
From Mirroring to Guiding:
A Review of State of the Art Technology
for Supporting Collaborative Learning

AMY SOLLER1, ALEJANDRA MARTÍNEZ MONÉS2, PATRICK JERMANN3,
& MARTIN MUEHLENBROCK4

1Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, VA 22311,

U.S.A., asoller@ida.org
2Dept. of Computer Science, University of Valladolid, 47011 Valladolid, Spain,

amartine@infor.uva.es
3Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,

Switzerland, Patrick.Jermann@epfl.ch
4DFKI, German Research Center for Artificial Intelligence, 66123 Saarbruecken,

Germany, Martin.Muehlenbrock@dfki.de

Abstract. We review a representative selection of systems that support the
management of collaborative learning interaction, and characterize them within a
simple classification framework. The framework distinguishes between mirroring
systems, which display basic actions to collaborators, metacognitive tools, which
represent the state of interaction via a set of key indicators, and coaching systems,
which offer advice based on an interpretation of those indicators. The reviewed
systems are further characterized by the type of interaction data they assimilate, the
processes they use for deriving higher-level data representations, the variables or
indicators that characterize these representations, and the type of feedback they
provide to students and teachers. This overview of technological capabilities is
designed to lay the groundwork for further research into which technological
solutions are appropriate for which learning situations.

Keywords. Collaborative Learning, CSCL, Interaction Analysis, computational
modeling, mirroring, metacognitive, coaching

INTRODUCTION

Over the past decade, we have seen a remarkable increase in the development and
adoption of network-based technologies that enable traditional and non-traditional
distance learners alike to learn collaboratively. These environments enhance
traditional distance learning curricula by giving students the opportunity to interact
with other students online, on their own time, and wherever they are located to share

knowledge and ideas. But especially for domains in which teamwork is critical, do
these collaborative tools provide the kind of supportive environments learning
groups need? Is it possible to design environments in which each team of students
learns in the presence of a facilitator who helps to manage and guide the
collaboration, providing clear goals as to what is expected from the group process?
In this paper, we review a representative selection of tools and methodologies that
support collaborative learning interaction, and characterize them within a simple
conceptual framework. The framework serves to organize and explain the array of
available collaborative support options.

Understanding and evaluating collaborative learning tools and methodologies is
not a trivial task. During collaborative learning activities, factors such as students’
prior knowledge, motivation, roles, language, behavior, and group dynamics interact
with each other in unpredictable ways, making it very difficult to measure and
understand learning effects. This may be one reason why the focus of collaborative
learning research shifted in the nineties from studying group characteristics and
products to studying group process (Dillenbourg, Baker, O’Malley, & Blaye, 1995;
Jermann, Soller, & Muehlenbrock, 2001). With an interest in having an impact on
the group process in modern distance learning environments, the focus has recently
shifted again – this time from studying group processes to identifying computational
strategies that positively influence group learning. This shift toward mediating and
supporting collaborative learners is fundamentally grounded in our understanding of
the group activity described by our models of collaborative learning interaction.

Because distance learners adapt their interaction to the features and capabilities
of the available tools, their interaction may also differ from that of face-to-face
learners, and the way in which we support their interaction may differ too. Online
collaborative learning environments may never offer the same kind of
supportiveness found in the face-to-face classroom, and might never need to, but
they must still provide students with the kind of rich learning experiences they
might otherwise obtain in the classroom. In this paper, we explore the advantages,
implications, and support possibilities afforded by various technologies and
computational models in an array of contexts.

We begin in the next section by describing our conceptual framework, the
Collaboration Management Cycle. This framework will help to organize the
technology support options that we describe in the third section. All four authors of
this article have recently completed their doctoral dissertations in this area, and each
has contributed from his or her experiences to the discussion of the critical questions
and open issues for future research in the fourth and fifth sections. These sections
might be used in the development of future theses, to identify key unanswered
research questions and gaps.

THE COLLABORATION MANAGEMENT CYCLE

Managing collaborative interaction means supporting group members’
metacognitive activities related to their interaction. It may be facilitated through
activities such as providing on-line dynamic feedback to students, or off-line
analyses of the students’ collaboration to instructors. The students, instructors, or

system might then recommend actions to help students manage their interaction by
reassigning roles, addressing conflicts and misunderstandings, or redistributing
participants’ tasks, given their levels of expertise.

In distributed computer-supported collaborative learning (CSCL)
environments, the process of collaboration management is assisted and informed by
one or more computational models of collaborative learning interaction (Soller,
Jermann, Muehlenbrock, & Martinez-Mones, 2004). These models provide
functional computer-based representations that help us understand, explain, and
predict patterns of group behavior, and support group learning processes. They can
help us determine how to structure the environment in which the collaboration takes
place, or regulate the student interaction during the learning activities (Jermann,
Soller, & Lesgold, 2004). We very briefly describe the role of computational models
in structuring the group learning environment, and then focus the remainder of our
discussion on their role in regulating interaction.

The Role of Computational Models in Structuring and Regulating Interaction

Structuring approaches aim to create favorable conditions for learning by designing
or scripting the situation before the interaction begins (Dillenbourg, 2002). For
example, we might structure the learning experience by varying the characteristics
of the participants, the size and composition of the group, or the definition and
distribution of student roles. We might also strategically select a subset of learning
tools, activities, and communication media with desired characteristics, or change
the appearance of the environment based on the nature of the task (e.g. writing,
problem-solving) or the configuration of the group. A computational model,
describing students’ prior behavior under similar conditions might be used to
strategically construct learning teams and activities, or plan mediation schemes.
Approaches to structuring the learning situation are often based on educational
principles or theories, and intended to encourage certain types of interaction, such as
argumentation or peer tutoring.

Regulation approaches support collaboration by taking actions once the
interaction has begun. Interaction regulation is a complex skill that requires a quick
appraisal of the situation based on a comparison of the current situation to a model
of desired interaction. In the classroom, the regulation of student interaction is
performed by a teacher, taking into account complex variables such as the observed
student interaction, various experiences from years of teaching, and knowledge of
the students’ personalities and typical behaviors. The difficulty in eliciting the
knowledge needed to account for these complex variables, and determining the
manner and degree to which each contributes to the collaborative learning outcome,
has presented significant challenges to the computational modeling, analysis, and
assessment of group learning activities. How might a computer assess the quality of
knowledge sharing, or measure the degree of constructive conflict between students?
It is too early to tell whether or not we will ever be able to offer the supportiveness
of a human teacher online; however, a few research projects have begun to explore
the possibilities of enriching CSCL environments with tools to support and enhance
collaboration management through interaction regulation.

Before leaving our discussion of structuring and regulating approaches, we note
that these methods need not be exclusive, and may even be applied in concert. For
example, a system might mediate the group by dynamically structuring the
environment, while the students, at the same time, attempt to regulate their own
interaction. We now move to a discussion of the four phases in the collaboration
management cycle, designed to organize the array of state-of-the-art functionality
for supporting interaction regulation.

The Phases of the Collaboration Management Cycle

In this section, we present a framework for describing the process of collaboration
management, building upon the work of Jermann, Soller, and Muelhenbrock (2001)
and Barros and Verdejo (2000). Collaboration management follows a simple
homeostatic process, illustrated in Figure 1, that continuously compares the current
state of interaction with a target configuration (the desired state). Pedagogical
actions are taken whenever a perturbation arises, in order to bring the system back to
equilibrium. Because the definition of the desired state may not be fully known, and
may also change during the course of group activity, the framework presented here
provides a general description of the activities involved in computer-supported
collaboration management, rather than a means for predicting collaborative learning
outcomes.

Collect &
Aggregate

Interaction Data

Phases 1 & 2
Compare Current

State of Interaction
to Desired State

Phase 3

CurrentCurrent
State ofState of

InteractionInteraction

Offer Advice
and Guidance

Phase 4

MirroringMirroringMirroringMirroring
ToolsToolsToolsTools

Meta-

Cognitive

Tools

Guiding Systems

DesiredDesired
State ofState of

InteractionInteraction

Figure 1. The Collaboration Management Cycle

The framework, or collaboration management cycle is represented by a
feedback loop, in which the metacognitive or behavioral change resulting from each
cycle is evaluated in the cycle that follows. Such feedback loops can be organized in
hierarchies to describe behavior at different levels of granularity (e.g. operations,
actions, and activities). The collaboration management cycle is defined by the
following phases:

Phase 1: Collect Interaction Data
The data collection phase involves observing and recording the interaction.
Typically, users’ actions (e.g. ‘user1 clicked on I agree’, ‘user1 changed a
parameter’, ‘user1 created a text node’) are logged and stored for later processing.
An important decision that must be made in phase 1 as to whether the eventual
model will call for an activity-based analysis, requiring a historical log of student
actions across time, or a state-based analysis, requiring the logging of “snapshots” of
collaborative interaction, without history information (Gassner, Jansen, Harrer,
Herrmann, & Hoppe, 2003).

Phase 2: Construct a Model of Interaction
The next phase involves selecting and computing one or more higher-level
variables, termed indicators, to represent the current state of interaction. For
example, an agreement indicator might be derived by comparing the problem
solving actions of two or more students, or a symmetry indicator might result from a
comparison of participation indicators.

Phase 3: Compare the Current State of Interaction to the Desired State
The interaction can then be “diagnosed” by comparing the current state of
interaction to a desired model of interaction. We define the desired model as a set of
indicator values that differentiate between productive and unproductive interaction
states. A productive state, given by a desired indicator configuration, typically
corresponds to a representation of interaction that might positively influence
learning. For instance, we might want learners to be verbose (i.e. to attain a high
value on a verbosity indicator), to interact frequently (i.e. maintain a high value on a
reciprocity indicator), and participate equally (i.e. to minimize the value on an
asymmetry indicator). We do not further circumscribe desired interaction because
our objective is to parameterize the analysis process rather than present the results of
a particular interaction analysis.

From an implementation standpoint, the difference between phases 2 and 3
does not seem significant. From a theoretical perspective, however, these phases
describe the difference between a system that reflects the group’s activities back to
the members, and requires them to manage their own interaction, and a system that
prepares interaction data so that it can be assessed by computer models, or analyzed
by researchers in an effort to understand and explain the interaction.

Phase 4: Advise/ Guide the Interaction
Finally, if there are discrepancies between the current state of interaction (as
described by the indicator values) and the desired state of interaction, some remedial
actions might be proposed. Simple remedial actions (e.g. ‘Try letting your partner

have control for a while’) might result from analyzing a model containing only one
indicator (e.g. word or action count), which can be directly computed from the data,
whereas more complex remedial actions (e.g. ‘Try explaining the concept of
generalization to your partner using a common analogy’) might require more
sophisticated computational analysis.

Phase 4 is not the final phase in this process. Remediation by the system or
human instructor will have an impact on the students’ future interaction, and this
impact should be re-evaluated to ensure that it produced the desired effects. The
arrows that run from phase 4 back through the illustration representing the logging
of learners’ actions, to phase 1 indicates the cyclic nature of the collaboration
management cycle, and the importance of evaluation and reassessment at the
diagnostic level.

Phase 5: Evaluate Interaction Assessment and Diagnosis
After exiting Phase 4, but before re-entering Phase 1 of the following collaboration
management cycle, we pass through the evaluation phase. Here, we reconsider the
question, “What is the final objective?”, and assess how well we have met our goals.
Some systems are aimed exclusively at analyzing and evaluating student activity.
Their objective is to explain why students may be experiencing trouble collaborating
and learning, and help an instructor or online coach target those difficulties. In some
cases, evaluation may be performed off-line, taking complete courses of interaction
as the units of analysis. Off-line evaluation removes the temporal constraints that are
present in dynamic, on-line coaching and evaluation scenarios, although such
evaluation procedures also introduce some delay in the feedback, evaluation, and
remediation loop. Off-line evaluation may be performed by either the system, or a
human evaluator. In the first case, the system improves its own ability to diagnose
student performance by directly analyzing students’ actions (e.g. Soller, 2004; Soller
& Lesgold, 2003). In the second case, a human may intervene in the process to alter
the method of facilitation or even the model of desired interaction.

In control theory and cognitive science, cognitive architectures are described as
hierarchies of referents that begin at the lower levels of sensation and continue
through the higher levels of conceptual knowledge (Robertson & Powers, 1990).
The fifth phase in our model corresponds to a higher level of control that allows for
changes to the desired state of interaction in the management cycle. For the sake of
simplicity, Figure 1 graphically depicts only the four first phases of the
collaboration management cycle representing one full cycle.

When these five phases are realized in a system, they might form more of a
theoretical base than the embodiment of physical system components or human-
controlled tasks. In some systems, the phase durations and boundaries may vary
significantly, making the phases difficult to identify, whereas in other systems, the
phases might be implemented as concrete, identifiable, software modules. For
instance, the first phase – collection of interaction data – could be realized as either
the collection of a single new datum that immediately triggers the cycle, or the
accumulation of interaction data over a long period of time, that must be completed
before entering the next phase. Systems that involve humans ‘in the loop’ who
advise or guide the interaction tend towards the latter because human resources are
often not immediately available.

The Locus of Processing: From Mirroring to Guiding

Research in distributed cognition suggests that cognitive and metacognitive
processes might be spread out and shared among actors in a system, where these
actors may constitute both people and tools (Hutchins, 1995; Salomon, 1993).
Following this idea, computers might offer support for any or all of the four phases
described in the previous section. The locus of processing describes the location at
which decisions are made about the quality of the student interaction, and how to
facilitate this interaction. Depending on the requirements and goals of the learning
activity, the locus of processing may be located anywhere on a continuum between
the system, instructors, and collaborating students. For example, a teacher, or the
group members themselves, might observe the interaction, compare its current state
with implicit or explicitly agreed upon referents, and propose changes to the
communicative rules or division of labor. In this case, the locus of processing is in
human hands. Alternatively, parts of this process might be managed by a computer
system, thereby shifting the locus of processing towards the computer.

Systems that collect interaction data and construct visualizations of this data
tend to place the locus of processing at the user level, whereas systems that advise
and coach aggregate and process this information directly. In the remainder of this
section, we describe three computer-based support options that arise as the computer
takes over various phases of the collaboration management process presented in the
previous section.

Mirroring tools automatically collect and aggregate data about
the students’ interaction (phases 1 and 2 in Figure 1), and
reflect this information back to the user, for example, as
graphical visualizations of student actions or chat contributions.
These systems are designed to raise students’ awareness about
their actions and behaviors. They place the locus of processing
in the hands of the learners or teachers, who must compare the
reflected information to their own models of desired interaction
to determine what remedial actions are needed.

Metacognitive tools display information about what the desired
interaction might look like alongside a visualization of the
current state of indicators (phases 1, 2 and 3 in Figure 1). These
systems provide the referents needed by the learners or human
coaches to diagnose the interaction. Like mirroring tools, users
of metacognitive support tools are responsible for making
decisions regarding diagnosis and remediation.

Guiding systems perform all the phases in the collaboration
management process, and propose remedial actions to help the
learners. The desired model of interaction and the system’s
assessment of the current state are typically hidden from the
students. The system uses this information to make decisions
about how to moderate the group’s interaction.

Fundamentally, these three approaches rely on the same model of interaction
regulation, in that first data is collected, then indicators are computed to build a
model of interaction that represents the current state, and finally, some decisions are
made about how to proceed based on a comparison of the current state with some
desired state. The difference between the three approaches above lies in the locus of
processing. Systems that collect interaction data and construct visualizations of this
data place the locus of processing at the user level, whereas systems that offer
advice process this information, taking over the diagnosis of the situation and
offering guidance as the output. In the latter case, the locus of processing is entirely
on the system side.

Selecting and designing the most appropriate computational approach for
supporting group interaction means evaluating the instructors and learners’ needs
and assessing the available computational resources. Each of the three support
options described in this section presents different advantages and disadvantages
(described in more detail in the next section), and many combinations of approaches
can be complementary. For example, imagine a system that progressively moves the
locus of processing from the system side to the learner side in the form of a guiding
tool that becomes a metacognitive tool and finally a mirroring tool. As students
observe the methods and standards that the system uses to assess the quality of the
interaction, they might develop a better understanding of the system’s process of
diagnosis, allowing the responsibility for interaction regulation to be progressively
handed over to the students. Once the students have understood (internalized) these
standards, simply displaying the indicators in a mirroring tool might be sufficient.

Models designed to assist human instructors in coaching students might look
different from those intended to guide students directly, even if the locus of
processing looks similar. Dimitracopoulou & Komis (2004) found that teachers’
most important consideration was their ability to track multiple groups of students as
they learn synchronously, and identify individual and group difficulties. Supporting
these teachers might mean providing them with automated analysis tools, targeted at
their specific concerns, or tools that enable them to reconstruct and analyze
sequences of past collaborative student activity.

Students, on the other hand, might initially lack the skill and insight to interpret
the models correctly, and may consequently develop biases about what constitutes
effective interaction. For example, students might rely on implicit social norms
(status, equality) to manage the interaction by remaining silent while their more
knowledgeable peers perform difficult tasks. Partners may spend unnecessary time
worrying about whether or not they are participating equally, thinking that equal
participation leads to equal credit. Collaborative learners guided by mirroring and
metacognitive tools may need to follow a more introspective process to develop an
understanding of their interaction than those who are guided by a teacher or
computer-based coach. The advantage of these tools is that those learners who
struggle and succeed without intervention may more rapidly develop a
understanding of their interaction, and how to improve their own interaction skills.

A REVIEW OF SYSTEMS THAT SUPPORT COLLABORATIVE
LEARNING

In this section, we discuss representative examples of three types of supportive
collaborative learning systems in the context of the collaboration management cycle.
In the previous section, we described mirroring systems as those that reflect actions
because they collect activity data in log files and display it to the collaborators. We
described metacognitive tools as those that monitor the state of interaction because
they maintain a model of the group activity, and either diagnose the interaction or
provide collaborators with visualizations that they can use to self-diagnose their
interaction. These visualizations typically include a set of indicators that represent
the state of the interaction, possibly alongside a set of desired values for those
indicators. Finally, we explained that coaching or advising systems guide the
collaborators by recommending actions they might execute to enhance the
interaction. We begin this section with a brief discussion of the options available for
collecting and structuring interaction data, in preparation for collaboration analysis.
We then turn to a deeper discussion of the technology options for each phase of the
collaboration management cycle, and review a number of key systems within each
category.

Collecting & Structuring Interaction Data

The first step in designing and developing collaboration support tools is determining
how student actions should be logged by the system. This means making decisions
about the granularity of data to collect (mouse movement, clicks, or object
manipulation), how often actions should be logged, where (e.g. in a logfile,
database, or internal data cache), and in what format. While a standard data format
would allow researchers to share and reuse analysis tools across different CSCL
systems more easily, this might also limit their ability to customize tools for specific
user groups, or apply special methods for analyzing particular combinations of data.
In this section, we briefly introduce the work of a few notable researchers who have
seriously considered CSCL data collection issues, and then discuss how a variety of
mirroring tools have taken advantage of these data collection efforts.

The Object-oriented Collaboration Analysis Framework (OCAF) (Avouris,
Dimitracopoulou, & Komis, 2003) defines a model that represents the items of the
students’ solution (including those that have been discussed and eventually rejected)
as a sequence, Pif j, where Pi represents the actor, and fj, the functional role related to
a particular part of the solution (e.g. the insertion or proposal of an item, the
rejection of a proposal). The functional roles are determined by automatically
analyzing the logs of student actions, and manually analyzing the logs of student
dialog. Collecting and structuring data in this way enables the researcher to analyze
student workspace actions from the point-of-view of the shared objects rather than
the student actions. OCAF considers objects as entities that carry their own history,
and are owned by actors (learners) who have contributed, in varying degrees, to the
solution. They independently compile statistics on their use, and contribute to the
definition of indicators describing their owners’ collaborative behavior. Because of

this object-orientation, OCAF is restricted to systems in which students construct
solutions composed of well distinguished objects.

Avouris, Komis, Margaritis, and Fiotakis (2004) have developed a system
called Synergo, which represents OCAF-modeled activity textually or
diagrammatically. While the former is suitable for automatic processing, the latter is
intended to provide a human with a view of the items and their history. The system
also includes a web interface that logs student actions, and displays various views of
the model such as a history of events, or an object-oriented view of every object that
has been inserted in the system. With the help of this tool, the researcher can inspect
different aspects of the model, such as the activity of each actor, or the structure of
the solution.

To facilitate the automatic data collection process, Martínez-Monés, Guerrero,
and Collazos (2004) define the concept of the collaborative action in context as an
action that can affect the collaborative process, and can be perceived by group
members. They explain how a CSCL environment can model and implement
collections of collaborative actions by adapting the standard software engineering
command design pattern. The design pattern is a general solution that modularizes
the data collection process, enables data customization, and can be used to define
logging functionality in any type of application (not only those that are designed to
mediate collaborative activity).

The storing and processing capabilities of computers have long been seen as an
opportunity for research and evaluation in collaborative learning (Dillenbourg,
1999). For example, computer-generated log files may be combined with more
traditional sources of data such as ethnographic observation and audio tapes. Neale
and Carrol (1999) present a complex evaluation methodology that combines
automatic tools with field work to evaluate distance learning activities. One modern
adaptation of this concept uses web server logs as the object of analysis. The Server
Log File Analyzer (SLA) (Wasson, Guribye, & Mørch, 2000) is a tool that analyzes
web server logs to determine when it is possible for a team of students to collaborate
synchronously (i.e. when two or more of the team's members are logged on at the
same time). SLA also highlights if one team member does not log on for a
significant period of time, thus identifying periods when even asynchronous
collaboration is not possible. Log file analysis tools, such as SLA, act as mirroring
tools by showing team members representations of their activities. In the next
section, we see how these representations may help students determine what
behaviors would most likely promote a successful collaboration.

Systems that Reflect Actions

The most basic level of support a system might offer involves making the students
or teachers aware of participants’ actions, without abstracting or evaluating these
actions. Actions taken on shared resources, or those that take place in private areas
of a workspace may not be directly visible to the collaborators, yet they may
significantly influence the collaboration. Raising awareness about such actions
through mirroring tools may help students maintain a representation of their
teammates’ activity. A better representation of teammates’ activities might

encourage coordination and enhance one’s own metacognitive processes (Jermann,
2004).

PENCACOLAS (PEN Computer Aided COLlAborative System) (Blasco et al.,
1999), a system designed to teach collaborative writing, is an example of an
environment that facilitates formal evaluation while reflecting users’ actions.
PENCACOLAS enables groups of students, and a teacher, to generate text
synchronously. It models compositions as problem-solving situations that follow a
recursive process involving a series of phases (e.g. brainstorming, planning, writing
and revision). Students using the system may also interact asynchronously, by
revising their peers’ compositions, or exchanging short messages. PENCACOLAS
records all the students’ writing events. These logs are used both to analyze the
student activity, and to enable the review, correction, and evaluation of previous
composition phases. Reviewing students’ intermediate writing steps may provide
valuable insights regarding the evolution of their writing, and their cognitive
development. To facilitate formative evaluation, the system automatically generates
filenames that identify users, sessions, and phases, thus allowing evaluation of both
collaborative and individual work. This may also allow the teacher to perform a self-
evaluation in which she reviews her pedagogical interventions.

Actions may also be represented along a timeline. For example Plaisant, Rose,
Rubloff, Salter, and Shneiderman (1999) describe a system in which students learn
the basics of vacuum pump technology through a simulation. As the learner
manipulates the controls of the simulation, he can view a history of his actions
displayed graphically beneath each target variable (e.g. pressure). The display shows
a series of boxes along a timeline, indicating the intervals in which the user is taking
actions, and the system’s messages. The data displayed to the student does not
undergo any processing or summarizing, but directly reflects the actions taken on
the interface. Although Plaisant et al. did not design the system to be used by two
persons at the same time, the learning history might be used to mirror a collaborative
situation by displaying the actions of the learners side-by-side, and offering a
representation of concurrent actions to help students coordinate their activity.

The graphical records of actions that Plaisant et al.’s (1999) system constructs
might be sent to a tutor or a peer learner, or replayed by the learner to examine his
own performance. Goodman, Geier, Haverty, Linton, and McCready (2001) have
taken advantage of the capacity of replay and reviewing tools to serve as mirroring
devices. They have developed the Asynchronous Replay Tool (ART), which when
integrated in a larger system called SAILE (Synchronous and Asynchronous
Interactive Learning Environment), provides support for both synchronous and
asynchronous interactions. ART allows an asynchronous learner to become a full
participant in a problem solving session by enabling her to replay (fast review, step-
by-step, or replay action segments delimited by chat events) and experience the
collaboration process of the other group members that have been working on the
same problem.

Although online chat facilities pervade distance collaborative learning systems,
many still present limitations, such as the lack of visual and audio cues (e.g. gestures
and voice tone). Some researchers have addressed these limitations by developing
creative extensions (see Looi, 2001, for an array of examples). For example, chat
awareness tools such as Chat Circles (Donath, Karahalios, & Viegas, 1999), can

help users keep track of ongoing conversations. Chat Circles is a graphical interface
for synchronous chat communication that reveals the structure of the conversation
(see Figure 2).

Figure 2. Chat Circles: A mirroring tool that helps users keep track of ongoing
conversations Obtained by email from Fernanda Veigas (viegas@media.mit.edu).
Note: figure enlarged and colors enhanced for printing. Printed with permission.

Each participant is represented by a colored circle on the screen in which his or

her words appear. The tool is based on an auditory metaphor: while one can see all
the participants at once, one can only "hear" (that is, read the words) of those one is
sufficiently close to. Distances between messages (circles) are used to represent who
is talking to whom, hence the tool represents conversational structure through spatial
proximity. A participant’s circle grows and brightens with each message that he
sends, and fades in periods of silence. The circles, however, do not completely
disappear while the participant is still connected to the chat. Viewed over time, Chat
Circles creates a visual record of conversational patterns. Each user is made aware
of the other active, animated participants and can watch the emergence and
dissolution of conversational groups. The developers of Chat Circles also developed
an archival interface, “Conversation Landscape”, that graphically displays chat logs
in an intuitive format. This format maintains the information that is normally lost in
log files, such as pauses and turn-taking behavior. The conversation landscape is a
two-dimensional model of the conversation, showing the postings of the participants
(again identified by color) as horizontal lines. The width of the lines is proportional
to the lengths of the messages. The viewer can interact with this visualization to see

individual conversations, and read the postings. In this way, it is possible to explore
what has happened in an intuitive way.

Other systems reflect actions, but are not geared specifically toward learning, and
hence will be covered only briefly here. For example, one of the awareness tools
(Gutwin, Stark, & Greenberg, 1995) in the Groupkit system (Roseman &
Greenberg, 1992) contains a shared scrollbar to display the section of text each
participant is looking at, allowing students to locate their partner’s focus of
attention. Some groupware systems use a room-based paradigm to inform users of
the virtual locations of their peers. They may also show users which objects their
peers are viewing or manipulating. (See NCSA Habanero, CUSeeMe, IWS,
Microsoft NetMeeting, and Groove for some other examples.)

Systems that Monitor the State of Interaction

Systems that monitor the state of interaction fall into two categories: those that
aggregate the interaction data into a set of high-level indicators, and display these
indicators to the participants, and those that internally compare the current state of
interaction to a model of ideal interaction, but do not reveal this information to the
users. In the former case, the learners are expected to manage their interaction
themselves, assuming that they have been given the appropriate information to do
so. In the latter case, this information is either intended to be used later by a
coaching agent, or analyzed by researchers in an effort to understand and explain the
interaction.

Systems that Display High-Level Indicators

Our first group of systems models the state of interaction through a set of indicators
that are displayed to the users. Jermann (2004) has developed a system that displays
participation rates to the collaborators as they are solving a traffic light tuning
problem. The indicators on the display represent the number of messages each
student has sent with respect to the number of problem-solving actions he and his
teammates have taken (see Figure 3). The system displays a color-coded model of
desired interaction next to the observed interaction state. The colors indicate that
desirable interaction includes a greater proportion of talk relative to simulation-
directed actions. The students use this standard to judge the quality of their
interaction and determine whether or not to take remedial actions. Jermann found
that the metacognitive display encourages students to participate more through the
chat interface, in particular to engage in more precise planning activities.

Tools like this might have a positive impact on a group's metacognitive activities
by aiding in the construction and maintenance of a shared mental model of the
interaction. This mental model may encourage students to discuss and regulate their
interaction explicitly, leading to a better coordination of the joint effort to reach a
solution. The notion of desirable interaction might also change during the learning
process, causing the target values of the indicators to be dynamically updated, and
encouraging the learners to improve in different ways.

Figure 3. While students solve a traffic light tuning problem, they can visualize and
compare their chat and problem solving behavior to that of their teammates. The
color of the Pie ranges from red on the left side to green in the center and right side.
The needles indicate the Talk Tune Proportion (TTP) for each subject (Christina and
Billy) as well as the average for the group (Team).

Some metacognitive tools also include specialized displays for teachers and
facilitators, to help them regulate the collaborative activities of their students. These
systems usually avoid complex computation because they are designed to
dynamically provide intuitive displays that make the assessment process as efficient
as possible. In classrooms with hundreds of students, such tools may be invaluable
in helping teachers monitor and facilitate group work. The Synergo system
(Avouris, Komis, Margaritis, & Fiotakis, 2004) presented in the previous section,
and the tool developed by Fesakis, Petrou, and Dimitracopoulou (2004) compute the
quantitative indexes CF (Collaborative Factor) and CAF (Collaborative Action
Function), respectively. Both calculate a value for collaboration by taking into
consideration the actions performed by the user in the environment through the
different collaboration channels (e.g. chat, shared workspace). In the classroom,
teachers have described these tools as useful for monitoring the state of on-line
collaborative activities, reflecting on their own activities off-line, planning new
lessons, and configuring new group structures. The impact of these kinds of tools
can be significant; they have the capability to focus a teacher’s attention toward

those groups that may need the extra help, and away from those that can function
well independently. In the design of these tools, especially those with a limited
pedagogical basis, we should therefore remember to respect the teacher’s authority
in the classroom, and focus our efforts on developing tools that assist the teacher in
managing the classroom, rather than tools that assume the responsibility for
evaluating the collaborative activity.

Metacognitive tools designed for use in educational forums may be used to
support asynchronous discussions over indefinite periods of time. Gerosa, Pimentel,
Fuks, and Lucena (2004) describe the tree-like visualization tools they have
developed that compute and display the statistics and linkages between forum
messages. The tools provide information about the structure of the student
discourse, accounting for factors such as the length of messages related to each
message category, discussion depth, percentage of leaves, percentage of messages in
each category, and frequency of messages per hour. Depending on the style of
interaction (reflective discussion or brainstorming), either the length of messages of
their frequency is better suited to measure the intensity of interaction.

Simoff (1999) proposes an interesting way to estimate students’ potential for
learning by analyzing the graphical representation of student participation in an
educational forum. His system uses nested boxes to visualize discussion threads.
The thickness of the boxes’ edges represents the number of messages produced in
response to the opening message for a particular thread. In an educational
environment, thicker boxes containing task-oriented content might mean deeper
conversations, hence deeper understanding. To study of the content of the messages,
Simoff applies a semi-automatic content analysis method. Common words such as
articles and prepositions are discarded, and then the occurrences of the remaining
terms are counted, noting the co-occurences of the most frequent words. This
technique is used to build a seminar thesaurus, and an individual thesaurus for each
participant. The comparison between these thesauri gives an indication of each
participant’s contribution to the seminar. The content of the discussions is also used
to generate a semantic net (through the use of the Text Analyst tool), which
indicates the relevance of each term.

Talavera & Gaudioso (2004) apply data mining and machine learning methods to
analyze student messages in asynchronous forum discussions. Their aim is to
identify the variables that characterize the behaviour of students and groups by
discovering clusters of students with similar behaviours. A teacher might use this
kind of information to develop student profiles and form groups. Talavera and
Gaudioso’s approach is general enough to be useful within many different types of
collaborative environments, however the output may need further refinement to be
usable by teachers, who are not expected to be experts in data mining techniques.

The last group of metacognitive tools we discuss in this section apply the formal
concepts and techniques of Social Network Analysis (SNA) (Wasserman & Faust,
1996) to study and display the structure of group activity. SNA is based on strong
mathematical and sociological foundations, and provides a set of methods and
measurements for discovering and describing patterns of relationships among actors,
and understanding how these patterns affect people and organizations. SNA
methods operate on structures called social networks that describe a set of actors and
their relationships. Social networks can take many different forms. For example, e-

mail interchange networks describe which actors have sent e-mail to other actors.
Although social networks typically represent relationships between people, they can
be extended to include relationships between the users and resources. Indirect
interaction networks describe which actors have created and shared documents with
which other actors, and who has taken actions on these shared documents. Many
possibilities exist depending on the environment, the issues being studied, and the
available data processing capabilities.

Social Network Analysis supports the study of the relationships at different
levels, namely the individual, the group, and the community. For example, at the
individual level, the degree centrality measures the prominence of actors in the
network, and helps to identify those who are the most active or most peripheral. At
the group level, cohesive subgroups can be identified as groups of actors with
strong, direct, frequent ties. And, at the community level, the network density
computes the percentage of actual links with respect to the number of possible links
in a network, describing the level of activity in the network (Wasserman & Faust,
1996; see Martínez-Monés, Dimitriadis, Rubia-Avi, Gómez-Sánchez, & Fuente-
Redondo, 2003, for CSCL-specific examples).

Metacognitive CSCL tools have used SNA to both display and measure
interaction during collaborative activities. In Gassner’s (2004) approach, social
networks of filtered e-mail data convey information about group roles, individual
personality factors, and even evidence of cooperation. While this system is still a
prototype, the design of meaningful filters for building social networks is a
promising line of research that may add more content and meaning to social network
analysis studies. Other systems, such as SAMSA (Martínez et al, 2003), and that by
Nurmela, Lehtinen, & Palonen, (1999) were developed to filter a large amount of
data off-line and point evaluators to key collaborative learning events that need
further study. The follow-up research is then carried out manually through content
inspection or qualitative analysis.

Ogata, Matsuura and Yano (2000) extend the notion of the social network
through a special metacognitive tool called a Knowledge Awareness Map that
explicitly represents the content of the interaction and the objects students
manipulate in the network. This tool can be seen as a specialized social network that
also includes “knowledge pieces” describing information that is linked to
participants. The Knowledge Awareness Map graphically shows users who else is
discussing or manipulating their knowledge pieces. In this case, the distance
between users and knowledge elements on the map indicates the degree to which
users have similar knowledge.

In this section, we discussed the role of metacognitive tools that display high-
level indicators in supporting students’ collaboration and awareness, teachers’
monitoring and assessment, and researchers’ analysis and evaluation. Social
Networks may benefit all of these communities by making the interaction in group
structures visually explicit, and grounding the analysis in solid procedures based on
mathematics and graph theory. SNA does not naturally represent the evolution of
interaction, and may best be combined with other methods and techniques that can
model how interaction and relationships change over time.

Systems that Internally Compare the Current State to a Model of Productive
Interaction

The systems that we have discussed so far cover the first two stages of the
collaboration management cycle (Figure 1), described at the beginning of this paper.
We now turn to a discussion of systems in which the locus of processing (and the
responsibility for analyzing the interaction) gradually shifts from the user to the
system. These systems not only analyze, but also “diagnose” the student interaction
in an attempt to deduce or infer where the students might be having trouble. This is
generally done by internally comparing the current state of interaction to a model of
ideal, or productive, interaction. The main challenges present during this process are
(a) defining, as best possible, the model of desired interaction, and (b) designing
algorithms that measure the degree to which the current model of interaction meets
the requirements of the desired model, which may be uncertain or unstable. The
result of the comparison in these systems is not displayed to the users, but instead
used later by a coaching agent, or analyzed by researchers in an effort to understand
and explain the interaction.

In the CSCL and AI-ED communities, we commonly think of “productive”
interaction as interaction that facilitates learning. Models of productive interaction
are therefore built from factors that are thought to positively influence learning.
These factors are qualitative in nature, and involve analyzing the semantic aspects of
interaction and the patterns of student actions. The systems in this section include
internal representations that model aspects of collaborative learning such as
coordination, conflict, and knowledge sharing. The first system incorporates a set of
rules that indicate domain-related conflicting and coordinated sequences of group
activity without judging them because both conflicts and coordinated actions might
be beneficial in the course of interaction. The second system identifies sequences of
interactions that are productive in the sense that group members effectively gain
knowledge from each other.

We begin with a system developed by Muehlenbrock and Hoppe (1999), two of
the first researchers to propose sequences of multi-user actions in shared workspaces
as a basis for qualitative analysis. The shared workspaces they consider for the
automatic analysis provide semi-structured graphical representations for various
types of domains and tasks. The users ‘act’ on these shared graphical representations
by adding new textual and pictorial objects, and relations between these objects. The
users can also remove or revise existing structures that result from previous joint
problem solving, or that are drawn from sample material.

In contrast to student dialog, user actions have clearly defined operational
semantics in terms of changes to the graphical structures. Hence they are directly
available for automatic analysis, and do not require an intermediate labeling step,
which might introduce a certain degree of error. Action-based collaboration analysis
(Muehlenbrock, 2001) observes user actions in the temporal context of other users’
actions as well as in the structural context of the graphical representations. It
provides higher-level descriptions of the group activities (overview), and signals
alerts when relevant events, such as task-related conflicts and coordination
activities, have been detected (indicators). The analysis system was implemented as
a plug-in component for the generic framework system CARDBOARD, which

includes intelligent support components (CARDDALIS). A recent version (see
Figure 4) has been used in a psychological study for examining the influence of a
feedback function to the behavior of the group (Zumbach, Muehlenbrock, Jansen,
Reimann, & Hoppe, 2002). Positive influence of feeding back analysis results to the
group have been observed, although not to a significant degree, which may be due to
sample size; hence, further studies are necessary.

Saturation

Hue:
The perception of red, green, or blue colors
depends on the wave length of light. We
are able to differentiate between 200 tones.

Hue

Let’s first write down
all the headlines.

Brightness

Martin: Hi Bärbel (!)
Bärbel: Hi Martin (!)
marc: Is Bärbel also there (?)
marc: oh, I see (!)
Martin: Shall we do brightness before hue (?
Bärbel: Yes (+)
marc: I have no preference (!)
Martin: I am against it (-)
Bärbel: Make a decision, marc (!)
marc: how does contrast come into play (?)
marc: ok, beforehand (+)
Bärbel: Ok (+)
marc: that’s a good idea (+)

New cards can be dragged into
the workspace & individually

labeled (drag mode)
Bird’s Eye View

Schematic
overview of entire

workspace

Discussion
Contributions are

automatically
marked with

author’s name

Feedback
Visualization of

tallied user
contributions in
discussion and

workspace
(Each user is
assigned a

different color)

Input
Users type and

mark contributions
here (using IBIS
notation, (?,!,+,-)

Visualizations
Pie charts &
histograms

Mode
Switch between

drag and line mode

Palette
A basic text field and

4 category fields
(?,!,+,-)

Saturation

Hue:
The perception of red, green, or blue colors
depends on the wave length of light. We
are able to differentiate between 200 tones.

Hue

Let’s first write down
all the headlines.

Brightness

Martin: Hi Bärbel (!)
Bärbel: Hi Martin (!)
marc: Is Bärbel also there (?)
marc: oh, I see (!)
Martin: Shall we do brightness before hue (?
Bärbel: Yes (+)
marc: I have no preference (!)
Martin: I am against it (-)
Bärbel: Make a decision, marc (!)
marc: how does contrast come into play (?)
marc: ok, beforehand (+)
Bärbel: Ok (+)
marc: that’s a good idea (+)

Saturation

Hue:
The perception of red, green, or blue colors
depends on the wave length of light. We
are able to differentiate between 200 tones.

Hue

Let’s first write down
all the headlines.

Brightness

Martin: Hi Bärbel (!)
Bärbel: Hi Martin (!)
marc: Is Bärbel also there (?)
marc: oh, I see (!)
Martin: Shall we do brightness before hue (?
Bärbel: Yes (+)
marc: I have no preference (!)
Martin: I am against it (-)
Bärbel: Make a decision, marc (!)
marc: how does contrast come into play (?)
marc: ok, beforehand (+)
Bärbel: Ok (+)
marc: that’s a good idea (+)

New cards can be dragged into
the workspace & individually

labeled (drag mode)
Bird’s Eye View

Schematic
overview of entire

workspace

Discussion
Contributions are

automatically
marked with

author’s name

Feedback
Visualization of

tallied user
contributions in
discussion and

workspace
(Each user is
assigned a

different color)

Input
Users type and

mark contributions
here (using IBIS
notation, (?,!,+,-)

Visualizations
Pie charts &
histograms

Mode
Switch between

drag and line mode

Palette
A basic text field and

4 category fields
(?,!,+,-)

Figure 4. The CARDBOARD/CARDDALIS interface shows a large shared workspace
for co-constructive activity using pre-defined cards (categories: text, idea, question,
pro, contra), a chat interface (center right) with sentence categories (idea, question,
pro, contra), and a subtle feedback area (lower right) generated by the interaction
analysis component.

The visualization of the model of interaction (e.g. the illustration of the degree

of user participation in Figure 4) may be displayed to the students, as described in
the previous section, or hidden from the students, and instead used by an instructor
or computer-based facilitation agent in advising the students. It is worth noting,
however, that if the model is sufficiently complex, containing a large number of
interdependent variables with varying degrees of uncertainty, its construction will
likely contain a margin of error. Such a detailed model may be inappropriate to
display to the user, and perhaps more meaningful to an automated facilitation agent
that can abstract the relevant aspects of the model on which to base its advice. The
models of interaction developed by the CARDBOARD/CARDDALIS system, and the
EPSILON system which we describe next, are intended to be used by a coaching
agent (in the future) in advising and guiding the group interaction.

Analyzing complex indicators, such as conflict and knowledge construction,
may require sophisticated computation involving advanced modeling or natural
language processing techniques. Interfaces that structure student conversation and
activity in terms of a set of actions the system knows how to handle may facilitate
the interpretation of student behavior. For example, our next system automatically
analyzes structured sentence opener-based knowledge sharing conversation in the
temporal context of workspace actions.

EPSILON (Soller, 2004; Soller & Lesgold, 2003) analyzes sequences of group
members’ communication and problem solving actions in order to identify situations
in which students effectively share new knowledge with their peers while solving
object-oriented design problems. In the first phase of the collaboration management
cycle (Figure 1), the system logs data describing the students’ conversation acts (e.g.
Request Opinion, Suggest, Apologize) and actions (e.g. Student 3 created a new
class). In the second phase, the system collects examples of effective and ineffective
knowledge sharing, and constructs two Hidden Markov Models (HMMs) that
describe the students’ interaction in these two cases. A knowledge sharing example
is considered effective if one or more students learn the newly shared knowledge (as
shown by a difference in pre-post test performance), and ineffective otherwise. The
Hidden Markov Modeling approach (Rabiner, 1989; also see Soller, 2004) is a
probabilistic machine learning method that generates abstract generalizations of
coded sequences of activity, in the form of nondeterministic state transitions.

At the beginning of the third phase of the collaboration management cycle, the
EPSILON system has generated the HMMs describing effective and ineffective
knowledge sharing, and is then prepared to dynamically assess a new group’s
interaction. It compares the sequences of student activity to the constructed Hidden
Markov Models, and determines whether or not the students are experiencing a
knowledge sharing breakdown. The system also includes multidimensional data
clustering methods to help explain why the students might be having trouble, and
what kind of facilitation might help.

Systems that Offer Advice

This section describes systems that analyze the state of collaboration using a model
of interaction, and offer automated advice intended to increase the effectiveness of
the learning process. The coach in an advising system plays a role similar to that of a
teacher in a collaborative learning classroom. This actor (be it a computer coach or
human) is responsible for guiding the students toward effective collaboration and
learning. Since effective collaborative learning includes both learning to effectively
collaborate, and collaborating effectively to learn, the facilitator must be able to
address social or collaboration issues as well as task-oriented issues. Collaboration
issues include the distribution of roles among students (e.g. critic, mediator, idea-
generator) (Burton, 1998), equality of participation, and reaching a common
understanding (Teasley & Roschelle, 1993), while task-oriented issues involve the
understanding and application of key domain concepts. The systems described here
are distinguished by the nature of the information in their models, and whether they
provide advice on strictly collaboration issues or both social and task-oriented

issues. We begin by taking a look at systems that advise the social aspects of
collaborative learning.

Systems that Advise Social Aspects of Interaction

A classroom teacher might mediate social interaction by observing and analyzing
the group’s conversation, and noting, for example, the degree of conflict between
group members’ roles, or the quality of the conversation. A CSCL system that can
advise the social aspects of interaction therefore could benefit from the ability to
understand the dialog between group members. Barros and Verdejo’s (2000)
asynchronous newsgroup-style system, DEGREE, accomplishes this by requiring
users to select the type of contribution (e.g. proposal, question, or comment) from a
list each time they contribute to the discussion. The possible contribution types are
given by a conversational graph, which can be defined differently for each
collaborative scenario; for example, a proposal might be defined as a contribution
type that must be followed by a question, a comment or a counter proposal. This
data satisfies the first phase of the collaboration management cycle.

The system’s model of interaction (phase 2 of the collaboration management
cycle) is constructed using a set of high-level inferred attributes, such as cooperation
and creativity. For example, cooperation is inferred from number-of-messages,
initiative and argumentation (calculated from the lower-level contribution types,
and context information). A fuzzy deduction system uses the attributes obtained by
statistical analysis and pattern matching in order to infer conclusions about the other
subjective collaborative evaluation parameters; such as work quality, argumentation,
coordination, collaboration, and cooperation. In the third phase of the collaboration
management cycle, the system rates the collaboration between students along four
dimensions: initiative, creativity, elaboration, and conformity. These attributes,
along with others such as the length of contributions, factor into a fuzzy inference
procedure that rates students’ collaboration on a scale from awful to very good. The
advisor in DEGREE elaborates on the attribute values, and offers students tips on
improving their interaction (see Figure 5).

MArCo (Tedesco, 2003) is a dialog-oriented system for the detection of meta-
cognitive conflicts. The system adopts a dialog game approach with a limited set of
possible dialog moves. User utterances must be formulated in a formal language that
enables the conversation to be mapped onto a belief-based model (BDI). The
analysis mechanism then detects disagreements and conflicts between users’ beliefs
and intentions. The mediator informs the group when it detects a conflict, and may
also recommend alternative courses of action.

The approaches taken by DEGREE and MArCo might be limited by their
dependence on users’ ability to choose the correct contribution type (proposal,
comment, etc.). An alternative way of obtaining this information is to have users
select sentence openers, such as “Do you know”, or “I agree because” to begin their
contributions. Associating sentence openers with conversational acts such as
Request Information, Rephrase, or Agree, and requiring students to use a given set
of phrases, allows a system to understand the basic flow of dialog without having to
rely on Natural Language parsers. Most sentence opener approaches make use of a

structured interface, comprised of organized sets of phrases. Students typically
select a sentence opener from the interface to begin each contribution.

checkbox for selecting
messages to be sent or
published

message suggesting
how to improve one
aspect of the work

message informing
about one aspect that
is adequate to the
experience's goals

posible actions that
can be done with the
advisor's messages

checkbox for selecting
messages to be sent or
published

message suggesting
how to improve one
aspect of the work

message informing
about one aspect that
is adequate to the
experience's goals

posible actions that
can be done with the
advisor's messages

Figure 5. A snapshot of messages generated for a student in an intermediate stage of
work, and below it, a general assessment of the group’s behavior. From Barros, B.,
and Verdejo, M.F. (2000). Analysing student interaction processes in order to
improve collaboration. The DEGREE approach. International Journal of Artificial
Intelligence in Education, 11, 221-241. Copyright 2000 by the International AIED
Society. Reprinted with permission.

McManus and Aiken (1995) take this approach in their Group Leader system.
Group Leader builds upon the concept that a conversation can be understood as a
series of conversational acts (e.g. Request, Mediate) that correspond to users’
intentions (Flores, Graves, Hartfield, & Winograd, 1988). Like Flores et al.’s
Coordinator system, Group Leader uses state transition matrices to define what
conversation acts should appropriately follow other acts; however unlike the
Coordinator, users are not restricted to using certain acts based on the system’s
beliefs. Group Leader compares sequences of students’ conversation acts to those
recommended in four finite state machines developed specifically to monitor
discussions about comments, requests, promises, and debates. The system analyzes
the conversation act sequences, and provides feedback on the students’ trust,
leadership, creative controversy, and communication skills, originally defined by
Johnson, Johnson, and Holubec (1990).

The success of McManus and Aiken’s Group Leader (1995) began a
proliferation of systems that take a finite state machine approach to modeling and
advising collaborative learners. One year later, Inaba and Okamoto (1996)
introduced iDCLE, a system that provides advice to students learning to

collaboratively prove geometry theorems. This system infers the state of interaction
by comparing the sequences of conversation acts to four possible finite state
machines. The finite state machines describe the mode of interaction; for example
the model describing the query mode is used when the group is attempting to
address a member’s question, and the model describing the confirmation mode is
used when the students are justifying or confirming an idea. Advice is generated
through consideration of the dialog state and the roles of each group member. For
example, iDCLE considers whether or not a group member is leading the discussion,
or asking an abundance of questions, and tailors the advice appropriately.

OXEnTCHÊ (Vieira, Teixeira, Timóteo, Tedesco, & Barros, 2004) is an example
of a sentence opener-based tool integrated with an automatic dialogue classifier that
analyses on-line interaction and provides just-in-time feedback to both teachers and
learners. During the first phase of the collaboration management cycle, the system
collects the student chat logs, codified with sentence openers. During the second
phase, the dialog classifier uses neural networks trained to identify productive and
non-productive dialogs regarding a number of collaborative skills, (although the
authors do not specify how the system computes these collaborative skills). The
system also identifies off-task interactions by comparing the input with a domain
ontology. During the third phase of the cycle, the system compares the students’
interaction to its models and offers two types of feedback: teachers receive reports
on both the group and individual students, and students may view the analysis of
their contributions to the chat. The authors evaluated these reports in four
experimental settings, obtaining positive results overall.

OXEnTCHÊ also includes a chatterbot (natural language agent) that acts as an
advising system, attempting to maintain the dialogue focus. It interrupts the group
chat when it detects an unproductive change of subject, and also attempts to
motivate less participative students to engage in conversation. As of this writing, the
chatterbot’s functionality has not been formally evaluated, and further work is
planned in order to improve its efficiency. Overall, OXEnTCHÊ goes further than
many systems regarding data analysis and feedback, and also takes into account the
needs of different types of users (teachers and students). The main limitations of the
approach include the reliance on sentence openers and an unclear theoretical
justification for the chosen collaboration skills.

Sentence opener approaches have gained popularity over the past 10 years
because of their ease-of-use, and ability to efficiently reduce the amount of the
amount of natural language understanding for which the system would otherwise be
responsible. They are however not without their limitations. Because of the
dialogical constraints of sentence openers, students may not always use them as
expected. For example, it is possible to use the sentence opener, “I think”, to say, “I
think I disagree”. The degree to which this will happen is largely dependent on the
degree to which the set of sentence openers enable the students to express
themselves, and the ability for them to find the phrases they need on the interface.
Training students how to use the sentence openers available on the interface in
contextualized situations, and running iterative human-computer interaction studies
can both make a difference (Soller, 2004).

Because each sentence opener is also typically associated with only one
intention (i.e. Suggest or Justify), a sentence opener-based coding scheme is only

able to account for the primary intention. It cannot capture complex intentions, such
as a Discuss/Agree act that both expresses agreement and doubt. We do not yet
know to what degree a more complicated coding scheme might improve the ability
to which the system can support various collaborative learning activities. Text
mining methods that learn to automatically classify contributions into categories
might help to address this problem, although approaches in this direction are also
limited in their ability to understand natural human conversation (Linton, Goodman,
Gaimari, Zarrella, & Ross, 2003; Padilha, Almeida, & Alves, 2004). Moreover, text
mining techniques must be adapted to each learning domain, presenting an obstacle
for their general use.

Systems that Advise Social and Task Oriented Aspects of Interaction

Dillenbourg (1999) describes the so-called “Berlin Wall” of collaborative learning
as the notion of trying to understand and support the social aspects of collaboration
separately from the task elements. Students cannot effectively learn how to
collaborate outside the context of a concrete task, and cannot effectively learn how
to perform the task collaboratively without attention to social and socio-cognitive
factors influencing the group. A few systems have taken advantage of this idea by
monitoring and analyzing students’ task-based and social actions together in order to
gain a better understanding of the collaboration as a whole.

Our last group of collaborative learning systems interacts with students via a set
of specialized computer agents that address both social and task-oriented aspects of
group learning. HabiPro (Vizcaino, 2001) is a collaborative programming
environment that uses two databases – one containing words related to the domain
(computer programming), and other containing potential off-topic terms. The system
includes a simulated peer agent that detects off-topic words in the students’
utterances, and intervenes as necessary to bring them back on task (see Figure 6).

HabiPro also includes a group model, and an interaction model, which contains
a set of “patterns” describing possible characteristics of group interaction (e.g. the
group prefers to look at the solution without seeing an explanation). During the
collaborative activity, the simulated peer uses the group model to compare the
current state of interaction to these patterns, and proposes actions such as
withholding solutions until the students have tried the problem.

GRACILE (Ayala & Yano, 1998) is an agent-based system designed to help
students learn Japanese. GRACILE’s agents assess the progress of individual
learners, propose new learning tasks based on the learning needs of the group, and
cooperate to maximize the number of situations in which students may effectively
learn from one another. In order to reach these goals, GRACILE maintains user
models for each of the students, and forms beliefs about potential group learning
opportunities. Group learning opportunities are defined as those that extend an
individual’s zone of proximal development (Vygotsky, 1978), which describes the
potential development of a learner with the assistance of others. Following this idea,
GRACILE agents assess learners’ current and potential development levels, and
propose learning tasks that optimize collaborative learning opportunities.

Figure 6. The simulated peer in HabiPro detects that the students are discussing the
football match, and attempts to refocus them on the problem solving. Obtained by
email from Aurora Vizcaino (avizcaino@inf-cr.uclm.es). Printed with permission.

The models of interaction employed by LeCS (Rosatelli & Self, 2002) and

COLER (Constantino-González, Suthers, & Escamilla de los Santos, 2002) also
integrate task and social aspects of interaction. LeCS is similar to GRACILE in that
a set of computer agents guide students through the analysis of case studies. The
agents monitor students’ levels of participation, and track students’ progression
through the task procedure, while addressing students’ misunderstandings and
ensuring group coordination.

COLER (Constantino-González, Suthers, & Escamilla de los Santos, 2002)
uses decision trees to coach students collaboratively learning Entity-Relationship
(ER) modeling, a formalism for conceptual database design (see Figure 7). A coach
monitors the personal and shared workspaces in order to detect opportunities for
group-learning interactions. COLER draws on the socio-cognitive conflict theory
(Doise & Mugny, 1984) which states that disagreements can be an opportunity for
learning when students detect them and try to resolve them through reflection and
elaboration. Constantino-González et al. define three types of coaching
opportunities: when there are problems in the quality of the ER group diagram,
differences between individual and group ER diagrams, and differences in the levels
of participation of the learners. COLER generates a set of potential advisory
comments for a given situation using decision trees and chooses one of them
according to a control strategy.

Shared
Group

Workspace

Problem
Description

Private
Individual

Workspace

Chat
Area

Opinion
Area

Feedback
from

Coach

Shared
Group

Workspace

Problem
Description

Private
Individual

Workspace

Chat
Area

Opinion
Area

Feedback
from

Coach

Figure 7. The COLER Workspace
[Available: http://lilt.ics.hawaii.edu/lilt/images/COLER.gif]

Goodman, Linton, Gaimari, Hitzeman, Ross, and Zarrella (in press) present a

specific example in which machine learning methods are used to train an agent-
based system to recognize when students are experiencing trouble related to specific
aspects of interaction. Their approach involves training neural networks with
segmented, coded (speech act) student dialog and surface features (e.g. question
marks and keywords). Goodman et al.’s research reminds us that choosing the
appropriate technique for data analysis is critical, and depends on the conditions
under which these techniques are or are not expected to be successful. In the next
section, we summarize the various systems and methods that we have encountered
in this article along the paths of the collaboration management cycle.

DISCUSSION

In the first half of this paper, we developed the collaboration management cycle
from a system’s perspective. This cycle describes the actions a system can take to
support online collaborative learning interaction. In the second half of this paper, we
reviewed an array of systems that instantiate the stages in this model: mirroring,
monitoring, and advising.

Mirroring systems record and reflect input data, while monitoring and advising
systems process this input data to obtain a higher-level representation which is then
either displayed to the collaborators (in the case of indicator-based systems), or used
by the system or human facilitators (in the case of advising systems). This higher-
level, derived representation may be quantitative or qualitative in nature. A
quantitative derivation process might entail counting, for instance, the number of
dialog or workspace actions a user has taken. A qualitative derivation process

requires taking relational information into account, such as interdependencies
between actions, or between actions and the application context. Tables 1-3
summarize the systems we have reviewed in this paper by the type of interaction
data they assimilate (Input data), the format of their higher-level (Output) data
models, and the way in which they attempt to achieve or maintain productive
collaboration (Expected function).

In some cases, systems that monitor the state of interaction are not all that
different from systems that provide advice. For example, suggesting that a student
participate more does not require much more computation than displaying students’
participation statistics; moreover both approaches may have the same effect. These
systems begin to differ when the knowledge behind the indicators requires a great
enough level of inferencing to warrant having a coach analyze the data to scaffold
the learning process.

Table 1. A summary of mirroring systems that support collaborative learning

System Input data Output Expected function
Groupkit, Gutwin
(1995)

Shared workspace
actions (window level)

Other users’ interface
actions

On-line workspace
awareness

Plaisant et al.
(1999)

Problem-solving
actions

Actions on a timeline Off-line analysis of the
activity

Chat Circles
(Donath,
Karahalios &
Viegas,1999)

Dialog in an
unstructured virtual
space

Graphical
visualization

On-line social awareness

ART/SAILE
 (Goodman et. al,
2001)

Shared workspace
actions (window-
level)

Reproduction of the
collaboration at
different granularities

Off-line review of the
collaborative process

SLA (Wasson,
2000)

Shared workspace
actions (web-server
level)

Users’ connection
times to the server

Off-line analysis of the
possibilities of
collaboration work

PENCACOLAS
(Blasco et al.,
2001)

Shared workspace
actions (low-level
events)

Video-like
reproduction of the
collaboration

Off-line review of the
collaborative process for
evaluation and self-
evaluation purposes

Table 2. A summary of metacognitive systems that support collaborative learning

System Input data Derivation
mechanism Derived data Output Expected

function
Sharlock II,
Ogata et al.
(2000)

User profile,
web page
access

Counting,
similarity
indices

Shared
knowledge
awareness
map

Graphical
visualization

Participants:
Provide
knowledge
awareness

SAMSA,
(Martínez-
Monés et al.,
2003)

Shared
workspace
actions

Social
network
analysis

Network
density and
actors’ degree
of centrality

Graphical
visualization

Analyze
participation
structure

Jermann
(2004)

Chat and
problem-
solving
actions

Counting Participation Graphical
visualization

Teachers:
Analyze
interaction
Students: Self-
regulation

Talavera and
Gaudioso
(2004)

Actions on a
forum

Data mining
and machine
learning

Clusters of
students with
similar
characteristics

Clusters of
students

Identify
student
profiles and
form groups

Nurmela
(1999)

Actions on a
shared
workspace

Social
network
analysis

Actors’
degree of
centrality

Indexes Analyze
participation
structure

Simoff (1999) Synchronous
and
asynchron-
ous dialog
(forum)

Counting and
semi-
automatic
content
analysis

Participation,
structure of
discussion

Graphical
representa-
tion (Boxes)

Visualize the
depth of the
conversations

Action-based
Collaboration
Analysis,
Muehlenbrock
(2001)

Actions on
graphical
representa-
tion in
shared
workspaces

Activity/plan
recognition

Action
sequences,
indicators for
task-related
conflicts and
coordination

Graphical
representa-
tion

Students: Self-
regulation,
Feedback to
facilitator

EPSILON,
Soller &
Lesgold
(2003)

Shared
workspace
actions,
tagged
dialog

Hidden
Markov
Models

Effectiveness
of knowledge
sharing

Textual
assessment
&
explanation

Feedback to
facilitator,
Input to
computer-
based coach

Table 3. A summary of guiding systems that support collaborative learning

System Input data Derivation
mechanism Derived data Output Expected

function
Group
Leader,
McManus
and Aiken
(1995)

Tagged
dialog

Finite state
machines

Trust,
leadership,
communica-
tion

Coach On-line textual
feedback to
students on
collaborative
skills

iDCLE,
Inaba and
Okamoto
(1996)

Tagged
dialog

Finite state
machines

Roles Coach On-line feedback
to students

DEGREE,
Barros and
Verdejo’s
(2000)

Tagged
dialog

Fuzzy
inference
and pattern
matching

Initiative,
creativity,
elaboration,
conformity

Coach
and
conversa-
tion
analysis
display

On-line feedback
on “initiative,
creativity,
elaboration, &
conformity”

MarCo
(Tedesco,
2003)

Dialog in
formal
language

BDI
modeling

Meta-
cognitive
conflicts

Conflict
mediator

On-line feedback
on alternatives
when conflicts
are detected

GRACILE,
Ayala and
Yano
(1998)

Workspace
actions,
learner
models

Rule-based
expert
system

Student
helpers &
learning tasks

Coaching
agents

On-line proposals
of group learning
tasks

LeCS
(Rosatelli &
Self, 2002)

Shared
workspace
actions

Case tree Participation,
group
coordination

Coaching
agents

On-line feedback
of
misunderstandings
& coordination

COLER,
(Constantin
o-González
et al., 2002)

Shared and
private
actions,
dialog

Decision
trees

Participation,
agreement
with group
procedure

Coach On-line feedback
of participation &
workspace
differences

OXEnTCHE
Vieira,
Teixeira,
Timóteo,
Tedesco, &
Barros.
(2004)

Tagged
dialog

Neural
networks,
comparison
with
domain
ontology

Productive
and non-
productive
dialogs
sequences

Chatterbot On-line feedback
of conversation
productivity

HabiPro,
Vizcaino
(2001)

Shared
workspace
actions,
student
preferences,
dialog

Matching
group
interaction
“patterns”,
content
analysis

Ideal
participation,
motivation,
existence of
off-topic
conversations

Coach Detection of off-
topic interaction
& on-line
guidance to
students

While reflecting on our review of systems to support collaborative learning, we
noticed that there is a great diversity of approaches, and asked the question “Why?”
Such diversity might be explained by the fact that each system draws upon a
different theoretical perspective. But even systems that share the same view of
learning employ different strategies for pedagogical intervention. For example,
Table 1 shows that some systems focus on modeling features of the individual
learners (learner models) in order to detect potential situations for productive
interactions, while other systems that are based on similar theoretical principals,
focus on analyzing collaborative interaction. GRACILE, a system that was inspired
by Vygostky’s zones of proximal development is an example of the first approach,
whereas COLER, a system inspired by theories of socio-cognitive conflict, takes the
second approach. Systems that characterize the second approach often attempt to
understand how different patterns of interaction promote various aspects of
collaborative learning such as knowledge sharing and construction (e.g. EPSILON,
MarCo), or conversation (DEGREE). Some are more focused toward the social
aspects of learning (e.g. HabiPro), while others study the structural properties of
interactions within groups, such as the evolution of social roles (Salomon & Perkins,
98).

Because the systems described here are research prototypes, which tend to
focus on a specific research question, they should be viewed from the perspective of
that question. The collaboration management cycle, described at the beginning of
this article, is intended to describe a way of understanding the capabilities available
today for computationally supporting collaborative learning, rather than a way of
classifying and comparing these systems. Developing a new system to support
several different aspects of interaction might involve the application of research
ideas from different systems, perhaps by way of re-implementation.

In this review article, we have attempted to provide an overview of the current
technological capabilities, with the intention of laying the groundwork for further
research that addresses the question of which technological solutions are appropriate
for which learning situations. We now conclude by motivating this further research.

FUTURE WORK

The concept of supporting (as opposed to enabling) peer-to-peer interaction in
computer-supported collaborative learning systems is still in its infancy (Jermann,
Soller, & Lesgold, 2004). We have not yet seen full-scale evaluations of the types of
systems we have covered here. The evaluations that were conducted for many of
these systems, if at all, were done so under closely controlled laboratory conditions.
Laboratory studies are critical for developing an understanding of the various
conditions that affect learning, and make sense as the first step in the assessment and
redesign of the technology. If our objective is to assist students and teachers during
real, curriculum-based learning activities, we must also understand how well our
laboratory findings apply to natural classroom situations. This can only be done by
developing and deploying robust technology in physical and virtual classrooms, and
performing large scale evaluations. The feedback obtained from such evaluations
should enhance the evaluation feedback loop in the collaboration management cycle,

and further our understanding of which technological solutions help students, and
which do not.

More studies are needed that test the utility of various strategies for
computationally supporting online collaborative learning. It is probable that certain
strategies are more beneficial than other strategies under various conditions, and for
different domains. There is hence an important opportunity for needs analysis
studies to understand which types of systems (i.e. mirroring, monitoring, or
advising) are useful under various constraints (i.e. group size and ability,
environment, task characteristics, availability of human instructors). Then, further
analyses of computer-mediated interaction in parallel with a finer-grained needs
analysis may help to determine which behavioral and pedagogical factors are
influenced in what ways by the various technological features. Only then may we be
in a position to recommend specific technologies for fostering established learning
activities.

In some cases, a combination of technologies may be most practical. For
example, analyzing visual indicators may increase students’ cognitive load;
moreover, some students may misinterpret the indicators. But, the interaction
management skills students learn as they attempt to interpret and act upon these
indicator values might transfer well to other situations. One possibility is to both
display indicator values to students, and provide advice based on a deeper
computational analysis of the data that was used to generate the indicators.

Many of the approaches presented in this article address effects with
technology, rather than effects of technology (Kolodner & Guzdial, 1996; Salomon,
Perkins & Globerson, 1991). Effects with technology refer to the changes in the
group dynamics that are triggered by software tools, whereas effects of technology
refer to the outcome of the collaboration, both for the individual and the collective
group. These outcomes include the skills that students acquire or improve, and
whether or not these skills might transfer to a new learning situation or group
experience. More research is needed to determine how visual feedback through
mirroring and metacognitive tools, or advice from guiding systems can lead to
learning gains. In designing support for the collaborative learning process, we must
still not forget to assess the product.

The techniques and systems described throughout this article use different
standards for diagnosis. How might we develop modular, reusable solutions that
would allow researchers to share and reuse tools in different CSCL environments?
Instead of proposing new data formats and interfaces, would it be reasonable to
tackle this problem in parallel with current efforts toward introducing collaboration
aspects in e-learning standards? In the future, we could aim to develop reusable
models of collaborative processes, based on modular architectures, that can provide
the computational, theoretical, and pedagogical foundations for guiding tools, while
encouraging metacognitive reflection by both teachers and students. Such models
might even be used in teacher training, to help explain breakdowns in student
interaction, or the dynamics of productive collaborative learning interaction.

Knowledge about how students interact in a computer-mediated environment is
useful to a system only if it knows when and how to apply this knowledge to
recognize specific situations that call for intervention. Classroom teachers learn to
analyze and assess student interaction through close observance of group interaction,

trial and error, and experience. Developing a system to analyze group conversation,
however, poses its own challenges. For example, how do we go about calibrating a
set of indicators that should represent a model of desired interaction, and what
learning theories or experimental results allow for this calibration? This leads us to
the broader issue of how to quantify and translate well-known theories from the
learning and cognitive sciences into computational models that can be used to
diagnose student interaction. For example, how might the principle relating
elaborated explanations to learning gains (Webb, 1992) be quantified as a set of
calibrated indicators that can be computed on the fly during computer-mediated
interaction? A “sufficiently elaborated explanation” might be relatively long, and
refer to several domain concepts, making computer diagnosis difficult. The
theoretical and experimental foundations for our models must be strengthened,
justified, and assessed. Focused research in computational modeling of peer
interaction in context may help in making the transition from understanding how to
mediate learning groups to understanding how to train a system to assist in
mediating learning groups more effectively.

ACKNOWLEDGMENTS

Special thanks to all the presenters and participants in the 1st and 2nd International
Workshops on Designing Computational Models of Collaborative Learning
Interaction at CSCL 2002 and ITS 2004, who have helped to shape and motivate
this research. Thanks also to the anonymous reviewers for their constructive
comments. This work was supported in part by the U.S Department of Education,
grant R303A980192, the European Community Project iClass, contract IST-507922,
the European Commission Project EAC/61/03/GR009, and the Spanish Ministry of
Science and Technology Project TIC 2002-04258-C03-02. The views presented in
this article represent those of the authors alone.

REFERENCES

Avouris, N., Dimitracopoulou, A., & Komis, V. (2003). On analysis of collaborative
problem solving: An object oriented approach. Computers in Human Behavior, 19(2),
147-167.

Avouris, N., Komis, V., Margaritis, M., & Fiotakis, G. (2004). An environment for studying
collaborative learning activities. Educational Technology & Society, 7(2), 34-41.

Ayala, G, & Yano, Y (1998). A collaborative learning environment based on intelligent
agents. Expert Systems with Applications, 14, 129-137.

Barros, B., & Verdejo, M.F. (2000). Analysing student interaction processes in order to
improve collaboration. The DEGREE approach. International Journal of Artificial
Intelligence in Education, 11, 221-241.

Blasco, M., Barrio, J., Dimitriadis, Y., Osuna, C., González, O., Verdú, M., & Terán, D
(1999). From co-operative learning to the virtual class. An experience in composition
techniques. ultiBASE journal. Available online:
http://ultibase.rmit.edu.au/Articles/dec99/blasco1.htm.

Burton, M. (1998). Computer modelling of dialogue roles in collaborative learning activities.
Unpublished doctoral dissertation, Computer Based Learning Unit, The University of
Leeds.

Constantino-González, M. A., Suthers, D. D., & Escamilla de los Santos, J. G. (2002).
Coaching web-based collaborative learning based on problem solution differences and
participation. International Journal of Artificial Intelligence in Education, 13, 263.299.

Dillenbourg, P. (1999). Introduction; What do you mean by Collaborative Learning? In
Dillenbourg, P. (Ed.), Collaborative Learning. Cognitive and Computational
Approaches, Elsevier Science Ltd., Oxford, U.K. 1-19.

Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning
with instructional design. In P. A. Kirschner (Ed.), Three worlds of CSCL. Can we
support CSCL (pp. 61-91). Heerlen, Open Universiteit Nederland.

Dillenbourg, P., Baker, M., Blaye, A., & O’Malley, C. (1995). The evolution of research on
collaborative learning. In H. Spada and P. Reinmann (Eds.), Learning in Humans and
Machines, Elsevier Science.

Dimitracopoulou, A., & Komis, V. (2004). Design principles for an open environment,
supporting learning process participants on modelling and collaboration. In C.
Constantinou, Z. Zacharias & P. Kommers (Guest Editors), Int. Journal of Continuing
Engineering Education and Lifelong Learning, Special Issue on the Role of Information
and Communication Technologies in Science Teaching and Learning.

Doise, W., & Mugny, G. (1984). The social development of the intellect. Oxford: Pergamon
Press.

Donath, J., Karahalios, K., & Viégas, F. (1999). Visualizing conversation. Journal of
Computer-Mediated Communication, 4(4).

Fesakis, G., Petrou, A., & Dimitracopoulou, A. (2004). Collaboration Activity Function: An
interaction analysis tool for Computer Supported Collaborative Learning activities.
Proceedings of the 4th IEEE International Conference on Advanced Learning
Technologies (ICALT 2004), 196-200.

Flores, F., Graves, M., Hartfield, B., & Winograd, T. (1988). Computer systems and the
design of organizational interaction. ACM Transactions on Office Information Systems,
6(2), 153-172.

Gassner, K., Jansen, M., Harrer, A., Herrmann, K., & Hoppe, U. (2003). Analysis methods
for collaborative models and activities. In B. Wasson, S. Ludvigsen, & U. Hoppe (Eds.)
Designing for Change in Networked Learning Environments: Proceedings of the
International Conference on Computer Support for Collaborative Learning 2003. (pp.
369-377). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Gassner, K. (2004). Using patterns to reveal e-mail communication structures. J. Mostow, &
P. Tedesco Designing Computational Models of Collaborative Learning Interaction,
workshop at. ITS 2004 (pp. 77-82). Maceió, Brazil.

Gerosa, M. A. , Pimentel, M. G., Fuks, H., & Lucena, C. (2004). Analyzing discourse
structure to coordinate educational forums. Proceedings of the 7th International
Conference on Intelligent Tutoring Systems, ITS 2004. (pp. 262-272). Berlin
Heilderberg: Springer.

Goodman, B., Geier, M., Haverty, L., Linton, F., & McCready, R. (2001). A framework for
asynchronous collaborative learning and problem solving. Proceedings of AIED’01, 10th
International Conference on Artificial Intelligence in Education, San Antonio, Texas,
188-199.

Goodman, B., Linton, F., Gaimari, R., Hitzeman, J., Ross, H., & Zarrella, G. (in press).
Using dialogue features to predict trouble during collaborative learning. User Modeling
and User-Adapted Interaction: The Journal of Personalization Research.

Gutwin, C., Stark, G., & Greenberg, S. (1995) Support for workspace awareness in
educational groupware. Proceedings of CSCL’95. The First International Conference on
Computer Support for Collaborative Learning, 147-156.

Hutchins, E. (1995). How a cockpit remembers its speeds. Cognitive Science, 19, 265-288.

Inaba, A., & Okamoto, T. (1996). Development of the intelligent discussion support system
for collaborative learning. Proceedings of ED-TELECOM ’96, Boston, MA, 137-142.

Jermann, P. (2004). Computer Support for Interaction Regulation in Collaborative Problem-
Solving. Doctoral Dissertation, University of Geneva.

Jermann, P., Soller, A., & Lesgold, A. (2004). Computer software support for CSCL. In P.
Dillenbourg (Series Ed.) & J. W. Strijbos, P. A. Kirschner & R. L. Martens (Vol. Eds.),
Computer-supported collaborative learning: Vol 3. What we know about CSCL ... and
implementing it in higher education (pp. 141-166). Boston, MA: Kluwer Academic
Publishers.

Jermann, P., Soller, A., & Muehlenbrock, M. (2001). From Mirroring to Guiding: A Review
of State of the Art Technology for Supporting Collaborative Learning. Proceedings of the
First European Conference on Computer-Supported Collaborative Learning, Maastricht,
The Netherlands, 324-331.

Johnson, D., Johnson, R., & Holubec, E. J. (1990). Circles of learning: Cooperation in the
classroom (3rd ed.). Edina, MN: Interaction Book Company.

Kolodner, J., & Guzdial, M. (1996). Effects with and of CSCL: Tracking learning in a new
paradigm. In T. Koschmann (Ed.) CSCL: Theory and Practice of an Emerging Paradigm
(pp. 307-320). Mahwah NJ: Lawrence Erlbaum Associates.

Linton, F., Goodman, B., Gaimari, R., Zarrella, J., & Ross, H. (2003). Student modeling for
an intelligent agent in a collaborative learning environment. Proceedings of the 9th
International Conference on User Modeling (UM ’03), Johnstown, PA.

Looi, C.-K. (2001). Supporting conversations and learning in online chat. Proceedings of
AIED’01, 10th International Conference on Artificial Intelligence in Education, San
Antonio, Texas, 142-153.

Martínez-Monés, A., Dimitriadis, Y., Rubia-Avi, B., Gómez-Sánchez, E., & Fuente-
Redondo, P. (2003). Combining qualitative evaluation and social network analysis for the
study of classroom social interactions. Computers and Education, 41(4), 353-368.

Martínez-Monés, A., Guerrero, L., & Collazos, C. (2004). A model and a pattern for the
collection of collaborative action in CSCL systems. In J. Mostow, & P. Tedesco (Eds.)
ITS 2004 Workshop on Designing Computational Models of Collaborative Learning
Interaction, (pp. 31-36). Maceió, Brazil.

McManus, M. & Aiken, R. (1995). Monitoring computer-based problem solving. Journal of
Artificial Intelligence in Education, 6(4), 307-336.

Muehlenbrock, M. (2001). Action-based Collaboration Analysis for Group Learning.
Amsterdam: IOS Press.

Muehlenbrock, M., & Hoppe, U. (1999). Computer supported interaction analysis of group
problem solving. In C. Hoadley & J. Roschelle (Eds.), Proceedings of the Conference on
Computer Supported Collaborative Learning CSCL-99 (pages 398-405). Palo Alto, CA,
December. Mahwah, NJ: Erbaum.

Neale, D. & Carroll, J. (1999). Multi-faceted evaluation of complex, distributed activities.
Proceedings of the Computer Support for Collaborative Learning (CSCL) 1999
Conference. Palo Alto, CA: Stanford University, 425-433.

Nurmela, K.A., Lehtinen, E., & Palonen, T. (1999). Evaluating CSCL log files by Social
Network Analysis. In C. M. Hoadley and J. Roschelle (Eds.), Proceedings of the
Computer Support for Collaborative Learning (CSCL) 1999 Conference. Palo Alto, CA:
Stanford University, 434-444.

Ogata, H., Matsuura, K., & Yano, Y. (2000). Active Knowledge Awareness Map:
Visualizing learners activities in a web based CSCL environment. International
Workshop on New Technologies in Collaborative Learning, Tokushima, Japan.

Padilha, T. P. P., Almeida, L. M., & Alves, J. B. M. (2004). Mining techniques for models of
collaborative learning. In J. Mostow, & P. Tedesco (Eds.) Designing Computational
Models of Collaborative Learning Interaction, workshop at. ITS 2004 (pp. 89-94).
Maceió, Brazil.

Plaisant, C., Rose, A., Rubloff, G. Salter, R., & Shneiderman, B. (1999). The design of
history mechanisms and their use in collaborative educational simulations. Proceedings
of the Computer Support for Collaborative Learning (CSCL) 1999 Conference., Palo
Alto, CA: Stanford University, 348-359.

Rabiner, L. (1989). A tutorial on Hidden Markov Models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2), 257-286.

Robertson, R. J. & Powers, W.T. (1990). Introduction to modern psychology: The control-
theory view. Gravel Switch, KY: Control Systems Group.

Rosatelli, M., & Self, J. (2002). A collaborative case study system for distance learning.
International Journal of Artificial Intelligence in Education, 12, 1-25.

Roseman, M., & Greenberg, S. (1992). GroupKit: A groupware toolkit for building real-time
conferencing applications. Proceedings of the ACM CSCW Conference on Computer
Supported Cooperative Work, Toronto, Canada, 43-50.

Salomon, G. (1993) (Ed.). Distributed cognitions. Psychological and educational
considerations. Cambridge: University Press.

Salomon G., & Perkins, D.N. (1998). Individual and social aspects of learning. Review of
Research in Education, 23, 1-24.

Salomon, G., Perkins, D., & Globerson, T. (1991). Partners in cognition: Extending human
intelligence with intelligent technologies. Educational Researcher, 20(4), 2-9.

Simoff, S. (1999). Monitoring and evaluation in collaborative learning environments.
Proceedings of the Computer Support for Collaborative Learning (CSCL) 1999
Conference, Palo Alto, CA: Stanford University.

Soller, A. (2004). Computational modeling and analysis of knowledge sharing in
collaborative distance learning. User Modeling and User-Adapted Interaction: The
Journal of Personalization Research, 14 (4), 351-381.

Soller, A., Jermann, P., Muehlenbrock, M., & Martinez-Monez, A. (2004). Proceedings of
the 2nd International Workshop on Designing Computational Models of Collaborative
Learning Interaction, ITS 2004, Maceio, Brazil.

Soller, A., & Lesgold, A. (2003). A computational approach to analyzing online knowledge
sharing interaction. Proceedings of Artificial Intelligence in Education 2003, Sydney,
Australia, 253-260.

Talavera, L., & Gaudioso, E. (2004). Mining student data to characterize similar behaviour
groups in unstructured collaboration spaces. Proceedings of the Artificial Intelligence in
Computer Supported Collaborative Learning Workshop at the ECAI 2004 . Valencia,
Spain.

Teasley, S., & Roschelle, J. (1993). Constructing a joint problem space. In S. Lajoie and S.
Derry (Eds.), Computers as cognitive tools (pp. 229-257). Hillsdale, NJ: Lawrence
Erlbaum.

Tedesco, P. (2003). MArCo: Building an artificial conflict mediator to support group
planning interactions. International Journal of Artificial Intelligence in Education, 13,
117-155.

Vieira, A. C., Teixeira, L., Timóteo, A., Tedesco, P., Barros, F. A. (2004). Analyzing on-line
collaborative dialogues: The OXEnTCHÊ-Chat. In J. C. Lester, R. M. Vicari, F.
Paraguaçu (Eds.): The 7th International Conference on Intelligent Tutoring Systems, ITS
2004, Maceiò, Alagoas, Brazil, 315-324.

Vizcaíno, A. (2001). Negative situations in collaborative environments: Can a simulated
student avoid them? Proceedings of AIED’01, 10th International Conference on
Artificial Intelligence in Education, San Antonio, Texas, 610-612.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes.
London: Harvard University Press.

Wasserman, S., & Faust, K. (1996). Social Network Analysis: Methods and Applications.
Cambridge: Cambridge University Press.

Wasson, B., Guribye, F., & Mørch, A. (2000). Project DoCTA: Design and use of
collaborative telelearning artifacts. Technical report, Pedagogisk Informasjonsvitenskap,
Universitetet i Bergen, Bergen, Norway.

Webb, N. (1992). Testing a theoretical model of student interaction and learning in small
groups. In R. Hertz-Lazarowitz and N. Miller (Eds.), Interaction in Cooperative Groups:
The Theoretical Anatomy of Group Learning (pp. 102-119). New York: Cambridge
University Press.

Zumbach, J., Mühlenbrock, M., Jansen, M., Reimann, P., & Hoppe, U. (2002). Multi-
dimensional tracking in virtual learning teams: An exploratory study. Proceedings of the
Conference on Computer Supported Collaborative Learning CSCL-2002, Boulder, CO,
650-651.

