ writing events. These logs are lisdto analyze the
student activity, and to enable the review, correction, and eimiuat previous
composition phases. Reviewing students’ intermediate writings steay provide
valuable insights regarding the evolution of their writing, ahdirt cognitive
development. To facilitate formative evaluation, the systemnaatically generates
filenames that identify users, sessions, and phases, thus allevahgtion of both
collaborative and individual work. This may also allow the teacher to pedaelf-
evaluation in which she reviews her pedagogical interventions.

Actions may also be represented along a timeline. For exartgtam, Rose,
Rubloff, Salter, and Shneiderman (1999) describe a system in whibdnss learn
the basics of vacuum pump technology through a simulation. As theetea
manipulates the controls of the simulation, he can view a histbhis actions
displayed graphically beneath each target variable (e.g. pressure)splag dhows
a series of boxes along a timeline, indicating the intermalghich the user is taking
actions, and the system’s messages. The data displayed taidikatstioes not
undergo any processing or summarizing, but directly reflectadtiens taken on
the interface. Although Plaisant et al. did not design the my&iebe used by two
persons at the same time, the learning history might be used to mirrazcative
situation by displaying the actions of the learners side-by-sidd, offering a
representation of concurrent actions to help students coordinate theiyacti

The graphical records of actions that Plaisant et al.’s {1989em constructs
might be sent to a tutor or a peer learner, or replayed bigdheer to examine his
own performance. Goodman, Geier, Haverty, Linton, and McCready (2001) have
taken advantage of the capacity of replay and reviewing toaderive as mirroring
devices. They have developed the Asynchronous Replay Tool (ART)) wihien
integrated in a larger system called SAILE (Synchronous asgnhchronous
Interactive Learning Environment), provides support for both syncheormmd
asynchronous interactions. ART allows an asynchronous learnecaméea full
participant in a problem solving session by enabling her to r¢faatyreview, step-
by-step, or replay action segments delimited by chat events) xqalience the
collaboration process of the other group members that have bekimgvon the
same problem.

Although online chat facilities pervade distance collabordégening systems,
many still present limitations, such as the lack of visual and audiqegegestures
and voice tone). Some researchers have addressed theséohsnibgt developing
creative extensions (see Looi, 2001, for an array of examples)example, chat
awareness tools such as Chat Circles (Donath, Karahaliddedas, 1999), can



help users keep track of ongoing conversations. Chat Circlegrigphical interface
for synchronous chat communication that reveals the structutes afonversation
(see Figure 2).
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Figure 2. Chat Circles: A mirroring tool that helps users keep traiclongoing
conversations Obtained by email from Fernanda Veigas &@gsedia.mit.edu).
Note: figure enlarged and colors enhanced for printing. Printed withigstom

Each participant is represented by a colored circle on tieersin which his or
her words appear. The tool is based omaditory metaphor: while one can see all
the participants at once, one can only "hear" (that is, Fead/ords) of those one is
sufficiently close to. Distances between messages (&)rate used to represent who
is talking to whom, hence the tool represents conversational structure thpatigh s
proximity. A participant’s circle grows and brightens with easbssage that he
sends, and fades in periods of silence. The circles, however, domptetely
disappear while the participant is still connected to tat.d/iewed over time, Chat
Circles creates a visual record of conversational pattBach user is made aware
of the other active, animated participants and can watch thergente and
dissolution of conversational groups. The developers of Chat €atde developed
an archival interface, “Conversation Landscape”, that graiphidizplays chat logs
in an intuitive format. This format maintains the informatibat is normally lost in
log files, such as pauses and turn-taking behavior. The conearkatdscape is a
two-dimensional model of the conversation, showing the postings of itthe gamnts
(again identified by color) as horizontal lines. The width of thesl is proportional
to the lengths of the messages. The viewer can interdctivist visualization to see



individual conversations, and read the postings. In this waypisdsible to explore
what has happened in an intuitive way.

Other systems reflect actions, but are not geared specificallyddeaning, and
hence will be covered only briefly here. For example, one of treresn@ss tools
(Gutwin, Stark, & Greenberg, 1995) in the Groupkit system (Rosefan
Greenberg, 1992) contains a shared scrollbar to display thersettitext each
participant is looking at, allowing students to locate theartner’s focus of
attention. Some groupware systems use a room-based paradigm o ustns of
the virtual locations of their peers. They may also showsusich objects their
peers are viewing or manipulating. (See NCSA Habanero, CUSe8MS8,
Microsoft NetMeeting, and Groove for some other examples.)

Systemsthat Monitor the State of Interaction

Systems that monitor the state of interaction fall into twtegories: those that
aggregate the interaction data into a set of high-lendgitators, and display these
indicators to the participants, and those that internally cosmibee current state of
interaction to a model of ideal interaction, but do not reveal ifiissmation to the
users. In the former case, the learners are expected to mémeagénteraction
themselves, assuming that they have been given the appropr@ateatbn to do
so. In the latter case, this information is either intended tadeel later by a
coaching agent, or analyzed by researchers in an effort tostenuis and explain the
interaction.

Systems that Display High-Levd Indicators

Our first group of systems models the state of interactimudjtr a set of indicators
that are displayed to the users. Jermann (2004) has developedatbgdtdisplays
participation rates to the collaborators as they are solvitrgffic light tuning
problem. The indicators on the display represent the number ofagess each
student has sent with respect to the number of problem-solvilmpsadte and his
teammates have taken (see Figure 3). The system disptajeracoded model of
desired interaction next to the observed interaction state. dlbes dndicate that
desirable interaction includes a greater proportion d&f talative to simulation-
directed actions. The students use this standard to judgeuthlgy of their
interaction and determine whether or not to take remedialnsctdermann found
that the metacognitive display encourages students to paseicipae through the
chat interface, in particular to engage in more precise planningiastiv

Tools like this might have a positive impact on a group's cogtative activities
by aiding in the construction and maintenance of a shared mental ofothed
interaction. This mental model may encourage students to disudisegulate their
interaction explicitly, leading to a better coordination of jiiet effort to reach a
solution. The notion of desirable interaction might also change dthen¢earning
process, causing the target values of the indicators to be dylgmijgdated, and
encouraging the learners to improve in different ways.
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Some metacognitive tools also include specialized displaysefrhers and
facilitators, to help them regulate the collaborative #etiw of their students. These
systems usually avoid complex computation because they are aksigne
dynamically provide intuitive displays that make the assessprocess as efficient
as possible. In classrooms with hundreds of students, such toolseniayaluable
in helping teachers monitor and facilitate group work. The Bynesystem
(Avouris, Komis, Margaritis, & Fiotakis, 2004) presented he previous section,
and the tool developed by Fesakis, Petrou, and Dimitracopoulou (2004) cahgpute
guantitative indexes CF (Collaborative Factor) and CAF (Goliaive Action
Function), respectively. Both calculate a value for collaimmaby taking into
consideration the actions performed by the user in the environimenigh the
different collaboration channels (e.g. chat, shared workspace). lolabsroom,
teachers have described these tools as useful for monitoringtattee of on-line
collaborative activities, reflecting on their own activitief-line, planning new
lessons, and configuring new group structures. The impact of kirede of tools
can be significant; they have the capability to focugacher’'s attention toward



those groups that may need the extra help, and away from thosarhfamnction
well independently. In the design of these tools, especially tivitbea limited
pedagogical basis, we should therefore remember to respdeatier's authority
in the classroom, and focus our efforts on developing tools that tmsistacher in
managing the classroom, rather than tools that assume the gibdjtpnfor
evaluating the collaborative activity.

Metacognitive tools designed for use in educational forums beaysed to
support asynchronous discussions over indefinite periods of timesa&dtimentel,
Fuks, and Lucena (2004) describe the tree-like visualizatiofs tthey have
developed that compute and display the statistics and linkagegdmetiorum
messages. The tools provide information about the structure of ttigens
discourse, accounting for factors such as the length of massalgéed to each
message category, discussion depth, percentage of leavestqgeoaf messages in
each category, and frequency of messages per hour. Dependihg style of
interaction (reflective discussion or brainstorming), eitherlength of messages of
their frequency is better suited to measure the intensity of interact

Simoff (1999) proposes an interesting way to estimate studewisntial for
learning by analyzing the graphical representation of studefitipation in an
educational forum. His system uses nested boxes to visuh$izassion threads.
The thickness of the boxes’ edges represents the number ofgeegsaduced in
response to the opening message for a particular threadn ledacational
environment, thicker boxes containing task-oriented content migatn ndeeper
conversations, hence deeper understanding. To study of the cdrttenhwessages,
Simoff applies a semi-automatic content analysis method. Common wactisas
articles and prepositions are discarded, and then the occurrenttes refmaining
terms are counted, noting the co-occurences of the most frequeds. This
technique is used to build a seminar thesaurus, and an individsalthe for each
participant. The comparison between these thesauri gives antimdicd each
participant’s contribution to the seminar. The content of thaudsians is also used
to generate a semantic net (through the use of the Text Artalyly, which
indicates the relevance of each term.

Talavera & Gaudioso (2004) apply data mining and machine leametigpds to
analyze student messages in asynchronous forum discussions. ifes
identify the variables that characterize the behaviourtadesnts and groups by
discovering clusters of students with similar behaviours. ahter might use this
kind of information to develop student profiles and form groups. Tedased
Gaudioso’s approach is general enough to be useful within manyediffeypes of
collaborative environments, however the output may need furtfieement to be
usable by teachers, who are not expected to be experts in data mining techniques

The last group of metacognitive tools we discuss in thisseeatply the formal
concepts and techniques of Social Network Analysis (SNAQs@srman & Faust,
1996) to study and display the structure of group activity. SNA isdbaisestrong
mathematical and sociological foundations, and provides a set tiodsetind
measurements for discovering and describing patterns of rel@pereamong actors,
and understanding how these patterns affect people and orgarsizaBibiA
methods operate on structures caledial networkghat describe a set of actors and
their relationships. Social networks can take many diffdi@ms. For example, e-



mail interchange networks describe which actors have sewtileo other actors.
Although social networks typically represent relationships betvweople, they can
be extended to include relationships between the users and resdodbes:t
interaction networks describe which actors have createdrardd documents with
which other actors, and who has taken actions on these shared decuviaemnyt
possibilities exist depending on the environment, the issues leitigds and the
available data processing capabilities.

Social Network Analysis supports the study of the relatiosshipdifferent
levels, namely the individual, the group, and the community. Fangea at the
individual level, thedegreecentrality measures the prominence of actors in the
network, and helps to identify those who are the most active orpegpheral. At
the group levelcohesive subgroupsan be identified as groups of actors with
strong, direct, frequent ties. And, at the community level, nbevork density
computes the percentage of actual links with respect toutmder of possible links
in a network, describing the level of activity in the netw@/Nasserman & Faust,
1996; see Martinez-Monés, Dimitriadis, Rubia-Avi, Gomez-SanckeFuente-
Redondo, 2003, for CSCL-specific examples).

Metacognitive CSCL tools have used SNA to both display and ureas
interaction during collaborative activities. In Gassner’'s (208dproach, social
networks of filtered e-mail data convey information about groupsyotelividual
personality factors, and even evidence of cooperation. Whilesysitem is still a
prototype, the design of meaningful filters for building soaitworks is a
promising line of research that may add more content and meaning to soc@knetw
analysis studies. Other systems, such as SAMSA (Marttredz 2003), and that by
Nurmela, Lehtinen, & Palonen, (1999) were developed to filter & langount of
data off-line and point evaluators to key collaborative |egrrévents that need
further study. The follow-up research is then carried out mantiaibygh content
inspection or qualitative analysis.

Ogata, Matsuura and Yano (2000) extend the notion of thel susfiaork
through a special metacognitive tool called a Knowledge Amess Map that
explicitly represents the content of the interaction and thecisbjstudents
manipulate in the network. This tool can be seen as a spedialocial network that
also includes “knowledge pieces” describing information that kel to
participants. The Knowledge Awareness Map graphically shows ud® else is
discussing or manipulating their knowledge pieces. In this die,distance
between users and knowledge elements on the map indicates the wegidgich
users have similar knowledge.

In this section, we discussed the role of metacognitive thatsdisplay high-
level indicators in supporting students’ collaboration and aves® teachers’
monitoring and assessment, and researchers’ analysis and evaluatcial
Networks may benefit all of these communities by making ikeraction in group
structures visually explicit, and grounding the analysis in swlidedures based on
mathematics and graph theory. SNA does not naturally represeevdhgion of
interaction, and may best be combined with other methods and techtiigtiean
model how interaction and relationships change over time.



Systems that Internally Compare the Current State to a Modd of Productive
I nteraction

The systems that we have discussed so far cover the ficststages of the
collaboration management cycle (Figure 1), described at theriegiof this paper.
We now turn to a discussion of systems in which the locusawfepsing (and the
responsibility for analyzing the interaction) gradually shiftom the user to the
system. These systems not only analyze, but also “diagnoseuttensinteraction
in an attempt to deduce or infer where the students might be hamirde. This is
generally done by internally comparing the current state efdotion to a model of
ideal, or productive, interaction. The main challenges preseimgdinis process are
(a) defining, as best possible, the model of desired interactoh(ly designing
algorithms that measure the degree to which the current modekadction meets
the requirements of the desired model, which may be uncertain @blemsthe
result of the comparison in these systems is not digplay¢he users, but instead
used later by a coaching agent, or analyzed by researctaersfiort to understand
and explain the interaction.

In the CSCL and AI-ED communities, we commonly think of “prodwtiv
interaction as interaction that facilitates learning. Moa¢lproductive interaction
are therefore built from factors that are thought to positiueflyyence learning.
These factors are qualitative in nature, and involve analyzing the senspeatsaof
interaction and the patterns of student actions. The systethi isection include
internal representations that model aspects of collaborat@ming such as
coordination, conflict, and knowledge sharing. The first systeorpacates a set of
rules that indicate domain-related conflicting and coordinagteghences of group
activity without judging them because both conflicts and cootelihactions might
be beneficial in the course of interaction. The second systenifiekesequences of
interactions that are productive in the sense that group mereffectively gain
knowledge from each other.

We begin with a system developed by Muehlenbrock and Hoppe (1999), two of
the first researchers to propose sequences of multi-user actionseid slogkspaces
as a basis for qualitative analysis. The shared workspaegsctnsider for the
automatic analysis provide semi-structured graphical reptasons for various
types of domains and tasks. The users ‘act’ on these shared graphicahtapoese
by adding new textual and pictorial objects, and relations betweendbgsts. The
users can also remove or revise existing structures thdt fi@sn previous joint
problem solving, or that are drawn from sample material.

In contrast to student dialog, user actions have clearly definechtiomal
semantics in terms of changes to the graphical structuesgeHhey are directly
available for automatic analysis, and do not require an ietiate labeling step,
which might introduce a certain degree of error. Action-basddbayhtion analysis
(Muehlenbrock, 2001) observes user actions in the temporal contetttesfusers’
actions as well as in the structural context of the graphEmlesentations. It
provides higher-level descriptions of the group activitiesfaew), and signals
alerts when relevant events, such as task-related dsnfind coordination
activities, have been detected (indicators). The analysisnsysas implemented as
a plug-in component for the generic framework system CARDBOARDich



includes intelligent support components (CARDDALIS). A recentsioer (see

Figure 4) has been used in a psychological study for examiningftbenice of a
feedback function to the behavior of the group (Zumbach, Muehlenbratsenla
Reimann, & Hoppe, 2002). Positive influence of feeding back analysissrésthe

group have been observed, although not to a significant degree, which may be due to
sample size; hence, further studies are necessary.
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Figure 4. The G\RDBOARD/CARDDALIS interface shows a large shared workspace
for co-constructive activity using pre-defined cards (categotéxt, idea, question,
pro, contra), a chat interface (center right) with senteategories (idea, question,
pro, contra), and a subtle feedback area (lower right) generatte bgteraction
analysis component.

The visualization of the model of interaction (e.g. the illusiraof the degree
of user participation in Figure 4) may be displayed to the stadas described in
the previous section, or hidden from the students, and insteadysedinstructor
or computer-based facilitation agent in advising the students. vitorth noting,
however, that if the model is sufficiently complex, containingargd number of
interdependent variables with varying degrees of uncerfaisteonstruction will
likely contain a margin of error. Such a detailed model maynbppropriate to
display to the user, and perhaps more meaningful to an autbfaatitation agent
that can abstract the relevant aspects of the model on tehiwdse its advice. The
models of interaction developed by theRDBOARD/CARDDALIS system, and the
EPSILON system which we describe next, are intended to be usaddgching
agent (in the future) in advising and guiding the group interaction.



Analyzing complex indicators, such as conflict and knowledge coristnuct
may require sophisticated computation involving advanced modelingatoral
language processing techniques. Interfaces that structure stodeetsation and
activity in terms of a set of actions the system knows twWandle may facilitate
the interpretation of student behavior. For example, our nyskers automatically
analyzes structured sentence opener-based knowledge sharing atomversthe
temporal context of workspace actions.

EPSILON (Soller, 2004; Soller & Lesgold, 2003) analyzes sequariggsup
members’ communication and problem solving actions in ordeettifg situations
in which students effectively share new knowledge with thedrgpavhile solving
object-oriented design problems. In the first phase of thebooliion management
cycle (Figure 1), the system logs data describing the students’ cororeesas (e.g.
Request Opinion, Suggest, Apologize) and actions (e.g. Student 3dceeatmw
class). In the second phase, the system collects examplesativefand ineffective
knowledge sharing, and constructs two Hidden Markov Models (HMMs) that
describe the students’ interaction in these two cases. A kdge/kharing example
is considered effective if one or more students learn theyrehaired knowledge (as
shown by a difference in pre-post test performance), and ineHeattherwise. The
Hidden Markov Modeling approach (Rabiner, 1989; also see Soller, 20G#) is
probabilistic machine learning method that generates abstraetafjeations of
coded sequences of activity, in the form of nondeterministic state itbassit

At the beginning of the third phase of the collaboration managgecyele, the
EPSILON system has generated the HMMs describing eféectnd ineffective
knowledge sharing, and is then prepared to dynamically asse®sv group’s
interaction. It compares the sequences of student activihetodnstructed Hidden
Markov Models, and determines whether or not the students are enqgieg a
knowledge sharing breakdown. The system also includes multidimenslatel
clustering methods to help explain why the students might be haeulgle, and
what kind of facilitation might help.

Systemsthat Offer Advice

This section describes systems that analyze the statdlatfaration using a model
of interaction, and offer automated advice intended to incréaseftectiveness of
the learning process. The coach in an advising system plays a role grthiat of a
teacher in a collaborative learning classroom. This actoit @&omputer coach or
human) is responsible for guiding the students toward effectillaboration and
learning. Since effective collaborative learning includes bedining to effectively
collaborate, and collaborating effectively to learn, the ifatdr must be able to
address social or collaboration issues as well as tagktediéssues. Collaboration
issues include the distribution of roles among students (e.ig, cniédiator, idea-
generator) (Burton, 1998), equality of participation, and reaching amoom
understanding (Teasley & Roschelle, 1993), while task-oriented igst@ge the
understanding and application of key domain concepts. The systemibetbsere
are distinguished by the nature of the information in their mpdats whether they
provide advice on strictly collaboration issues or both somma task-oriented



issues. We begin by taking a look at systems that advisedtial aspects of
collaborative learning.

Systems that Advise Social Aspects of | nteraction

A classroom teacher might mediate social interaction byrabgeand analyzing
the group’s conversation, and noting, for example, the degree of tdidtizeen
group members’ roles, or the quality of the conversation. A CSGlemsythat can
advise the social aspects of interaction therefore could bdrafi the ability to
understand the dialog between group members. Barros and Verdejo's) (2000
asynchronous newsgroup-style system, DEGREE, accomplisheBytmequiring
users to select the type of contribution (e.g. proposal, questicoponent) from a
list each time they contribute to the discussion. The possiliiloution types are
given by a conversational graph, which can be defined differdotlyeach
collaborative scenario; for example, a proposal might be defireal contribution
type that must be followed by a question, a comment or a counter akopbs
data satisfies the first phase of the collaboration managemeat cycl

The system’s model of interaction (phase 2 of the collaboration gearent
cycle) is constructed using a set of high-level inferredbats, such as cooperation
and creativity. For examplegooperationis inferred fromnumber-of-messages,
initiative andargumentation (calculated from the lower-level contribution types,
and context information). A fuzzy deduction system uses thibwtis obtained by
statistical analysis and pattern matching in order tricbnclusions about the other
subjective collaborative evaluation parameters; suetoas quality argumentation
coordination collaboration andcooperation In the third phase of the collaboration
management cycle, the system rates the collaboration bestumants along four
dimensions: initiative, creativity, elaboration, and conformithede attributes,
along with others such as the length of contributions, factorarfuzzy inference
procedure that rates students’ collaboration on a scaledwfol to very good The
advisor in DEGREE elaborates on the attribute values, aedsaffudents tips on
improving their interaction (see Figure 5).

MArCo (Tedesco, 2003) is a dialog-oriented system for the deteoti meta-
cognitive conflicts. The system adopts a dialog game approdbktavimited set of
possible dialog moves. User utterances must be formulated imal flanguage that
enables the conversation to be mapped onto a belief-based (Bilgl The
analysis mechanism then detects disagreements and conftigeehaisers’ beliefs
and intentions. The mediator informs the group when it detemsflict, and may
also recommend alternative courses of action.

The approaches taken by DEGREE and MArCo might be limited hy the
dependence on users’ ability to choose the correct contribution (pypposal,
comment, etc.). An alternative way of obtaining this informat®to have users
selectsentence openersuch as “Do you know”, or “I agree because” to begin their
contributions. Associating sentence openers with conversationsl sach as
Request Information, Rephrase, or Agree, and requiring students éogixgen set
of phrases, allows a system to understand the basic flow of dvétlogut having to
rely on Natural Language parsers. Most sentence openeraappsomake use of a



structured interface, comprised of organized sets of phraseders typically
select a sentence opener from the interface to begin each contribution.
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Figure5. A snapshot of messages generated for a student in an intermediate stage of
work, and below it, a general assessment of the group’s behanoor.Barros, B.,

and Verdejo, M.F. (2000). Analysing student interaction processesder ¢o
improve collaboration. The DEGREE approabtternational Journal of Artificial
Intelligence in Educationll, 221-241. Copyright 2000 by the International AIED
Society. Reprinted with permission.

McManus and Aiken (1995) take this approach in their Group lregctem.
Group Leader builds upon the concept that a conversation can betaodeas a
series of conversational acts (e.g. Request, Mediate) thagspond to users’
intentions (Flores, Graves, Hartfield, & Winograd, 1988). Like Flogesal.’s
Coordinator system, Group Leader uses state transition matoicésfine what
conversation acts should appropriately follow other acts; howewdke the
Coordinator, users are not restricted to using certain asedban the system’s
beliefs. Group Leader compares sequences of students’ conversasido &hose
recommended in four finite state machines developed spegifitallmonitor
discussions about comments, requests, promises, and debates. Theanghizas
the conversation act sequences, and provides feedback on the 5ttrdishts
leadership, creative controversy, and communication skiliginatly defined by
Johnson, Johnson, and Holubec (1990).

The success of McManus and Aiken's Group Leader (1995) began a
proliferation of systems that take a finite state machp@aach to modeling and
advising collaborative learners. One year later, Inaba and Qkarfl1996)
introduced IDCLE, a system that provides advice to studentsiirgarto



collaboratively prove geometry theorems. This system inferstate of interaction

by comparing the sequences of conversation acts to four possiliée dtate
machines. The finite state machines describe the mode ofcimerafor example

the model describing the query mode is used when the group is atignpti
address a member’'s question, and the model describing the caigiirmende is

used when the students are justifying or confirming an idea.cAdsi generated
through consideration of the dialog state and the roles of each gremper. For
example, iDCLE considers whether or not a group member is leading the discussion,
or asking an abundance of questions, and tailors the advice appropriately.

OXENTCHE (Vieira, Teixeira, Timoteo, Tedesco, & Barros, 2084 example
of a sentence opener-based tool integrated with an automatgu®atlassifier that
analyses on-line interaction and provides just-in-time feddtmboth teachers and
learners. During the first phase of the collaboration managfeoyele, the system
collects the student chat logs, codified with sentence openermglthe second
phase, the dialog classifier uses neural networks traingtbmtify productive and
non-productive dialogs regarding a numbercoflaborative skills,(although the
authors do not specify how the system computes tbelkaborative skill3. The
system also identifies off-task interactions by comparingiripat with a domain
ontology. During the third phase of the cycle, the system casphe students’
interaction to its models and offers two types of feedbackh&¥a receive reports
on both the group and individual students, and students may view tlysigrtdl
their contributions to the chat. The authors evaluated thesertsein four
experimental settings, obtaining positive results overall.

OXENTCHE also includes a chatterbot (natural language atieitcts as an
advising system, attempting to maintain the dialogue focustdtrupts the group
chat when it detects an unproductive change of subject, andattsmpts to
motivate less participative students to engage in conversagaof. this writing, the
chatterbot’s functionality has not been formally evaluated, andheiunivork is
planned in order to improve its efficiency. Overall, OXEnTCéties further than
many systems regarding data analysis and feedback, and asadntakaccount the
needs of different types of users (teachers and students).dihdimmtations of the
approach include the reliance on sentence openers and an uncleatictleo
justification for the chosen collaboration skills.

Sentence opener approaches have gained popularity over the pasard0O y
because of their ease-of-use, and ability to efficiently redineeamount of the
amount of natural language understanding for which the system whldvige be
responsible. They are however not without their limitationscaBse of the
dialogical constraints of sentence openers, students may notsailwsa them as
expected. For example, it is possible to use the sentence opehmk”, to say, “I
think | disagree”. The degree to which this will happen iselgrgependent on the
degree to which the set of sentence openers enable the stiidesipress
themselves, and the ability for them to find the phrases they oe the interface.
Training students how to use the sentence openers availalite anterface in
contextualized situations, and running iterative human-computadation studies
can both make a difference (Soller, 2004).

Because each sentence opener is also typically associatedomijt one
intention (i.e.Suggestbr Justify), a sentence opener-based coding scheme is only



able to account for the primary intention. It cannot capture conpiiestions, such

as aDiscuss/Agreeact that both expresses agreement and doubt. We do not yet
know to what degree a more complicated coding scheme might imgre\ability

to which the system can support various collaborative learnitigiti?as. Text
mining methods that learn to automatically classify contidinst into categories
might help to address this problem, although approaches in thaiahrere also
limited in their ability to understand natural human conversdtiorion, Goodman,
Gaimari, Zarrella, & Ross, 2003; Padilha, Almeida, & AN2304). Moreover, text
mining technigues must be adapted to each learning domain, pngsamtbbstacle

for their general use.

Systems that Advise Social and Task Oriented Aspects of I nteraction

Dillenbourg (1999) describes the so-called “Berlin Wall” of @bbrative learning
as the notion of trying to understand and support the social agpedaboration
separately from the task elements. Students cannot effgctiwarn how to
collaborate outside the context of a concrete task, and carfectivefly learn how
to perform the task collaboratively without attention to doara socio-cognitive
factors influencing the group. A few systems have taken advaofatés idea by
monitoring and analyzing students’ task-based and social actions together itoorde
gain a better understanding of the collaboration as a whole.

Our last group of collaborative learning systems intenadts students via a set
of specialized computer agents that address both social arori@sted aspects of
group learning. HabiPro (Vizcaino, 2001) is a collaborative progragmi
environment that uses two databases — one containing words reldébeddomain
(computer programming), and other containing potential off-topic terms. Tharsyst
includes a simulated peer agent that detects off-topic word$enstudents’
utterances, and intervenes as necessary to bring them back oneédSkse 6).

HabiPro also includes a group model, and an interaction model, whichnsontai
a set of “patterns” describing possible characteristiografip interaction (e.g. the
group prefers to look at the solution without seeing an explanatiam)ndthe
collaborative activity, the simulated peer uses the group madebmpare the
current state of interaction to these patterns, and proposemsactuch as
withholding solutions until the students have tried the problem.

GRACILE (Ayala & Yano, 1998) is an agent-based system design&dlpo
students learn Japanese. GRACILE’'s agents assess the progressividual
learners, propose new learning tasks based on the learning nebdsgabup, and
cooperate to maximize the number of situations in which studemyseffectively
learn from one another. In order to reach these goals, GRACILE aimsiniser
models for each of the students, and forms beliefs about potgraigb learning
opportunities. Group learning opportunities are defined as thoseettend an
individual's zone of proximal developmef\ygotsky, 1978), which describes the
potential development of a learner with the assistance of offaswing this idea,
GRACILE agents assess learners’ current and potentialogenent levels, and
propose learning tasks that optimize collaborative learning opportunities.
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Figure 6. The simulated peer in HabiPro detects that the studentisaressing the
football match, and attempts to refocus them on the problem soistgined by
email from Aurora Vizcaino (avizcaino@inf-cr.uclm.es). Printed wimpssion.

The models of interaction employed by LeCS (Rosatelli &,S02) and
COLER (Constantino-Gonzélez, Suthers, & Escamilla de los Sa2®02) also
integrate task and social aspects of interaction. LeC#itasito GRACILE in that
a set of computer agents guide students through the analysisefstudies. The
agents monitor students’ levels of participation, and track stsiderogression
through the task procedure, while addressing students’ misumndkngs and
ensuring group coordination.

COLER (Constantino-Gonzalez, Suthers, & Escamilla de los Sakff®)
uses decision trees to coach students collaboratively leaEmtity-Relationship
(ER) modeling, a formalism for conceptual database desigrF{gase 7). Acoach
monitors the personal and shared workspaces in order to dptamttunities for
group-learning interactions. COLER draws on the socio-cognitiveliciottieory
(Doise & Mugny, 1984) which states that disagreements can bepantwmuty for
learning when students detect them and try to resolve them khretlgction and
elaboration. Constantino-Gonzalez et al. define three types afhiog
opportunities: when there are problems in the quality of the ERpgdiagram,
differences between individual and group ER diagrams, andetiffes in the levels
of participation of the learners. COLER generates a set a@npat advisory
comments for a given situation using decision trees and choosesf dhem
according to a control strategy.
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Figure7. The COLER Workspace
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Goodman, Linton, Gaimari, Hitzeman, Ross, and Zarrella (in ppresent a
specific example in which machine learning methods are usé@itoan agent-
based system to recognize when students are experiencing telatde to specific
aspects of interaction. Their approach involves training neur@lones with
segmented, coded (speech act) student dialog and surface féatgreguestion
marks and keywords). Goodman et al.’s research reminds ughbasing the
appropriate technique for data analysis is critical, and dependseoconditions
under which these techniques are or are not expected to be fulcdedbe next
section, we summarize the various systems and methods thatvereetcountered
in this article along the paths of the collaboration managemer.cycl

DISCUSSION

In the first half of this paper, we developed the collabonathnanagement cycle
from a system’s perspective. This cycle describes thenach system can take to
support online collaborative learning interaction. In the secondhdiis paper, we
reviewed an array of systems that instantiate the siagéss model: mirroring,
monitoring, and advising.

Mirroring systems record and reflect input data, while nawimiy and advising
systems process this input data to obtain a higher-level espagion which is then
either displayed to the collaborators (in the case of indid@#tsed systems), or used
by the system or human facilitators (in the case of adyisystems). This higher-
level, derived representation may be quantitative or qualitative in nature. A
guantitative derivation process might entail counting, for ingtattte number of
dialog or workspace actions a user has taken. A qualitativeatieri process



requires taking relational information into account, such rdaerdependencies
between actions, or between actions and the application contexesTa-3

summarize the systems we have reviewed in this paper bygheof interaction

data they assimilate (Input data), the format of their mitdwel (Output) data
models, and the way in which they attempt to achieve or maiptaiductive

collaboration (Expected function).

In some cases, systems that monitor the state of interacgonoa all that
different from systems that provide advice. For example, stiggebat a student
participate more does not require much more computation than digpktyidents’
participation statistics; moreover both approaches may havathe affect. These
systems begin to differ when the knowledge behind the indicatorgesquigreat
enough level of inferencing to warrant having a coach anahgeldta to scaffold

the learning process.

Table 1. A summary ofmirroring systems that support collaborative learning

System Input data Output Expected function
Groupkit, Gutwir Shared workspace | Other users’ interfaceOn-line workspace
(1995) actions (window level) actions awareness
Plaisant et al. | Problem-solving Actions on a timeline Off-line analysis of the
(1999) actions activity
Chat Circles Dialog in an Graphical On-line social awareness
(Donath, unstructured virtual | visualization
Karahalios & space
Viegas,1999)

ART/SAILE Shared workspace | Reproduction of the | Off-line review of the

(Goodman et.la
2001)

actions (window-
level)

collaboration at
different granularitie

D

collaborative process

SLA (Wasson, | Shared workspace | Users’ connection | Off-line analysis of the
2000) actions (web-server | times to the server | possibilities of

level) collaboration work
PENCACOLAS | Shared workspace | Video-like Off-line review of the
(Blasco et al., | actions (low-level reproduction of the | collaborative process for
2001) events) collaboration evaluation and self-

evaluation purposes




Table 2. A summary ofmetacognitive systems that support collaborative learning

System Input data r?gclhvﬁ;;% Derived data Output Ejﬁé.ﬁtoe:
Sharlock Il, | User profile, Counting, Shared Graphical | Participants:
Ogata et al. | web page | similarity knowledge visualization Provide
(2000) access indices awareness knowledge

map awareness
SAMSA, Shared Social Network Graphical | Analyze
(Martinez- | workspace | network density and | visualization participation
Monés et al., actions analysis actors’ degree structure
2003) of centrality
Jermann Chat and Counting Participation | Graphical | Teachers:
(2004) problem- visualization Analyze
solving interaction
actions Students: Self
regulation
Talavera and Actions on a Data mining | Clusters of Clusters of | Identify
Gaudioso forum and machine| students with | students student
(2004) learning similar profiles and
characteristics form groups
Nurmela Actions on g Social Actors’ Indexes Analyze
(1999) shared network degree of participation
workspace | analysis centrality structure
Simoff (1999) Synchronou; Counting and Participation, | Graphical | Visualize the
and semi- structure of | representa-| depth of the
asynchron- = automatic discussion tion (Boxes) conversations
ous dialog | content
(forum) analysis
Action-based Actions on | Activity/plan | Action Graphical | Students: Self
Collaboration graphical recognition | sequences, | representa-| regulation,
Analysis, representa- indicators for | tion Feedback to
Muehlenbroc| tion in task-related facilitator
(2001) shared conflicts and
workspaces coordination
EPSILON, | Shared Hidden Effectiveness | Textual Feedback to
Soller & workspace = Markov of knowledge| assessment facilitator,
Lesgold actions, Models sharing & Input to
(2003) tagged explanation| computer-

dialog

based coach




Table 3. A summary ofguiding systems that support collaborative learning

Derivation : Expected
System Input data mechanism Derived data | Output fur?ction

Group Tagged Finite state = Trust, Coach On-line textual

Leader, dialog machines | leadership, feedback to

McManus communica- students on

and Aiken tion collaborative

(1995) skills

iDCLE, Tagged Finite state | Roles Coach On-line feedbac

Inaba and | dialog machines to students

Okamoto

(1996)

DEGREE, | Tagged Fuzzy Initiative, Coach On-line feedback

Barros and | dialog inference | creativity, and on “initiative,

Verdejo's and pattern elaboration, | conversa-| creativity,

(2000) matching conformity tion elaboration, &
analysis = conformity”
display

MarCo Dialog in BDI Meta- Conflict | On-line feedback

(Tedesco, | formal modeling cognitive mediator | on alternatives

2003) language conflicts when conflicts

are detected

GRACILE, | Workspace @ Rule-based | Student Coaching | On-line proposals

Ayala and | actions, expert helpers & agents of group learning

Yano learner system learning tasks tasks

(1998) models

LeCS Shared Case tree Participation, Coaching | On-line feedback

(Rosatelli & | workspace group agents of

Self, 2002) | actions coordination misunderstanding

& coordination

COLER, Shared and| Decision Participation, | Coach On-line feedbacl

(Constantin | private trees agreement of participation &

0-Gonzalez | actions, with group workspace

et al., 2002)| dialog procedure differences

OXEnTCHE Tagged Neural Productive Chatterbot On-line feedback

Vieira, dialog networks, | and non- of conversation

Teixeira, comparison | productive productivity

Timoteo, with dialogs

Tedesco, & domain sequences

Barros. ontology

(2004)

HabiPro, Shared Matching Ideal Coach Detection of off-

Vizcaino workspace | group participation, topic interaction

(2001) actions, interaction | motivation, & on-line

student “patterns”, | existence of guidance to
preferences; content off-topic students
dialog analysis conversations




While reflecting on our review of systems to support collabcagdéarning, we
noticed that there is a great diversity of approaches, and #ekedestion “Why?”
Such diversity might be explained by the fact that each syst@mws upon a
different theoretical perspective. But even systems thae st same view of
learning employ different strategies for pedagogical intdiga. For example,
Table 1 shows that some systems focus on modeling features ofditelual
learners (learner models) in order to detect potential titga for productive
interactions, while other systems that are based on similaretieb principals,
focus on analyzing collaborative interaction. GRACILE, a systehwas inspired
by Vygostky's zones of proximal development is an example of thedpproach,
whereas COLER, a system inspired by theories of socio-cogmitinflict, takes the
second approach. Systems that characterize the second appteachttempt to
understand how different patterns of interaction promote various taspéc
collaborative learning such as knowledge sharing and constrietgnEPSILON,
MarCo), or conversation (DEGREE). Some are more focused totvardocial
aspects of learning (e.g. HabiPro), while others study thetwtaliqroperties of
interactions within groups, such as the evolution of social rolesr{®al & Perkins,
98).

Because the systems described here are research protetpds,tend to
focus on a specific research question, they should be viewedheoperspective of
that question. The collaboration management cycle, describeé &eginning of
this article, is intended to describe a way of understandingajreebdities available
today for computationally supporting collaborative learning, rather thavay of
classifying and comparing these systems. Developing a newrsystesupport
several different aspects of interaction might involve dpelication of research
ideas from different systems, perhaps by way of re-implementation.

In this review article, we have attempted to provide an oeeref the current
technological capabilities, with the intention of laying treundwork for further
research that addresses the question of which technological selateappropriate
for which learning situations. We now conclude by motivating this furtbserarch.

FUTURE WORK

The concept ofsupporting (as opposed to enabling) peer-to-peer interaction in
computer-supported collaborative learning systems is stilisimfancy (Jermann,
Soller, & Lesgold, 2004). We have not yet seen full-scale evahsatf the types of
systems we have covered here. The evaluations that were aahdoictmany of
these systems, if at all, were done so under closely contraldedatory conditions.
Laboratory studies are critical for developing an understgndif the various
conditions that affect learning, and make sense as the first step indbgnasist and
redesign of the technology. If our objective is to assist atadind teachers during
real, curriculum-based learning activities, we must also unaerdtaw well our
laboratory findings apply to natural classroom situations. Thsocdy be done by
developing and deploying robust technology in physical and virtusgrdams, and
performing large scale evaluations. The feedback obtained fuom evaluations
should enhance the evaluation feedback loop in the collaboration management cycle



and further our understanding of which technological solutions hetfeists, and
which do not.

More studies are needed that test the utility of variouategfies for
computationally supporting online collaborative learning. It is poteb¢hat certain
strategies are more beneficial than other strategies uadeus conditions, and for
different domains. There is hence an important opportunity for needlysis
studies to understand which types of systems (i.e. mirroring, tonoig, or
advising) are useful under various constraints (i.e. group aizé ability,
environment, task characteristics, availability of human in&ira Then, further
analyses of computer-mediated interaction in parallel withharfjrained needs
analysis may help to determine which behavioral and pedagogidaksfaare
influenced in what ways by the various technological features. tBatymay we be
in a position to recommend specific technologies for fosteritapkshed learning
activities.

In some cases, a combination of technologies may be mostcptadior
example, analyzing visual indicators may increase studentshito@g load,;
moreover, some students may misinterpret the indicators. Butjntleaction
management skills students learn as they attempt to lietespd act upon these
indicator values might transfer well to other situations. Oneilgbigsis to both
display indicator values to students, and provide advice based deeper
computational analysis of the data that was used to generate theoirsdicat

Many of the approaches presented in this article address seffett
technology, rather than effea$technology (Kolodner & Guzdial, 1996; Salomon,
Perkins & Globerson, 1991). Effectsith technology refer to the changes in the
group dynamics that are triggered by software tools, whefestsof technology
refer to the outcome of the collaboration, both for the individudltha collective
group. These outcomes include the skills that students acquirepoovin and
whether or not these skills might transfer to a new learnitujt®n or group
experience. More research is needed to determine how visdbaek through
mirroring and metacognitive tools, or advice from guiding systears lead to
learning gains. In designing support for the collaborative leapriogess, we must
still not forget to assess the product.

The techniques and systems described throughout this article ftesendi
standards for diagnosis. How might we develop modular, reusahigossl that
would allow researchers to share and reuse tools in diff@861L environments?
Instead of proposing new data formats and interfaces, would ieds®omable to
tackle this problem in parallel with current efforts &l introducing collaboration
aspects in e-learning standards? In the future, we couldcaitevielop reusable
models of collaborative processes, based on modular architethatesan provide
the computational, theoretical, and pedagogical foundations for gumbigy while
encouraging metacognitive reflection by both teachers and ssudaunth models
might even be used in teacher training, to help explain breakdowrtsidans
interaction, or the dynamics of productive collaborative learning interaction.

Knowledge about how students interact in a computer-mediated envirbismen
useful to a system only if it knows when and how to apply thiswkedge to
recognize specific situations that call for intervention. €fa@m teachers learn to
analyze and assess student interaction through close observance ohg@aation,



trial and error, and experience. Developing a system to anglgme conversation,
however, poses its own challenges. For example, how do we go alibtatmg a
set of indicators that should represent a model of desiredagtitar, and what
learning theories or experimental results allow for thiébcation? This leads us to
the broader issue of how to quantify and translate well-known de@mdm the
learning and cognitive sciences into computational models thatbeaused to
diagnose student interaction. For example, how might the principéginge
elaborated explanations to learning gains (Webb, 1992) be fiphras a set of
calibrated indicators that can be computed on the fly during commetgiated
interaction? A “sufficiently elaborated explanation” might retively long, and
refer to several domain concepts, making computer diagnoffisultli The
theoretical and experimental foundations for our models mustrbag#tened,
justified, and assessed. Focused research in computationalingodé peer
interaction in context may help in making the transition from unaledi#ng how to
mediate learning groups to understanding how to train a systensstst @n
mediating learning groups more effectively.
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