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Abstract. We review a representative selection of systems that support the 
management of collaborative learning interaction, and characterize them within a 
simple classification framework. The framework distinguishes between mirroring 
systems, which display basic actions to collaborators, metacognitive tools, which 
represent the state of interaction via a set of key indicators, and coaching systems, 
which offer advice based on an interpretation of those indicators. The reviewed 
systems are further characterized by the type of interaction data they assimilate, the 
processes they use for deriving higher-level data representations, the variables or 
indicators that characterize these representations, and the type of feedback they 
provide to students and teachers. This overview of technological capabilities is 
designed to lay the groundwork for further research into which technological 
solutions are appropriate for which learning situations.  
 
Keywords. Collaborative Learning, CSCL, Interaction Analysis, computational 
modeling, mirroring, metacognitive, coaching  
 
INTRODUCTION 
 
Over the past decade, we have seen a remarkable increase in the development and 
adoption of network-based technologies that enable traditional and non-traditional 
distance learners alike to learn collaboratively. These environments enhance 
traditional distance learning curricula by giving students the opportunity to interact 
with other students online, on their own time, and wherever they are located to share 



 

knowledge and ideas. But especially for domains in which teamwork is critical, do 
these collaborative tools provide the kind of supportive environments learning 
groups need? Is it possible to design environments in which each team of students 
learns in the presence of a facilitator who helps to manage and guide the 
collaboration, providing clear goals as to what is expected from the group process? 
In this paper, we review a representative selection of tools and methodologies that 
support collaborative learning interaction, and characterize them within a simple 
conceptual framework. The framework serves to organize and explain the array of 
available collaborative support options. 

Understanding and evaluating collaborative learning tools and methodologies is 
not a trivial task. During collaborative learning activities, factors such as students’ 
prior knowledge, motivation, roles, language, behavior, and group dynamics interact 
with each other in unpredictable ways, making it very difficult to measure and 
understand learning effects. This may be one reason why the focus of collaborative 
learning research shifted in the nineties from studying group characteristics and 
products to studying group process (Dillenbourg, Baker, O’Malley, & Blaye, 1995; 
Jermann, Soller, & Muehlenbrock, 2001). With an interest in having an impact on 
the group process in modern distance learning environments, the focus has recently 
shifted again – this time from studying group processes to identifying computational 
strategies that positively influence group learning. This shift toward mediating and 
supporting collaborative learners is fundamentally grounded in our understanding of 
the group activity described by our models of collaborative learning interaction.  

Because distance learners adapt their interaction to the features and capabilities 
of the available tools, their interaction may also differ from that of face-to-face 
learners, and the way in which we support their interaction may differ too. Online 
collaborative learning environments may never offer the same kind of 
supportiveness found in the face-to-face classroom, and might never need to, but 
they must still provide students with the kind of rich learning experiences they 
might otherwise obtain in the classroom. In this paper, we explore the advantages, 
implications, and support possibilities afforded by various technologies and 
computational models in an array of contexts.  

We begin in the next section by describing our conceptual framework, the 
Collaboration Management Cycle. This framework will help to organize the 
technology support options that we describe in the third section. All four authors of 
this article have recently completed their doctoral dissertations in this area, and each 
has contributed from his or her experiences to the discussion of the critical questions 
and open issues for future research in the fourth and fifth sections. These sections 
might be used in the development of future theses, to identify key unanswered 
research questions and gaps. 

 
 

THE COLLABORATION MANAGEMENT CYCLE 
 

Managing collaborative interaction means supporting group members’ 
metacognitive activities related to their interaction. It may be facilitated through 
activities such as providing on-line dynamic feedback to students, or off-line 
analyses of the students’ collaboration to instructors. The students, instructors, or 



 

system might then recommend actions to help students manage their interaction by 
reassigning roles, addressing conflicts and misunderstandings, or redistributing 
participants’ tasks, given their levels of expertise.  

In distributed computer-supported collaborative learning (CSCL) 
environments, the process of collaboration management is assisted and informed by 
one or more computational models of collaborative learning interaction (Soller, 
Jermann, Muehlenbrock, & Martinez-Mones, 2004). These models provide 
functional computer-based representations that help us understand, explain, and 
predict patterns of group behavior, and support group learning processes. They can 
help us determine how to structure the environment in which the collaboration takes 
place, or regulate the student interaction during the learning activities (Jermann, 
Soller, & Lesgold, 2004). We very briefly describe the role of computational models 
in structuring the group learning environment, and then focus the remainder of our 
discussion on their role in regulating interaction. 
 
The Role of Computational Models in Structuring and Regulating Interaction  
 
Structuring approaches aim to create favorable conditions for learning by designing 
or scripting the situation before the interaction begins (Dillenbourg, 2002). For 
example, we might structure the learning experience by varying the characteristics 
of the participants, the size and composition of the group, or the definition and 
distribution of student roles. We might also strategically select a subset of learning 
tools, activities, and communication media with desired characteristics, or change 
the appearance of the environment based on the nature of the task (e.g. writing, 
problem-solving) or the configuration of the group. A computational model, 
describing students’ prior behavior under similar conditions might be used to 
strategically construct learning teams and activities, or plan mediation schemes. 
Approaches to structuring the learning situation are often based on educational 
principles or theories, and intended to encourage certain types of interaction, such as 
argumentation or peer tutoring.  

Regulation approaches support collaboration by taking actions once the 
interaction has begun. Interaction regulation is a complex skill that requires a quick 
appraisal of the situation based on a comparison of the current situation to a model 
of desired interaction. In the classroom, the regulation of student interaction is 
performed by a teacher, taking into account complex variables such as the observed 
student interaction, various experiences from years of teaching, and knowledge of 
the students’ personalities and typical behaviors. The difficulty in eliciting the 
knowledge needed to account for these complex variables, and determining the 
manner and degree to which each contributes to the collaborative learning outcome, 
has presented significant challenges to the computational modeling, analysis, and 
assessment of group learning activities. How might a computer assess the quality of 
knowledge sharing, or measure the degree of constructive conflict between students? 
It is too early to tell whether or not we will ever be able to offer the supportiveness 
of a human teacher online; however, a few research projects have begun to explore 
the possibilities of enriching CSCL environments with tools to support and enhance 
collaboration management through interaction regulation.  



 

Before leaving our discussion of structuring and regulating approaches, we note 
that these methods need not be exclusive, and may even be applied in concert. For 
example, a system might mediate the group by dynamically structuring the 
environment, while the students, at the same time, attempt to regulate their own 
interaction. We now move to a discussion of the four phases in the collaboration 
management cycle, designed to organize the array of state-of-the-art functionality 
for supporting interaction regulation. 

 
The Phases of the Collaboration Management Cycle 
 
In this section, we present a framework for describing the process of collaboration 
management, building upon the work of Jermann, Soller, and Muelhenbrock (2001) 
and Barros and Verdejo (2000). Collaboration management follows a simple 
homeostatic process, illustrated in Figure 1, that continuously compares the current 
state of interaction with a target configuration (the desired state). Pedagogical 
actions are taken whenever a perturbation arises, in order to bring the system back to 
equilibrium. Because the definition of the desired state may not be fully known, and 
may also change during the course of group activity, the framework presented here 
provides a general description of the activities involved in computer-supported 
collaboration management, rather than a means for predicting collaborative learning 
outcomes.  
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Figure 1. The Collaboration Management Cycle 
 



 

The framework, or collaboration management cycle is represented by a 
feedback loop, in which the metacognitive or behavioral change resulting from each 
cycle is evaluated in the cycle that follows. Such feedback loops can be organized in 
hierarchies to describe behavior at different levels of granularity (e.g. operations, 
actions, and activities). The collaboration management cycle is defined by the 
following phases:  
 
Phase 1: Collect Interaction Data 
The data collection phase involves observing and recording the interaction. 
Typically, users’ actions (e.g. ‘user1 clicked on I agree’, ‘user1 changed a 
parameter’, ‘user1 created a text node’) are logged and stored for later processing. 
An important decision that must be made in phase 1 as to whether the eventual 
model will call for an activity-based analysis, requiring a historical log of student 
actions across time, or a state-based analysis, requiring the logging of “snapshots” of 
collaborative interaction, without history information (Gassner, Jansen, Harrer, 
Herrmann, & Hoppe, 2003). 
 
Phase 2: Construct a Model of Interaction 
The next phase involves selecting and computing one or more higher-level 
variables, termed indicators, to represent the current state of interaction. For 
example, an agreement indicator might be derived by comparing the problem 
solving actions of two or more students, or a symmetry indicator might result from a 
comparison of participation indicators. 
 
Phase 3: Compare the Current State of Interaction to the Desired State 
The interaction can then be “diagnosed” by comparing the current state of 
interaction to a desired model of interaction. We define the desired model as a set of 
indicator values that differentiate between productive and unproductive interaction 
states. A productive state, given by a desired indicator configuration, typically 
corresponds to a representation of interaction that might positively influence 
learning. For instance, we might want learners to be verbose (i.e. to attain a high 
value on a verbosity indicator), to interact frequently (i.e. maintain a high value on a 
reciprocity indicator), and participate equally (i.e. to minimize the value on an 
asymmetry indicator). We do not further circumscribe desired interaction because 
our objective is to parameterize the analysis process rather than present the results of 
a particular interaction analysis. 

From an implementation standpoint, the difference between phases 2 and 3 
does not seem significant. From a theoretical perspective, however, these phases 
describe the difference between a system that reflects the group’s activities back to 
the members, and requires them to manage their own interaction, and a system that 
prepares interaction data so that it can be assessed by computer models, or analyzed 
by researchers in an effort to understand and explain the interaction. 
 
Phase 4: Advise/ Guide the Interaction 
Finally, if there are discrepancies between the current state of interaction (as 
described by the indicator values) and the desired state of interaction, some remedial 
actions might be proposed. Simple remedial actions (e.g. ‘Try letting your partner 



 

have control for a while’) might result from analyzing a model containing only one 
indicator (e.g. word or action count), which can be directly computed from the data, 
whereas more complex remedial actions (e.g. ‘Try explaining the concept of 
generalization to your partner using a common analogy’) might require more 
sophisticated computational analysis. 

Phase 4 is not the final phase in this process. Remediation by the system or 
human instructor will have an impact on the students’ future interaction, and this 
impact should be re-evaluated to ensure that it produced the desired effects. The 
arrows that run from phase 4 back through the illustration representing the logging 
of learners’ actions, to phase 1 indicates the cyclic nature of the collaboration 
management cycle, and the importance of evaluation and reassessment at the 
diagnostic level. 
 
Phase 5: Evaluate Interaction Assessment and Diagnosis 
After exiting Phase 4, but before re-entering Phase 1 of the following collaboration 
management cycle, we pass through the evaluation phase. Here, we reconsider the 
question, “What is the final objective?”, and assess how well we have met our goals. 
Some systems are aimed exclusively at analyzing and evaluating student activity. 
Their objective is to explain why students may be experiencing trouble collaborating 
and learning, and help an instructor or online coach target those difficulties. In some 
cases, evaluation may be performed off-line, taking complete courses of interaction 
as the units of analysis. Off-line evaluation removes the temporal constraints that are 
present in dynamic, on-line coaching and evaluation scenarios, although such 
evaluation procedures also introduce some delay in the feedback, evaluation, and 
remediation loop. Off-line evaluation may be performed by either the system, or a 
human evaluator. In the first case, the system improves its own ability to diagnose 
student performance by directly analyzing students’ actions (e.g. Soller, 2004; Soller 
& Lesgold, 2003). In the second case, a human may intervene in the process to alter 
the method of facilitation or even the model of desired interaction.  

In control theory and cognitive science, cognitive architectures are described as 
hierarchies of referents that begin at the lower levels of sensation and continue 
through the higher levels of conceptual knowledge (Robertson & Powers, 1990). 
The fifth phase in our model corresponds to a higher level of control that allows for 
changes to the desired state of interaction in the management cycle. For the sake of 
simplicity, Figure 1 graphically depicts only the four first phases of the 
collaboration management cycle representing one full cycle. 

When these five phases are realized in a system, they might form more of a 
theoretical base than the embodiment of physical system components or human-
controlled tasks. In some systems, the phase durations and boundaries may vary 
significantly, making the phases difficult to identify, whereas in other systems, the 
phases might be implemented as concrete, identifiable, software modules. For 
instance, the first phase – collection of interaction data – could be realized as either 
the collection of a single new datum that immediately triggers the cycle, or the 
accumulation of interaction data over a long period of time, that must be completed 
before entering the next phase. Systems that involve humans ‘in the loop’ who 
advise or guide the interaction tend towards the latter because human resources are 
often not immediately available.  



 

The Locus of Processing: From Mirroring to Guiding 
 
Research in distributed cognition suggests that cognitive and metacognitive 
processes might be spread out and shared among actors in a system, where these 
actors may constitute both people and tools (Hutchins, 1995; Salomon, 1993). 
Following this idea, computers might offer support for any or all of the four phases 
described in the previous section.  The locus of processing describes the location at 
which decisions are made about the quality of the student interaction, and how to 
facilitate this interaction. Depending on the requirements and goals of the learning 
activity, the locus of processing may be located anywhere on a continuum between 
the system, instructors, and collaborating students. For example, a teacher, or the 
group members themselves, might observe the interaction, compare its current state 
with implicit or explicitly agreed upon referents, and propose changes to the 
communicative rules or division of labor. In this case, the locus of processing is in 
human hands. Alternatively, parts of this process might be managed by a computer 
system, thereby shifting the locus of processing towards the computer.  

Systems that collect interaction data and construct visualizations of this data 
tend to place the locus of processing at the user level, whereas systems that advise 
and coach aggregate and process this information directly. In the remainder of this 
section, we describe three computer-based support options that arise as the computer 
takes over various phases of the collaboration management process presented in the 
previous section.  
 

 

Mirroring tools automatically collect and aggregate data about 
the students’ interaction (phases 1 and 2 in Figure 1), and 
reflect this information back to the user, for example, as 
graphical visualizations of student actions or chat contributions. 
These systems are designed to raise students’ awareness about 
their actions and behaviors. They place the locus of processing 
in the hands of the learners or teachers, who must compare the 
reflected information to their own models of desired interaction 
to determine what remedial actions are needed.  

Metacognitive tools display information about what the desired 
interaction might look like alongside a visualization of the 
current state of indicators (phases 1, 2 and 3 in Figure 1). These 
systems provide the referents needed by the learners or human 
coaches to diagnose the interaction. Like mirroring tools, users 
of metacognitive support tools are responsible for making 
decisions regarding diagnosis and remediation.  

Guiding systems perform all the phases in the collaboration 
management process, and propose remedial actions to help the 
learners. The desired model of interaction and the system’s 
assessment of the current state are typically hidden from the 
students. The system uses this information to make decisions 
about how to moderate the group’s interaction. 



 

Fundamentally, these three approaches rely on the same model of interaction 
regulation, in that first data is collected, then indicators are computed to build a 
model of interaction that represents the current state, and finally, some decisions are 
made about how to proceed based on a comparison of the current state with some 
desired state. The difference between the three approaches above lies in the locus of 
processing. Systems that collect interaction data and construct visualizations of this 
data place the locus of processing at the user level, whereas systems that offer 
advice process this information, taking over the diagnosis of the situation and 
offering guidance as the output. In the latter case, the locus of processing is entirely 
on the system side.  

Selecting and designing the most appropriate computational approach for 
supporting group interaction means evaluating the instructors and learners’ needs 
and assessing the available computational resources. Each of the three support 
options described in this section presents different advantages and disadvantages 
(described in more detail in the next section), and many combinations of approaches 
can be complementary. For example, imagine a system that progressively moves the 
locus of processing from the system side to the learner side in the form of a guiding 
tool that becomes a metacognitive tool and finally a mirroring tool. As students 
observe the methods and standards that the system uses to assess the quality of the 
interaction, they might develop a better understanding of the system’s process of 
diagnosis, allowing the responsibility for interaction regulation to be progressively 
handed over to the students. Once the students have understood (internalized) these 
standards, simply displaying the indicators in a mirroring tool might be sufficient.  

Models designed to assist human instructors in coaching students might look 
different from those intended to guide students directly, even if the locus of 
processing looks similar. Dimitracopoulou & Komis (2004) found that teachers’ 
most important consideration was their ability to track multiple groups of students as 
they learn synchronously, and identify individual and group difficulties. Supporting 
these teachers might mean providing them with automated analysis tools, targeted at 
their specific concerns, or tools that enable them to reconstruct and analyze 
sequences of past collaborative student activity. 

Students, on the other hand, might initially lack the skill and insight to interpret 
the models correctly, and may consequently develop biases about what constitutes 
effective interaction. For example, students might rely on implicit social norms 
(status, equality) to manage the interaction by remaining silent while their more 
knowledgeable peers perform difficult tasks. Partners may spend unnecessary time 
worrying about whether or not they are participating equally, thinking that equal 
participation leads to equal credit. Collaborative learners guided by mirroring and 
metacognitive tools may need to follow a more introspective process to develop an 
understanding of their interaction than those who are guided by a teacher or 
computer-based coach. The advantage of these tools is that those learners who 
struggle and succeed without intervention may more rapidly develop a 
understanding of their interaction, and how to improve their own interaction skills. 
 
 



 

A REVIEW OF SYSTEMS THAT SUPPORT COLLABORATIVE 
LEARNING 
 
In this section, we discuss representative examples of three types of supportive 
collaborative learning systems in the context of the collaboration management cycle. 
In the previous section, we described mirroring systems as those that reflect actions 
because they collect activity data in log files and display it to the collaborators. We 
described metacognitive tools as those that monitor the state of interaction because 
they maintain a model of the group activity, and either diagnose the interaction or 
provide collaborators with visualizations that they can use to self-diagnose their 
interaction. These visualizations typically include a set of indicators that represent 
the state of the interaction, possibly alongside a set of desired values for those 
indicators. Finally, we explained that coaching or advising systems guide the 
collaborators by recommending actions they might execute to enhance the 
interaction. We begin this section with a brief discussion of the options available for 
collecting and structuring interaction data, in preparation for collaboration analysis. 
We then turn to a deeper discussion of the technology options for each phase of the 
collaboration management cycle, and review a number of key systems within each 
category. 
 
Collecting & Structuring Interaction Data 
 
The first step in designing and developing collaboration support tools is determining 
how student actions should be logged by the system. This means making decisions 
about the granularity of data to collect (mouse movement, clicks, or object 
manipulation), how often actions should be logged, where (e.g. in a logfile, 
database, or internal data cache), and in what format. While a standard data format 
would allow researchers to share and reuse analysis tools across different CSCL 
systems more easily, this might also limit their ability to customize tools for specific 
user groups, or apply special methods for analyzing particular combinations of data. 
In this section, we briefly introduce the work of a few notable researchers who have 
seriously considered CSCL data collection issues, and then discuss how a variety of 
mirroring tools have taken advantage of these data collection efforts. 

The Object-oriented Collaboration Analysis Framework (OCAF) (Avouris, 
Dimitracopoulou, & Komis, 2003) defines a model that represents the items of the 
students’ solution (including those that have been discussed and eventually rejected) 
as a sequence, Pif j, where Pi represents the actor, and fj, the functional role related to 
a particular part of the solution (e.g. the insertion or proposal of an item, the 
rejection of a proposal). The functional roles are determined by automatically 
analyzing the logs of student actions, and manually analyzing the logs of student 
dialog. Collecting and structuring data in this way enables the researcher to analyze 
student workspace actions from the point-of-view of the shared objects rather than 
the student actions. OCAF considers objects as entities that carry their own history, 
and are owned by actors (learners) who have contributed, in varying degrees, to the 
solution. They independently compile statistics on their use, and contribute to the 
definition of indicators describing their owners’ collaborative behavior. Because of 



 

this object-orientation, OCAF is restricted to systems in which students construct 
solutions composed of well distinguished objects.  

Avouris, Komis, Margaritis, and Fiotakis (2004) have developed a system 
called Synergo, which represents OCAF-modeled activity textually or 
diagrammatically. While the former is suitable for automatic processing, the latter is 
intended to provide a human with a view of the items and their history. The system 
also includes a web interface that logs student actions, and displays various views of 
the model such as a history of events, or an object-oriented view of every object that 
has been inserted in the system. With the help of this tool, the researcher can inspect 
different aspects of the model, such as the activity of each actor, or the structure of 
the solution.  

To facilitate the automatic data collection process, Martínez-Monés, Guerrero, 
and Collazos (2004) define the concept of the collaborative action in context as an 
action that can affect the collaborative process, and can be perceived by group 
members. They explain how a CSCL environment can model and implement 
collections of collaborative actions by adapting the standard software engineering 
command design pattern. The design pattern is a general solution that modularizes 
the data collection process, enables data customization, and can be used to define 
logging functionality in any type of application (not only those that are designed to 
mediate collaborative activity).  

The storing and processing capabilities of computers have long been seen as an 
opportunity for research and evaluation in collaborative learning (Dillenbourg, 
1999). For example, computer-generated log files may be combined with more 
traditional sources of data such as ethnographic observation and audio tapes. Neale 
and Carrol (1999) present a complex evaluation methodology that combines 
automatic tools with field work to evaluate distance learning activities. One modern 
adaptation of this concept uses web server logs as the object of analysis. The Server 
Log File Analyzer (SLA) (Wasson, Guribye, & Mørch, 2000) is a tool that analyzes 
web server logs to determine when it is possible for a team of students to collaborate 
synchronously (i.e. when two or more of the team's members are logged on at the 
same time). SLA also highlights if one team member does not log on for a 
significant period of time, thus identifying periods when even asynchronous 
collaboration is not possible. Log file analysis tools, such as SLA, act as mirroring 
tools by showing team members representations of their activities. In the next 
section, we see how these representations may help students determine what 
behaviors would most likely promote a successful collaboration. 

 
Systems that Reflect Actions 

 
The most basic level of support a system might offer involves making the students 
or teachers aware of participants’ actions, without abstracting or evaluating these 
actions. Actions taken on shared resources, or those that take place in private areas 
of a workspace may not be directly visible to the collaborators, yet they may 
significantly influence the collaboration. Raising awareness about such actions 
through mirroring tools may help students maintain a representation of their 
teammates’ activity. A better representation of teammates’ activities might 



 

encourage coordination and enhance one’s own metacognitive processes (Jermann, 
2004). 

PENCACOLAS (PEN Computer Aided COLlAborative System) (Blasco et al., 
1999),  a system designed to teach collaborative writing, is an example of an 
environment that facilitates formal evaluation while reflecting users’ actions. 
PENCACOLAS enables groups of students, and a teacher, to generate text 
synchronously. It models compositions as problem-solving situations that follow a 
recursive process involving a series of phases (e.g. brainstorming, planning, writing 
and revision). Students using the system may also interact asynchronously, by 
revising their peers’ compositions, or exchanging short messages. PENCACOLAS 
records all the students’ writing events. These logs are used both to analyze the 
student activity, and to enable the review, correction, and evaluation of previous 
composition phases. Reviewing students’ intermediate writing steps may provide 
valuable insights regarding the evolution of their writing, and their cognitive 
development. To facilitate formative evaluation, the system automatically generates 
filenames that identify users, sessions, and phases, thus allowing evaluation of both 
collaborative and individual work. This may also allow the teacher to perform a self-
evaluation in which she reviews her pedagogical interventions.  

Actions may also be represented along a timeline. For example Plaisant, Rose, 
Rubloff, Salter, and Shneiderman (1999) describe a system in which students learn 
the basics of vacuum pump technology through a simulation. As the learner 
manipulates the controls of the simulation, he can view a history of his actions 
displayed graphically beneath each target variable (e.g. pressure). The display shows 
a series of boxes along a timeline, indicating the intervals in which the user is taking 
actions, and the system’s messages. The data displayed to the student does not 
undergo any processing or summarizing, but directly reflects the actions taken on 
the interface. Although Plaisant et al. did not design the system to be used by two 
persons at the same time, the learning history might be used to mirror a collaborative 
situation by displaying the actions of the learners side-by-side, and offering a 
representation of concurrent actions to help students coordinate their activity. 

The graphical records of actions that Plaisant et al.’s (1999) system constructs 
might be sent to a tutor or a peer learner, or replayed by the learner to examine his 
own performance. Goodman, Geier, Haverty, Linton, and McCready (2001) have 
taken advantage of the capacity of replay and reviewing tools to serve as mirroring 
devices. They have developed the Asynchronous Replay Tool (ART), which when 
integrated in a larger system called SAILE (Synchronous and Asynchronous 
Interactive Learning Environment), provides support for both synchronous and 
asynchronous interactions. ART allows an asynchronous learner to become a full 
participant in a problem solving session by enabling her to replay (fast review, step-
by-step, or replay action segments delimited by chat events) and experience the 
collaboration process of the other group members that have been working on the 
same problem. 

Although online chat facilities pervade distance collaborative learning systems, 
many still present limitations, such as the lack of visual and audio cues (e.g. gestures 
and voice tone). Some researchers have addressed these limitations by developing 
creative extensions (see Looi, 2001, for an array of examples). For example, chat 
awareness tools such as Chat Circles (Donath, Karahalios, & Viegas, 1999), can 



 

help users keep track of ongoing conversations. Chat Circles is a graphical interface 
for synchronous chat communication that reveals the structure of the conversation 
(see Figure 2).  

 

 

Figure 2. Chat Circles: A mirroring tool that helps users keep track of ongoing 
conversations Obtained by email from Fernanda Veigas (viegas@media.mit.edu). 
Note: figure enlarged and colors enhanced for printing. Printed with permission. 

 
Each participant is represented by a colored circle on the screen in which his or 

her words appear. The tool is based on an auditory metaphor: while one can see all 
the participants at once, one can only "hear" (that is, read the words) of those one is 
sufficiently close to. Distances between messages (circles) are used to represent who 
is talking to whom, hence the tool represents conversational structure through spatial 
proximity. A participant’s circle grows and brightens with each message that he 
sends, and fades in periods of silence. The circles, however, do not completely 
disappear while the participant is still connected to the chat. Viewed over time, Chat 
Circles creates a visual record of conversational patterns. Each user is made aware 
of the other active, animated participants and can watch the emergence and 
dissolution of conversational groups. The developers of Chat Circles also developed 
an archival interface, “Conversation Landscape”, that graphically displays chat logs 
in an intuitive format. This format maintains the information that is normally lost in 
log files, such as pauses and turn-taking behavior. The conversation landscape is a 
two-dimensional model of the conversation, showing the postings of the participants 
(again identified by color) as horizontal lines. The width of the lines is proportional 
to the lengths of the messages. The viewer can interact with this visualization to see 



 

individual conversations, and read the postings. In this way, it is possible to explore 
what has happened in an intuitive way. 

Other systems reflect actions, but are not geared specifically toward learning, and 
hence will be covered only briefly here. For example, one of the awareness tools 
(Gutwin, Stark, & Greenberg, 1995) in the Groupkit system (Roseman & 
Greenberg, 1992) contains a shared scrollbar to display the section of text each 
participant is looking at, allowing students to locate their partner’s focus of 
attention. Some groupware systems use a room-based paradigm to inform users of 
the virtual locations of their peers. They may also show users which objects their 
peers are viewing or manipulating. (See NCSA Habanero, CUSeeMe, IWS, 
Microsoft NetMeeting, and Groove for some other examples.) 
 
Systems that Monitor the State of Interaction 
 
Systems that monitor the state of interaction fall into two categories: those that 
aggregate the interaction data into a set of high-level indicators, and display these 
indicators to the participants, and those that internally compare the current state of 
interaction to a model of ideal interaction, but do not reveal this information to the 
users. In the former case, the learners are expected to manage their interaction 
themselves, assuming that they have been given the appropriate information to do 
so. In the latter case, this information is either intended to be used later by a 
coaching agent, or analyzed by researchers in an effort to understand and explain the 
interaction. 
 
Systems that Display High-Level Indicators 
 
Our first group of systems models the state of interaction through a set of indicators 
that are displayed to the users. Jermann (2004) has developed a system that displays 
participation rates to the collaborators as they are solving a traffic light tuning 
problem. The indicators on the display represent the number of messages each 
student has sent with respect to the number of problem-solving actions he and his 
teammates have taken (see Figure 3). The system displays a color-coded model of 
desired interaction next to the observed interaction state. The colors indicate that 
desirable interaction includes a greater proportion of talk relative to simulation-
directed actions. The students use this standard to judge the quality of their 
interaction and determine whether or not to take remedial actions. Jermann found 
that the metacognitive display encourages students to participate more through the 
chat interface, in particular to engage in more precise planning activities. 

Tools like this might have a positive impact on a group's metacognitive activities 
by aiding in the construction and maintenance of a shared mental model of the 
interaction. This mental model may encourage students to discuss and regulate their 
interaction explicitly, leading to a better coordination of the joint effort to reach a 
solution. The notion of desirable interaction might also change during the learning 
process, causing the target values of the indicators to be dynamically updated, and 
encouraging the learners to improve in different ways. 
 



 

 
 
Figure 3. While students solve a traffic light tuning problem, they can visualize and 
compare their chat and problem solving behavior to that of their teammates. The 
color of the Pie ranges from red on the left side to green in the center and right side. 
The needles indicate the Talk Tune Proportion (TTP) for each subject (Christina and 
Billy) as well as the average for the group (Team). 
 

Some metacognitive tools also include specialized displays for teachers and 
facilitators, to help them regulate the collaborative activities of their students. These 
systems usually avoid complex computation because they are designed to 
dynamically provide intuitive displays that make the assessment process as efficient 
as possible. In classrooms with hundreds of students, such tools may be invaluable 
in helping teachers monitor and facilitate group work. The Synergo system 
(Avouris, Komis, Margaritis, & Fiotakis, 2004) presented in the previous section, 
and the tool developed by Fesakis, Petrou, and Dimitracopoulou (2004) compute the 
quantitative indexes CF (Collaborative Factor) and CAF (Collaborative Action 
Function), respectively. Both calculate a value for collaboration by taking into 
consideration the actions performed by the user in the environment through the 
different collaboration channels (e.g. chat, shared workspace). In the classroom, 
teachers have described these tools as useful for monitoring the state of on-line 
collaborative activities, reflecting on their own activities off-line, planning new 
lessons, and configuring new group structures. The impact of these kinds of tools 
can be significant; they have the capability to focus a teacher’s attention toward 



 

those groups that may need the extra help, and away from those that can function 
well independently. In the design of these tools, especially those with a limited 
pedagogical basis, we should therefore remember to respect the teacher’s authority 
in the classroom, and focus our efforts on developing tools that assist the teacher in 
managing the classroom, rather than tools that assume the responsibility for 
evaluating the collaborative activity. 

Metacognitive tools designed for use in educational forums may be used to 
support asynchronous discussions over indefinite periods of time. Gerosa, Pimentel, 
Fuks, and Lucena (2004) describe the tree-like visualization tools they have 
developed that compute and display the statistics and linkages between forum 
messages. The tools provide information about the structure of the student 
discourse, accounting for factors such as the length of messages related to each 
message category, discussion depth, percentage of leaves, percentage of messages in 
each category, and frequency of messages per hour. Depending on the style of 
interaction (reflective discussion or brainstorming), either the length of messages of 
their frequency is better suited to measure the intensity of interaction. 

Simoff (1999) proposes an interesting way to estimate students’ potential for 
learning by analyzing the graphical representation of student participation in an 
educational forum. His system uses nested boxes to visualize discussion threads. 
The thickness of the boxes’ edges represents the number of messages produced in 
response to the opening message for a particular thread. In an educational 
environment, thicker boxes containing task-oriented content might mean deeper 
conversations, hence deeper understanding. To study of the content of the messages, 
Simoff applies a semi-automatic content analysis method. Common words such as 
articles and prepositions are discarded, and then the occurrences of the remaining 
terms are counted, noting the co-occurences of the most frequent words. This 
technique is used to build a seminar thesaurus, and an individual thesaurus for each 
participant. The comparison between these thesauri gives an indication of each 
participant’s contribution to the seminar. The content of the discussions is also used 
to generate a semantic net (through the use of the Text Analyst tool), which 
indicates the relevance of each term. 

Talavera & Gaudioso (2004) apply data mining and machine learning methods to 
analyze student messages in asynchronous forum discussions. Their aim is to 
identify the variables that characterize the behaviour of students and groups by 
discovering clusters of students with similar behaviours. A teacher might use this 
kind of information to develop student profiles and form groups. Talavera and 
Gaudioso’s approach is general enough to be useful within many different types of 
collaborative environments, however the output may need further refinement to be 
usable by teachers, who are not expected to be experts in data mining techniques.  

The last group of metacognitive tools we discuss in this section apply the formal 
concepts and techniques of Social Network Analysis (SNA) (Wasserman & Faust, 
1996) to study and display the structure of group activity. SNA is based on strong 
mathematical and sociological foundations, and provides a set of methods and 
measurements for discovering and describing patterns of relationships among actors, 
and understanding how these patterns affect people and organizations. SNA 
methods operate on structures called social networks that describe a set of actors and 
their relationships. Social networks can take many different forms. For example, e-



 

mail interchange networks describe which actors have sent e-mail to other actors. 
Although social networks typically represent relationships between people, they can 
be extended to include relationships between the users and resources. Indirect 
interaction networks describe which actors have created and shared documents with 
which other actors, and who has taken actions on these shared documents. Many 
possibilities exist depending on the environment, the issues being studied, and the 
available data processing capabilities.  

Social Network Analysis supports the study of the relationships at different 
levels, namely the individual, the group, and the community. For example, at the 
individual level, the degree centrality measures the prominence of actors in the 
network, and helps to identify those who are the most active or most peripheral. At 
the group level, cohesive subgroups can be identified as groups of actors with 
strong, direct, frequent ties. And, at the community level, the network density 
computes the percentage of actual links with respect to the number of possible links 
in a network, describing the level of activity in the network (Wasserman & Faust, 
1996; see Martínez-Monés, Dimitriadis, Rubia-Avi, Gómez-Sánchez, & Fuente-
Redondo, 2003, for CSCL-specific examples).  

Metacognitive CSCL tools have used SNA to both display and measure 
interaction during collaborative activities. In Gassner’s (2004) approach, social 
networks of filtered e-mail data convey information about group roles, individual 
personality factors, and even evidence of cooperation. While this system is still a 
prototype, the design of meaningful filters for building social networks is a 
promising line of research that may add more content and meaning to social network 
analysis studies. Other systems, such as SAMSA (Martínez et al, 2003), and that by 
Nurmela, Lehtinen, & Palonen, (1999) were developed to filter a large amount of 
data off-line and point evaluators to key collaborative learning events that need 
further study. The follow-up research is then carried out manually through content 
inspection or qualitative analysis.  

Ogata, Matsuura and Yano (2000) extend the notion of the social network 
through a special metacognitive tool called a Knowledge Awareness Map that 
explicitly represents the content of the interaction and the objects students 
manipulate in the network. This tool can be seen as a specialized social network that 
also includes “knowledge pieces” describing information that is linked to 
participants. The Knowledge Awareness Map graphically shows users who else is 
discussing or manipulating their knowledge pieces. In this case, the distance 
between users and knowledge elements on the map indicates the degree to which 
users have similar knowledge.  

In this section, we discussed the role of metacognitive tools that display high-
level indicators in supporting students’ collaboration and awareness, teachers’ 
monitoring and assessment, and researchers’ analysis and evaluation. Social 
Networks may benefit all of these communities by making the interaction in group 
structures visually explicit, and grounding the analysis in solid procedures based on 
mathematics and graph theory. SNA does not naturally represent the evolution of 
interaction, and may best be combined with other methods and techniques that can 
model how interaction and relationships change over time. 

 



 

Systems that Internally Compare the Current State to a Model of Productive 
Interaction 

 
The systems that we have discussed so far cover the first two stages of the 
collaboration management cycle (Figure 1), described at the beginning of this paper. 
We now turn to a discussion of systems in which the locus of processing (and the 
responsibility for analyzing the interaction) gradually shifts from the user to the 
system. These systems not only analyze, but also “diagnose” the student interaction 
in an attempt to deduce or infer where the students might be having trouble. This is 
generally done by internally comparing the current state of interaction to a model of 
ideal, or productive, interaction. The main challenges present during this process are 
(a) defining, as best possible, the model of desired interaction, and (b) designing 
algorithms that measure the degree to which the current model of interaction meets 
the requirements of the desired model, which may be uncertain or unstable. The 
result of the comparison in these systems is not displayed to the users, but instead 
used later by a coaching agent, or analyzed by researchers in an effort to understand 
and explain the interaction. 

In the CSCL and AI-ED communities, we commonly think of “productive” 
interaction as interaction that facilitates learning. Models of productive interaction 
are therefore built from factors that are thought to positively influence learning. 
These factors are qualitative in nature, and involve analyzing the semantic aspects of 
interaction and the patterns of student actions. The systems in this section include 
internal representations that model aspects of collaborative learning such as 
coordination, conflict, and knowledge sharing. The first system incorporates a set of 
rules that indicate domain-related conflicting and coordinated sequences of group 
activity without judging them because both conflicts and coordinated actions might 
be beneficial in the course of interaction. The second system identifies sequences of 
interactions that are productive in the sense that group members effectively gain 
knowledge from each other. 

We begin with a system developed by Muehlenbrock and Hoppe (1999), two of 
the first researchers to propose sequences of multi-user actions in shared workspaces 
as a basis for qualitative analysis. The shared workspaces they consider for the 
automatic analysis provide semi-structured graphical representations for various 
types of domains and tasks. The users ‘act’ on these shared graphical representations 
by adding new textual and pictorial objects, and relations between these objects. The 
users can also remove or revise existing structures that result from previous joint 
problem solving, or that are drawn from sample material.  

In contrast to student dialog, user actions have clearly defined operational 
semantics in terms of changes to the graphical structures. Hence they are directly 
available for automatic analysis, and do not require an intermediate labeling step, 
which might introduce a certain degree of error. Action-based collaboration analysis 
(Muehlenbrock, 2001) observes user actions in the temporal context of other users’ 
actions as well as in the structural context of the graphical representations. It 
provides higher-level descriptions of the group activities (overview), and signals 
alerts when relevant events, such as task-related conflicts and coordination 
activities, have been detected (indicators). The analysis system was implemented as 
a plug-in component for the generic framework system CARDBOARD, which 



 

includes intelligent support components (CARDDALIS). A recent version (see 
Figure 4) has been used in a psychological study for examining the influence of a 
feedback function to the behavior of the group (Zumbach, Muehlenbrock, Jansen, 
Reimann, & Hoppe, 2002). Positive influence of feeding back analysis results to the 
group have been observed, although not to a significant degree, which may be due to 
sample size; hence, further studies are necessary.  
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Figure 4. The CARDBOARD/CARDDALIS interface shows a large shared workspace 
for co-constructive activity using pre-defined cards (categories: text, idea, question, 
pro, contra), a chat interface (center right) with sentence categories (idea, question, 
pro, contra), and a subtle feedback area (lower right) generated by the interaction 
analysis component. 

 
The visualization of the model of interaction (e.g. the illustration of the degree 

of user participation in Figure 4) may be displayed to the students, as described in 
the previous section, or hidden from the students, and instead used by an instructor 
or computer-based facilitation agent in advising the students. It is worth noting, 
however, that if the model is sufficiently complex, containing a large number of 
interdependent variables with varying degrees of uncertainty, its construction will 
likely contain a margin of error. Such a detailed model may be inappropriate to 
display to the user, and perhaps more meaningful to an automated facilitation agent 
that can abstract the relevant aspects of the model on which to base its advice. The 
models of interaction developed by the CARDBOARD/CARDDALIS system, and the 
EPSILON system which we describe next, are intended to be used by a coaching 
agent (in the future) in advising and guiding the group interaction.  



 

Analyzing complex indicators, such as conflict and knowledge construction, 
may require sophisticated computation involving advanced modeling or natural 
language processing techniques. Interfaces that structure student conversation and 
activity in terms of a set of actions the system knows how to handle may facilitate 
the interpretation of student behavior. For example, our next system automatically 
analyzes structured sentence opener-based knowledge sharing conversation in the 
temporal context of workspace actions.  

EPSILON (Soller, 2004; Soller & Lesgold, 2003) analyzes sequences of group 
members’ communication and problem solving actions in order to identify situations 
in which students effectively share new knowledge with their peers while solving 
object-oriented design problems. In the first phase of the collaboration management 
cycle (Figure 1), the system logs data describing the students’ conversation acts (e.g. 
Request Opinion, Suggest, Apologize) and actions (e.g. Student 3 created a new 
class). In the second phase, the system collects examples of effective and ineffective 
knowledge sharing, and constructs two Hidden Markov Models (HMMs) that 
describe the students’ interaction in these two cases. A knowledge sharing example 
is considered effective if one or more students learn the newly shared knowledge (as 
shown by a difference in pre-post test performance), and ineffective otherwise. The 
Hidden Markov Modeling approach (Rabiner, 1989; also see Soller, 2004) is a 
probabilistic machine learning method that generates abstract generalizations of 
coded sequences of activity, in the form of nondeterministic state transitions.  

At the beginning of the third phase of the collaboration management cycle, the 
EPSILON system has generated the HMMs describing effective and ineffective 
knowledge sharing, and is then prepared to dynamically assess a new group’s 
interaction. It compares the sequences of student activity to the constructed Hidden 
Markov Models, and determines whether or not the students are experiencing a 
knowledge sharing breakdown. The system also includes multidimensional data 
clustering methods to help explain why the students might be having trouble, and 
what kind of facilitation might help. 

 
Systems that Offer Advice 
 
This section describes systems that analyze the state of collaboration using a model 
of interaction, and offer automated advice intended to increase the effectiveness of 
the learning process. The coach in an advising system plays a role similar to that of a 
teacher in a collaborative learning classroom. This actor (be it a computer coach or 
human) is responsible for guiding the students toward effective collaboration and 
learning. Since effective collaborative learning includes both learning to effectively 
collaborate, and collaborating effectively to learn, the facilitator must be able to 
address social or collaboration issues as well as task-oriented issues. Collaboration 
issues include the distribution of roles among students (e.g. critic, mediator, idea-
generator) (Burton, 1998), equality of participation, and reaching a common 
understanding (Teasley & Roschelle, 1993), while task-oriented issues involve the 
understanding and application of key domain concepts. The systems described here 
are distinguished by the nature of the information in their models, and whether they 
provide advice on strictly collaboration issues or both social and task-oriented 



 

issues. We begin by taking a look at systems that advise the social aspects of 
collaborative learning. 
 
Systems that Advise Social Aspects of Interaction 
 
A classroom teacher might mediate social interaction by observing and analyzing 
the group’s conversation, and noting, for example, the degree of conflict between 
group members’ roles, or the quality of the conversation. A CSCL system that can 
advise the social aspects of interaction therefore could benefit from the ability to 
understand the dialog between group members. Barros and Verdejo’s (2000) 
asynchronous newsgroup-style system, DEGREE, accomplishes this by requiring 
users to select the type of contribution (e.g. proposal, question, or comment) from a 
list each time they contribute to the discussion. The possible contribution types are 
given by a conversational graph, which can be defined differently for each 
collaborative scenario; for example, a proposal might be defined as a contribution 
type that must be followed by a question, a comment or a counter proposal. This 
data satisfies the first phase of the collaboration management cycle.  

The system’s model of interaction (phase 2 of the collaboration management 
cycle) is constructed using a set of high-level inferred attributes, such as cooperation 
and creativity. For example, cooperation is inferred from number-of-messages, 
initiative  and argumentation  (calculated from the lower-level contribution types, 
and context information). A fuzzy deduction system uses the attributes obtained by 
statistical analysis and pattern matching in order to infer conclusions about the other 
subjective collaborative evaluation parameters; such as work quality, argumentation, 
coordination, collaboration, and cooperation. In the third phase of the collaboration 
management cycle, the system rates the collaboration between students along four 
dimensions: initiative, creativity, elaboration, and conformity. These attributes, 
along with others such as the length of contributions, factor into a fuzzy inference 
procedure that rates students’ collaboration on a scale from awful to very good. The 
advisor in DEGREE elaborates on the attribute values, and offers students tips on 
improving their interaction (see Figure 5). 

MArCo (Tedesco, 2003) is a dialog-oriented system for the detection of meta-
cognitive conflicts. The system adopts a dialog game approach with a limited set of 
possible dialog moves. User utterances must be formulated in a formal language that 
enables the conversation to be mapped onto a belief-based model (BDI). The 
analysis mechanism then detects disagreements and conflicts between users’ beliefs 
and intentions. The mediator informs the group when it detects a conflict, and may 
also recommend alternative courses of action. 

The approaches taken by DEGREE and MArCo might be limited by their 
dependence on users’ ability to choose the correct contribution type (proposal, 
comment, etc.). An alternative way of obtaining this information is to have users 
select sentence openers, such as “Do you know”, or “I agree because” to begin their 
contributions. Associating sentence openers with conversational acts such as 
Request Information, Rephrase, or Agree, and requiring students to use a given set 
of phrases, allows a system to understand the basic flow of dialog without having to 
rely on Natural Language parsers. Most sentence opener approaches make use of a 



 

structured interface, comprised of organized sets of phrases. Students typically 
select a sentence opener from the interface to begin each contribution. 
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Figure 5. A snapshot of messages generated for a student in an intermediate stage of 
work, and below it, a general assessment of the group’s behavior. From Barros, B., 
and Verdejo, M.F. (2000). Analysing student interaction processes in order to 
improve collaboration. The DEGREE approach. International Journal of Artificial 
Intelligence in Education, 11, 221-241. Copyright 2000 by the International AIED 
Society. Reprinted with permission. 
 

McManus and Aiken (1995) take this approach in their Group Leader system. 
Group Leader builds upon the concept that a conversation can be understood as a 
series of conversational acts (e.g. Request, Mediate) that correspond to users’ 
intentions (Flores, Graves, Hartfield, & Winograd, 1988). Like Flores et al.’s 
Coordinator system, Group Leader uses state transition matrices to define what 
conversation acts should appropriately follow other acts; however unlike the 
Coordinator, users are not restricted to using certain acts based on the system’s 
beliefs. Group Leader compares sequences of students’ conversation acts to those 
recommended in four finite state machines developed specifically to monitor 
discussions about comments, requests, promises, and debates. The system analyzes 
the conversation act sequences, and provides feedback on the students’ trust, 
leadership, creative controversy, and communication skills, originally defined by 
Johnson, Johnson, and Holubec (1990).  

The success of McManus and Aiken’s Group Leader (1995) began a 
proliferation of systems that take a finite state machine approach to modeling and 
advising collaborative learners. One year later, Inaba and Okamoto (1996) 
introduced iDCLE, a system that provides advice to students learning to 



 

collaboratively prove geometry theorems. This system infers the state of interaction 
by comparing the sequences of conversation acts to four possible finite state 
machines. The finite state machines describe the mode of interaction; for example 
the model describing the query mode is used when the group is attempting to 
address a member’s question, and the model describing the confirmation mode is 
used when the students are justifying or confirming an idea. Advice is generated 
through consideration of the dialog state and the roles of each group member. For 
example, iDCLE considers whether or not a group member is leading the discussion, 
or asking an abundance of questions, and tailors the advice appropriately. 

OXEnTCHÊ (Vieira, Teixeira, Timóteo, Tedesco, & Barros, 2004) is an example 
of a sentence opener-based tool integrated with an automatic dialogue classifier that 
analyses on-line interaction and provides just-in-time feedback to both teachers and 
learners. During the first phase of the collaboration management cycle, the system 
collects the student chat logs, codified with sentence openers. During the second 
phase, the dialog classifier uses neural networks trained to identify productive and 
non-productive dialogs regarding a number of collaborative skills, (although the 
authors do not specify how the system computes these collaborative skills). The 
system also identifies off-task interactions by comparing the input with a domain 
ontology. During the third phase of the cycle, the system compares the students’ 
interaction to its models and offers two types of feedback: teachers receive reports 
on both the group and individual students, and students may view the analysis of 
their contributions to the chat. The authors evaluated these reports in four 
experimental settings, obtaining positive results overall. 

OXEnTCHÊ also includes a chatterbot (natural language agent) that acts as an 
advising system, attempting to maintain the dialogue focus. It interrupts the group 
chat when it detects an unproductive change of subject, and also attempts to 
motivate less participative students to engage in conversation. As of this writing, the 
chatterbot’s functionality has not been formally evaluated, and further work is 
planned in order to improve its efficiency. Overall, OXEnTCHÊ goes further than 
many systems regarding data analysis and feedback, and also takes into account the 
needs of different types of users (teachers and students). The main limitations of the 
approach include the reliance on sentence openers and an unclear theoretical 
justification for the chosen collaboration skills. 

Sentence opener approaches have gained popularity over the past 10 years 
because of their ease-of-use, and ability to efficiently reduce the amount of the 
amount of natural language understanding for which the system would otherwise be 
responsible. They are however not without their limitations. Because of the 
dialogical constraints of sentence openers, students may not always use them as 
expected. For example, it is possible to use the sentence opener, “I think”, to say, “I 
think I disagree”. The degree to which this will happen is largely dependent on the 
degree to which the set of sentence openers enable the students to express 
themselves, and the ability for them to find the phrases they need on the interface. 
Training students how to use the sentence openers available on the interface in 
contextualized situations, and running iterative human-computer interaction studies 
can both make a difference (Soller, 2004). 

Because each sentence opener is also typically associated with only one 
intention (i.e. Suggest or Justify), a sentence opener-based coding scheme is only 



 

able to account for the primary intention. It cannot capture complex intentions, such 
as a Discuss/Agree act that both expresses agreement and doubt. We do not yet 
know to what degree a more complicated coding scheme might improve the ability 
to which the system can support various collaborative learning activities. Text 
mining methods that learn to automatically classify contributions into categories 
might help to address this problem, although approaches in this direction are also 
limited in their ability to understand natural human conversation (Linton, Goodman, 
Gaimari, Zarrella, & Ross, 2003; Padilha, Almeida, & Alves, 2004). Moreover, text 
mining techniques must be adapted to each learning domain, presenting an obstacle 
for their general use.  
 
Systems that Advise Social and Task Oriented Aspects of Interaction 
 
Dillenbourg (1999) describes the so-called “Berlin Wall” of collaborative learning 
as the notion of trying to understand and support the social aspects of collaboration 
separately from the task elements. Students cannot effectively learn how to 
collaborate outside the context of a concrete task, and cannot effectively learn how 
to perform the task collaboratively without attention to social and socio-cognitive 
factors influencing the group. A few systems have taken advantage of this idea by 
monitoring and analyzing students’ task-based and social actions together in order to 
gain a better understanding of the collaboration as a whole.  

Our last group of collaborative learning systems interacts with students via a set 
of specialized computer agents that address both social and task-oriented aspects of 
group learning. HabiPro (Vizcaino, 2001) is a collaborative programming 
environment that uses two databases – one containing words related to the domain 
(computer programming), and other containing potential off-topic terms. The system 
includes a simulated peer agent that detects off-topic words in the students’ 
utterances, and intervenes as necessary to bring them back on task (see Figure 6).  

HabiPro also includes a group model, and an interaction model, which contains 
a set of “patterns” describing possible characteristics of group interaction (e.g. the 
group prefers to look at the solution without seeing an explanation). During the 
collaborative activity, the simulated peer uses the group model to compare the 
current state of interaction to these patterns, and proposes actions such as 
withholding solutions until the students have tried the problem. 

GRACILE (Ayala & Yano, 1998) is an agent-based system designed to help 
students learn Japanese. GRACILE’s agents assess the progress of individual 
learners, propose new learning tasks based on the learning needs of the group, and 
cooperate to maximize the number of situations in which students may effectively 
learn from one another. In order to reach these goals, GRACILE maintains user 
models for each of the students, and forms beliefs about potential group learning 
opportunities. Group learning opportunities are defined as those that extend an 
individual’s zone of proximal development (Vygotsky, 1978), which describes the 
potential development of a learner with the assistance of others. Following this idea, 
GRACILE agents assess learners’ current and potential development levels, and 
propose learning tasks that optimize collaborative learning opportunities.  

 



 

 
Figure 6. The simulated peer in HabiPro detects that the students are discussing the 
football match, and attempts to refocus them on the problem solving. Obtained by 
email from Aurora Vizcaino (avizcaino@inf-cr.uclm.es). Printed with permission. 

 
The models of interaction employed by LeCS (Rosatelli & Self, 2002) and 

COLER (Constantino-González, Suthers, & Escamilla de los Santos, 2002) also 
integrate task and social aspects of interaction. LeCS is similar to GRACILE in that 
a set of computer agents guide students through the analysis of case studies. The 
agents monitor students’ levels of participation, and track students’ progression 
through the task procedure, while addressing students’ misunderstandings and 
ensuring group coordination.  

COLER (Constantino-González, Suthers, & Escamilla de los Santos, 2002) 
uses decision trees to coach students collaboratively learning Entity-Relationship 
(ER) modeling, a formalism for conceptual database design (see Figure 7). A coach 
monitors the personal and shared workspaces in order to detect opportunities for 
group-learning interactions. COLER draws on the socio-cognitive conflict theory 
(Doise & Mugny, 1984) which states that disagreements can be an opportunity for 
learning when students detect them and try to resolve them through reflection and 
elaboration. Constantino-González et al. define three types of coaching 
opportunities: when there are problems in the quality of the ER group diagram, 
differences between individual and group ER diagrams, and differences in the levels 
of participation of the learners. COLER generates a set of potential advisory 
comments for a given situation using decision trees and chooses one of them 
according to a control strategy. 
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Figure 7. The COLER Workspace 
[Available: http://lilt.ics.hawaii.edu/lilt/images/COLER.gif] 

 
Goodman, Linton, Gaimari, Hitzeman, Ross, and Zarrella (in press) present a 

specific example in which machine learning methods are used to train an agent-
based system to recognize when students are experiencing trouble related to specific 
aspects of interaction. Their approach involves training neural networks with 
segmented, coded (speech act) student dialog and surface features (e.g. question 
marks and keywords). Goodman et al.’s research reminds us that choosing the 
appropriate technique for data analysis is critical, and depends on the conditions 
under which these techniques are or are not expected to be successful. In the next 
section, we summarize the various systems and methods that we have encountered 
in this article along the paths of the collaboration management cycle. 
 
 
DISCUSSION 
 
In the first half of this paper, we developed the collaboration management cycle 
from a system’s perspective. This cycle describes the actions a system can take to 
support online collaborative learning interaction. In the second half of this paper, we 
reviewed an array of systems that instantiate the stages in this model: mirroring, 
monitoring, and advising.  

Mirroring systems record and reflect input data, while monitoring and advising 
systems process this input data to obtain a higher-level representation which is then 
either displayed to the collaborators (in the case of indicator-based systems), or used 
by the system or human facilitators (in the case of advising systems). This higher-
level, derived representation may be quantitative or qualitative in nature. A 
quantitative derivation process might entail counting, for instance, the number of 
dialog or workspace actions a user has taken. A qualitative derivation process 



 

requires taking relational information into account, such as interdependencies 
between actions, or between actions and the application context. Tables 1-3 
summarize the systems we have reviewed in this paper by the type of interaction 
data they assimilate (Input data), the format of their higher-level (Output) data 
models, and the way in which they attempt to achieve or maintain productive 
collaboration (Expected function). 

In some cases, systems that monitor the state of interaction are not all that 
different from systems that provide advice. For example, suggesting that a student 
participate more does not require much more computation than displaying students’ 
participation statistics; moreover both approaches may have the same effect. These 
systems begin to differ when the knowledge behind the indicators requires a great 
enough level of inferencing to warrant having a coach analyze the data to scaffold 
the learning process. 

 
 

Table 1. A summary of mirroring systems that support collaborative learning 

System Input data Output Expected function 
Groupkit, Gutwin 
(1995) 

Shared workspace 
actions (window level)  

Other users’ interface 
actions 

On-line workspace 
awareness 

Plaisant et al. 
(1999)  

Problem-solving 
actions  

Actions on a timeline Off-line analysis of the 
activity 

Chat Circles 
(Donath, 
Karahalios & 
Viegas,1999) 

Dialog in an 
unstructured virtual 
space 

Graphical 
visualization 

On-line social awareness  

ART/SAILE 
 (Goodman et. al, 
2001) 

Shared workspace 
actions  (window-
level) 

Reproduction of the 
collaboration at 
different granularities 

Off-line review of the 
collaborative process 

SLA (Wasson, 
2000) 

Shared workspace 
actions (web-server 
level)  

Users’ connection 
times to the server  

Off-line analysis of the 
possibilities of 
collaboration work  

PENCACOLAS 
(Blasco et al., 
2001) 

Shared workspace 
actions (low-level 
events) 

Video-like 
reproduction of the 
collaboration 

Off-line review of the 
collaborative process for 
evaluation and self-
evaluation purposes   

 



 

 

Table 2. A summary of metacognitive systems that support collaborative learning  

System Input data Derivation 
mechanism Derived data Output Expected 

function 
Sharlock II, 
Ogata et al. 
(2000) 

User profile, 
web page 
access 

Counting, 
similarity 
indices 

Shared 
knowledge 
awareness 
map 

Graphical 
visualization 

Participants: 
Provide 
knowledge 
awareness 

SAMSA, 
(Martínez-
Monés et al., 
2003) 

Shared 
workspace 
actions 

Social 
network 
analysis 

Network 
density and 
actors’ degree 
of centrality 

Graphical 
visualization 

Analyze  
participation 
structure 

Jermann 
(2004) 

Chat and 
problem-
solving 
actions 

Counting Participation  Graphical 
visualization 

Teachers: 
Analyze 
interaction  
Students: Self-
regulation 

Talavera and 
Gaudioso 
(2004) 

Actions on a 
forum  

Data mining 
and machine 
learning 

Clusters of 
students with 
similar 
characteristics 

Clusters of 
students 

Identify 
student 
profiles and 
form groups 

Nurmela 
(1999) 

Actions on a 
shared 
workspace 

Social 
network 
analysis 

Actors’ 
degree of 
centrality 

Indexes Analyze 
participation 
structure 

Simoff (1999) Synchronous 
and 
asynchron-
ous dialog 
(forum) 

Counting and 
semi-
automatic 
content 
analysis  

Participation, 
structure of 
discussion 

Graphical 
representa-
tion (Boxes) 

Visualize the 
depth of the 
conversations 

Action-based 
Collaboration 
Analysis, 
Muehlenbrock 
(2001) 

Actions on 
graphical 
representa-
tion in 
shared 
workspaces 

Activity/plan 
recognition 

Action 
sequences, 
indicators for 
task-related 
conflicts and 
coordination 

Graphical 
representa-
tion 

Students: Self-
regulation, 
Feedback to 
facilitator 

EPSILON, 
Soller & 
Lesgold 
(2003) 

Shared 
workspace 
actions, 
tagged 
dialog 

Hidden 
Markov 
Models 

Effectiveness 
of  knowledge 
sharing 

Textual 
assessment 
& 
explanation 

Feedback to 
facilitator, 
Input to 
computer-
based coach 

 



 

 

Table 3. A summary of guiding systems that support collaborative learning  

System Input data Derivation 
mechanism Derived data Output Expected 

function 
Group 
Leader,  
McManus 
and Aiken 
(1995) 

Tagged 
dialog 

Finite state 
machines 

Trust, 
leadership, 
communica-
tion 

Coach On-line textual 
feedback to 
students on 
collaborative 
skills 

iDCLE, 
Inaba and 
Okamoto 
(1996) 

Tagged 
dialog 

Finite state 
machines 

Roles Coach On-line feedback 
to  students  

DEGREE, 
Barros and 
Verdejo’s 
(2000) 

Tagged 
dialog 

Fuzzy 
inference 
and pattern 
matching 

Initiative, 
creativity, 
elaboration, 
conformity 

Coach 
and 
conversa-
tion 
analysis 
display 

On-line feedback 
on “initiative, 
creativity, 
elaboration, & 
conformity” 

MarCo 
(Tedesco, 
2003) 

Dialog in 
formal 
language 

BDI 
modeling 

Meta-
cognitive 
conflicts 

Conflict 
mediator 

On-line feedback 
on alternatives 
when conflicts 
are detected 

GRACILE, 
Ayala and 
Yano 
(1998) 

Workspace 
actions, 
learner 
models 

Rule-based 
expert 
system 

Student 
helpers & 
learning tasks 

Coaching 
agents 

On-line proposals 
of group learning 
tasks 

LeCS 
(Rosatelli & 
Self, 2002) 

Shared 
workspace 
actions 

Case tree Participation, 
group 
coordination 

Coaching 
agents 

On-line feedback 
of 
misunderstandings 
& coordination 

COLER, 
(Constantin
o-González 
et al., 2002) 

Shared and 
private 
actions, 
dialog 

Decision 
trees 

Participation, 
agreement 
with group 
procedure 

Coach  On-line feedback 
of participation & 
workspace 
differences 

OXEnTCHE 
Vieira, 
Teixeira, 
Timóteo, 
Tedesco, & 
Barros. 
(2004) 

Tagged 
dialog 

Neural 
networks, 
comparison 
with 
domain 
ontology 

Productive 
and non-
productive 
dialogs 
sequences 

Chatterbot On-line feedback 
of conversation 
productivity 

HabiPro, 
Vizcaino 
(2001) 

Shared 
workspace 
actions, 
student 
preferences, 
dialog 

Matching 
group 
interaction 
“patterns”, 
content 
analysis 

Ideal 
participation, 
motivation, 
existence of 
off-topic 
conversations 

Coach Detection of off-
topic interaction 
& on-line 
guidance to  
students 

 



 

While reflecting on our review of systems to support collaborative learning, we 
noticed that there is a great diversity of approaches, and asked the question “Why?” 
Such diversity might be explained by the fact that each system draws upon a 
different theoretical perspective. But even systems that share the same view of 
learning employ different strategies for pedagogical intervention. For example, 
Table 1 shows that some systems focus on modeling features of the individual 
learners (learner models) in order to detect potential situations for productive 
interactions, while other systems that are based on similar theoretical principals, 
focus on analyzing collaborative interaction. GRACILE, a system that was inspired 
by Vygostky’s zones of proximal development is an example of the first approach, 
whereas COLER, a system inspired by theories of socio-cognitive conflict, takes the 
second approach. Systems that characterize the second approach often attempt to 
understand how different patterns of interaction promote various aspects of 
collaborative learning such as knowledge sharing and construction (e.g. EPSILON, 
MarCo), or conversation (DEGREE). Some are more focused toward the social 
aspects of learning (e.g. HabiPro), while others study the structural properties of 
interactions within groups, such as the evolution of social roles (Salomon & Perkins, 
98).  

Because the systems described here are research prototypes, which tend to 
focus on a specific research question, they should be viewed from the perspective of 
that question. The collaboration management cycle, described at the beginning of 
this article, is intended to describe a way of understanding the capabilities available 
today for computationally supporting collaborative learning, rather than a way of 
classifying and comparing these systems. Developing a new system to support 
several different aspects of interaction might involve the application of research 
ideas from different systems, perhaps by way of re-implementation. 

In this review article, we have attempted to provide an overview of the current 
technological capabilities, with the intention of laying the groundwork for further 
research that addresses the question of which technological solutions are appropriate 
for which learning situations. We now conclude by motivating this further research.  
 
 
FUTURE WORK 
 
The concept of supporting (as opposed to enabling) peer-to-peer interaction in 
computer-supported collaborative learning systems is still in its infancy (Jermann, 
Soller, & Lesgold, 2004). We have not yet seen full-scale evaluations of the types of 
systems we have covered here. The evaluations that were conducted for many of 
these systems, if at all, were done so under closely controlled laboratory conditions. 
Laboratory studies are critical for developing an understanding of the various 
conditions that affect learning, and make sense as the first step in the assessment and 
redesign of the technology. If our objective is to assist students and teachers during 
real, curriculum-based learning activities, we must also understand how well our 
laboratory findings apply to natural classroom situations. This can only be done by 
developing and deploying robust technology in physical and virtual classrooms, and 
performing large scale evaluations. The feedback obtained from such evaluations 
should enhance the evaluation feedback loop in the collaboration management cycle, 



 

and further our understanding of which technological solutions help students, and 
which do not. 

More studies are needed that test the utility of various strategies for 
computationally supporting online collaborative learning. It is probable that certain 
strategies are more beneficial than other strategies under various conditions, and for 
different domains. There is hence an important opportunity for needs analysis 
studies to understand which types of systems (i.e. mirroring, monitoring, or 
advising) are useful under various constraints (i.e. group size and ability, 
environment, task characteristics, availability of human instructors). Then, further 
analyses of computer-mediated interaction in parallel with a finer-grained needs 
analysis may help to determine which behavioral and pedagogical factors are 
influenced in what ways by the various technological features. Only then may we be 
in a position to recommend specific technologies for fostering established learning 
activities. 

In some cases, a combination of technologies may be most practical. For 
example, analyzing visual indicators may increase students’ cognitive load; 
moreover, some students may misinterpret the indicators. But, the interaction 
management skills students learn as they attempt to interpret and act upon these 
indicator values might transfer well to other situations. One possibility is to both 
display indicator values to students, and provide advice based on a deeper 
computational analysis of the data that was used to generate the indicators.  

Many of the approaches presented in this article address effects with 
technology, rather than effects of technology (Kolodner & Guzdial, 1996; Salomon, 
Perkins & Globerson, 1991). Effects with technology refer to the changes in the 
group dynamics that are triggered by software tools, whereas effects of technology 
refer to the outcome of the collaboration, both for the individual and the collective 
group. These outcomes include the skills that students acquire or improve, and 
whether or not these skills might transfer to a new learning situation or group 
experience. More research is needed to determine how visual feedback through 
mirroring and metacognitive tools, or advice from guiding systems can lead to 
learning gains. In designing support for the collaborative learning process, we must 
still not forget to assess the product. 

The techniques and systems described throughout this article use different 
standards for diagnosis. How might we develop modular, reusable solutions that 
would allow researchers to share and reuse tools in different CSCL environments? 
Instead of proposing new data formats and interfaces, would it be reasonable to 
tackle this problem in parallel with current efforts toward introducing collaboration 
aspects in e-learning standards? In the future, we could aim to develop reusable 
models of collaborative processes, based on modular architectures, that can provide 
the computational, theoretical, and pedagogical foundations for guiding tools, while 
encouraging metacognitive reflection by both teachers and students. Such models 
might even be used in teacher training, to help explain breakdowns in student 
interaction, or the dynamics of productive collaborative learning interaction. 

Knowledge about how students interact in a computer-mediated environment is 
useful to a system only if it knows when and how to apply this knowledge to 
recognize specific situations that call for intervention. Classroom teachers learn to 
analyze and assess student interaction through close observance of group interaction, 



 

trial and error, and experience. Developing a system to analyze group conversation, 
however, poses its own challenges. For example, how do we go about calibrating a 
set of indicators that should represent a model of desired interaction, and what 
learning theories or experimental results allow for this calibration? This leads us to 
the broader issue of how to quantify and translate well-known theories from the 
learning and cognitive sciences into computational models that can be used to 
diagnose student interaction. For example, how might the principle relating 
elaborated explanations to learning gains (Webb, 1992) be quantified as a set of 
calibrated indicators that can be computed on the fly during computer-mediated 
interaction?  A “sufficiently elaborated explanation” might be relatively long, and 
refer to several domain concepts, making computer diagnosis difficult. The 
theoretical and experimental foundations for our models must be strengthened, 
justified, and assessed. Focused research in computational modeling of peer 
interaction in context may help in making the transition from understanding how to 
mediate learning groups to understanding how to train a system to assist in 
mediating learning groups more effectively. 
 
 
ACKNOWLEDGMENTS 
 
Special thanks to all the presenters and participants in the 1st and 2nd International 
Workshops on Designing Computational Models of Collaborative Learning 
Interaction at CSCL 2002 and ITS 2004, who have helped to shape and motivate 
this research. Thanks also to the anonymous reviewers for their constructive 
comments. This work was supported in part by the U.S Department of Education, 
grant R303A980192, the European Community Project iClass, contract IST-507922, 
the European Commission Project EAC/61/03/GR009, and the Spanish Ministry of 
Science and Technology Project TIC 2002-04258-C03-02. The views presented in 
this article represent those of the authors alone. 
 
 
REFERENCES 
 

Avouris, N., Dimitracopoulou, A., & Komis, V. (2003). On analysis of collaborative 
problem solving: An object oriented approach. Computers in Human Behavior, 19(2), 
147-167. 

Avouris, N., Komis, V., Margaritis, M., & Fiotakis, G. (2004). An environment for studying 
collaborative learning activities. Educational Technology & Society, 7(2), 34-41. 

Ayala, G, & Yano, Y (1998). A collaborative learning environment based on intelligent 
agents. Expert Systems with Applications, 14, 129-137. 

Barros, B., & Verdejo, M.F. (2000). Analysing student interaction processes in order to 
improve collaboration. The DEGREE approach. International Journal of Artificial 
Intelligence in Education, 11, 221-241. 



 

Blasco, M., Barrio, J., Dimitriadis, Y., Osuna, C., González, O., Verdú, M., & Terán, D 
(1999). From co-operative learning to the virtual class. An experience in composition 
techniques. ultiBASE journal. Available online: 
http://ultibase.rmit.edu.au/Articles/dec99/blasco1.htm. 

Burton, M. (1998). Computer modelling of dialogue roles in collaborative learning activities. 
Unpublished doctoral dissertation, Computer Based Learning Unit, The University of 
Leeds. 

Constantino-González, M. A., Suthers, D. D., & Escamilla de los Santos, J. G. (2002). 
Coaching web-based collaborative learning based on problem solution differences and 
participation. International Journal of Artificial Intelligence in Education, 13, 263.299. 

Dillenbourg, P. (1999). Introduction; What do you mean by Collaborative Learning? In 
Dillenbourg, P. (Ed.), Collaborative Learning. Cognitive and Computational 
Approaches, Elsevier Science Ltd., Oxford, U.K. 1-19. 

Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning 
with instructional design. In P. A. Kirschner (Ed.), Three worlds of CSCL. Can we 
support CSCL (pp. 61-91). Heerlen, Open Universiteit Nederland. 

Dillenbourg, P., Baker, M., Blaye, A., & O’Malley, C. (1995). The evolution of research on 
collaborative learning. In H. Spada and P. Reinmann (Eds.), Learning in Humans and 
Machines, Elsevier Science. 

Dimitracopoulou, A., & Komis, V. (2004). Design principles for an open environment, 
supporting learning process participants on modelling and collaboration. In C. 
Constantinou, Z. Zacharias & P. Kommers (Guest Editors), Int. Journal of Continuing 
Engineering Education and Lifelong Learning, Special Issue on the Role of Information 
and Communication Technologies in Science Teaching and Learning. 

Doise, W., & Mugny, G. (1984). The social development of the intellect. Oxford: Pergamon 
Press.  

Donath, J., Karahalios, K., & Viégas, F. (1999). Visualizing conversation. Journal of 
Computer-Mediated Communication, 4(4). 

Fesakis, G., Petrou, A., & Dimitracopoulou, A. (2004). Collaboration Activity Function: An 
interaction analysis tool for Computer Supported Collaborative Learning activities. 
Proceedings of the 4th IEEE International Conference on Advanced Learning 
Technologies (ICALT 2004), 196-200. 

Flores, F., Graves, M., Hartfield, B., & Winograd, T. (1988). Computer systems and the 
design of organizational interaction. ACM Transactions on Office Information Systems, 
6(2), 153-172. 

Gassner, K., Jansen, M., Harrer, A., Herrmann, K., & Hoppe, U. (2003). Analysis methods 
for collaborative models and activities. In B. Wasson, S. Ludvigsen, & U. Hoppe (Eds.) 
Designing for Change in Networked Learning Environments: Proceedings of the 
International Conference on Computer Support for Collaborative Learning 2003. (pp. 
369-377). Dordrecht, The Netherlands: Kluwer Academic Publishers. 

Gassner, K. (2004). Using patterns to reveal e-mail communication structures. J. Mostow, & 
P. Tedesco Designing Computational Models of Collaborative Learning Interaction, 
workshop at. ITS 2004 (pp. 77-82). Maceió, Brazil. 



 

Gerosa, M. A. , Pimentel, M. G.,  Fuks, H., & Lucena, C. (2004). Analyzing discourse 
structure to coordinate educational forums. Proceedings of the 7th International 
Conference on Intelligent Tutoring Systems, ITS 2004.  (pp. 262-272). Berlin 
Heilderberg: Springer. 

Goodman, B., Geier, M., Haverty, L., Linton, F., & McCready, R. (2001). A framework for 
asynchronous collaborative learning and problem solving. Proceedings of AIED’01, 10th 
International Conference on Artificial Intelligence in Education, San Antonio, Texas, 
188-199. 

Goodman, B., Linton, F., Gaimari, R., Hitzeman, J., Ross, H., & Zarrella, G. (in press). 
Using dialogue features to predict trouble during collaborative learning. User Modeling 
and User-Adapted Interaction: The Journal of Personalization Research. 

Gutwin, C., Stark, G., & Greenberg, S. (1995) Support for workspace awareness in 
educational groupware. Proceedings of CSCL’95. The First International Conference on 
Computer Support for Collaborative Learning, 147-156. 

Hutchins, E. (1995). How a cockpit remembers its speeds. Cognitive Science, 19, 265-288. 

Inaba, A., & Okamoto, T. (1996). Development of the intelligent discussion support system 
for collaborative learning. Proceedings of ED-TELECOM ’96, Boston, MA, 137-142. 

Jermann, P. (2004). Computer Support for Interaction Regulation in Collaborative Problem-
Solving. Doctoral Dissertation, University of Geneva.  

Jermann, P., Soller, A., & Lesgold, A. (2004). Computer software support for CSCL. In P. 
Dillenbourg (Series Ed.) & J. W. Strijbos, P. A. Kirschner & R. L. Martens (Vol. Eds.), 
Computer-supported collaborative learning: Vol 3. What we know about CSCL ... and 
implementing it in higher education (pp. 141-166). Boston, MA: Kluwer Academic 
Publishers. 

Jermann, P., Soller, A., & Muehlenbrock, M. (2001). From Mirroring to Guiding: A Review 
of State of the Art Technology for Supporting Collaborative Learning. Proceedings of the 
First European Conference on Computer-Supported Collaborative Learning, Maastricht, 
The Netherlands, 324-331. 

Johnson, D., Johnson, R., & Holubec, E. J. (1990). Circles of learning: Cooperation in the 
classroom (3rd ed.). Edina, MN: Interaction Book Company. 

Kolodner, J., & Guzdial, M. (1996). Effects with and of CSCL: Tracking learning in a new 
paradigm. In T. Koschmann (Ed.) CSCL: Theory and Practice of an Emerging Paradigm 
(pp. 307-320). Mahwah NJ: Lawrence Erlbaum Associates. 

Linton, F., Goodman, B., Gaimari, R., Zarrella, J., & Ross, H. (2003). Student modeling for 
an intelligent agent in a collaborative learning environment. Proceedings of the 9th 
International Conference on User Modeling (UM ’03), Johnstown, PA. 

Looi, C.-K. (2001). Supporting conversations and learning in online chat. Proceedings of 
AIED’01, 10th International Conference on Artificial Intelligence in Education, San 
Antonio, Texas, 142-153. 

Martínez-Monés, A., Dimitriadis, Y., Rubia-Avi, B., Gómez-Sánchez, E., & Fuente-
Redondo, P. (2003). Combining qualitative evaluation and social network analysis for the 
study of classroom social interactions. Computers and Education, 41(4 ), 353-368. 



 

Martínez-Monés, A., Guerrero, L., & Collazos, C. (2004). A model and a pattern for the 
collection of collaborative action in CSCL systems. In J. Mostow, & P. Tedesco (Eds.) 
ITS 2004 Workshop on Designing Computational Models of Collaborative Learning 
Interaction, (pp. 31-36). Maceió, Brazil. 

McManus, M. & Aiken, R. (1995). Monitoring computer-based problem solving. Journal of 
Artificial Intelligence in Education, 6(4), 307-336. 

Muehlenbrock, M. (2001). Action-based Collaboration Analysis for Group Learning. 
Amsterdam: IOS Press. 

Muehlenbrock, M., & Hoppe, U. (1999). Computer supported interaction analysis of group 
problem solving. In C. Hoadley & J. Roschelle (Eds.), Proceedings of the Conference on 
Computer Supported Collaborative Learning CSCL-99 (pages 398-405). Palo Alto, CA, 
December. Mahwah, NJ: Erbaum. 

Neale, D. & Carroll, J. (1999). Multi-faceted evaluation of complex, distributed activities. 
Proceedings of the Computer Support for Collaborative Learning (CSCL) 1999 
Conference. Palo Alto, CA: Stanford University,  425-433. 

Nurmela, K.A., Lehtinen, E., & Palonen, T. (1999). Evaluating CSCL log files by Social 
Network Analysis. In C. M. Hoadley and J. Roschelle (Eds.), Proceedings of the 
Computer Support for Collaborative Learning (CSCL) 1999 Conference. Palo Alto, CA: 
Stanford University, 434-444. 

Ogata, H., Matsuura, K., & Yano, Y. (2000). Active Knowledge Awareness Map: 
Visualizing learners activities in a web based CSCL environment. International 
Workshop on New Technologies in Collaborative Learning, Tokushima, Japan. 

Padilha, T. P. P., Almeida, L. M., & Alves, J. B. M. (2004). Mining techniques for models of 
collaborative learning. In J. Mostow, & P. Tedesco (Eds.) Designing Computational 
Models of Collaborative Learning Interaction, workshop at. ITS 2004 (pp. 89-94). 
Maceió, Brazil. 

Plaisant, C., Rose, A., Rubloff, G. Salter, R., & Shneiderman, B. (1999). The design of 
history mechanisms and their use in collaborative educational simulations. Proceedings 
of the Computer Support for Collaborative Learning (CSCL) 1999 Conference., Palo 
Alto, CA: Stanford University, 348-359. 

Rabiner, L. (1989). A tutorial on Hidden Markov Models and selected applications in speech 
recognition. Proceedings of the IEEE, 77(2), 257-286. 

Robertson, R. J. & Powers, W.T. (1990). Introduction to modern psychology: The control-
theory view. Gravel Switch, KY: Control Systems Group. 

Rosatelli, M., & Self, J. (2002). A collaborative case study system for distance learning. 
International Journal of Artificial Intelligence in Education, 12, 1-25. 

Roseman, M., & Greenberg, S. (1992). GroupKit: A groupware toolkit for building real-time 
conferencing applications. Proceedings of the ACM CSCW Conference on Computer 
Supported Cooperative Work, Toronto, Canada, 43-50. 

Salomon, G. (1993) (Ed.). Distributed cognitions. Psychological and educational 
considerations. Cambridge: University Press. 



 

Salomon G., & Perkins, D.N. (1998). Individual and social aspects of learning. Review of 
Research in Education, 23, 1-24. 

Salomon, G., Perkins, D., & Globerson, T. (1991). Partners in cognition: Extending human 
intelligence with intelligent technologies. Educational Researcher, 20(4), 2-9. 

Simoff, S. (1999). Monitoring and evaluation in collaborative learning environments. 
Proceedings of the Computer Support for Collaborative Learning (CSCL) 1999 
Conference, Palo Alto, CA: Stanford University. 

Soller, A. (2004). Computational modeling and analysis of knowledge sharing in 
collaborative distance learning. User Modeling and User-Adapted Interaction: The 
Journal of Personalization Research, 14 (4), 351-381. 

Soller, A., Jermann, P., Muehlenbrock, M., & Martinez-Monez, A. (2004). Proceedings of 
the 2nd International Workshop on Designing Computational Models of Collaborative 
Learning Interaction, ITS 2004, Maceio, Brazil. 

Soller, A., & Lesgold, A. (2003). A computational approach to analyzing online knowledge 
sharing interaction. Proceedings of Artificial Intelligence in Education 2003, Sydney, 
Australia, 253-260. 

Talavera, L., & Gaudioso, E. (2004). Mining student data to characterize similar behaviour 
groups in unstructured collaboration spaces. Proceedings of the Artificial Intelligence in 
Computer Supported Collaborative Learning Workshop at the ECAI 2004 . Valencia, 
Spain. 

Teasley, S., & Roschelle, J. (1993). Constructing a joint problem space. In S. Lajoie and S. 
Derry (Eds.), Computers as cognitive tools (pp. 229-257). Hillsdale, NJ: Lawrence 
Erlbaum. 

Tedesco, P. (2003). MArCo: Building an artificial conflict mediator to support group 
planning interactions. International Journal of Artificial Intelligence in Education, 13, 
117-155. 

Vieira, A. C., Teixeira, L., Timóteo, A., Tedesco, P., Barros, F. A. (2004). Analyzing on-line 
collaborative dialogues: The OXEnTCHÊ-Chat. In J. C. Lester, R. M. Vicari, F. 
Paraguaçu (Eds.): The 7th International Conference on Intelligent Tutoring Systems, ITS 
2004, Maceiò, Alagoas, Brazil, 315-324. 

Vizcaíno, A. (2001). Negative situations in collaborative environments: Can a simulated 
student avoid them? Proceedings of AIED’01, 10th International Conference on 
Artificial Intelligence in Education, San Antonio, Texas, 610-612. 

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. 
London: Harvard University Press. 

Wasserman, S., & Faust, K. (1996). Social Network Analysis: Methods and Applications. 
Cambridge: Cambridge University Press. 

Wasson, B., Guribye, F., & Mørch, A. (2000). Project DoCTA: Design and use of 
collaborative telelearning artifacts. Technical report, Pedagogisk Informasjonsvitenskap, 
Universitetet i Bergen, Bergen, Norway. 



 

Webb, N. (1992). Testing a theoretical model of student interaction and learning in small 
groups. In R. Hertz-Lazarowitz and N. Miller (Eds.), Interaction in Cooperative Groups: 
The Theoretical Anatomy of Group Learning (pp. 102-119). New York: Cambridge 
University Press. 

Zumbach, J., Mühlenbrock, M., Jansen, M., Reimann, P., & Hoppe, U. (2002). Multi-
dimensional tracking in virtual learning teams: An exploratory study. Proceedings of the 
Conference on Computer Supported Collaborative Learning CSCL-2002, Boulder, CO, 
650-651. 


