
SUPPORTING THE EVOLUTION OF DESIGN ARTIFACTS
WITH REPRESENTATIONS OF CONTEXT AND INTENT

Gerhard Fischer-l, Kumiyo Nakakoji112 and Jonathan Ostwaldl

lCenter for LifeLong Learning and Design (L3D)
Department of Computer Science and Institute of Cognitive Science

University of Colorado
Boulder Colorado 80309-0430, USA

2Software Engineering Laboratory
Software Research Associates, Inc.

1 - 1 - 1 Hirakawa-cho, Chiyoda-ku, Tokyo 102, Japan

tel: (303) 492-75 14 fax: (303) 492-2844
E-mail: { gerhard, kumiyo, ostwald} @cs.colorado.edu

ABSTRACT
The design of complex artifacts is essentially an evolu-
tionary process that requires collaboration among
stakeholders. Domain-oriented design environments
(DODEs) support the evolution of artifacts both by in-
dividual designers and by designers participating in long-
term, indirect collaboration. DODEs provide represen-
tations for generic and specific levels of context. This con-
text supports individual designers by making the infor-
mation space relevant to the current design intent, and long-
term collaboration among designers by allowing them to
ground their communication around design artifacts. We
demonstrate our approach using the KID (Knowing-in-
Design) system, articulate principles for representations of
context and intent, and discuss various approaches to
represent intent and context in design environments.

KEYWORDS: domain-oriented design environments,
shared context, explicit representations for intent, com-
munication of intent, evolution of design artifacts,
knowledge-based information delivery, long-term indirect
collaboration

1. Introduction
The design of complex artifacts is essentially a collabora-
tive and ongoing process. The need for collaboration stems
from the fact that the knowledge required to understand and
solve problems spans many fields and is distributed amono

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are nol made or distributed for profit or commercial advantage, the copy-
right notlcc, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
DIS 95 Ann Arbor MI USA @ 1995 ACM 0-89791-673-5/95/Og..S3.50

many stakeholders’ [10, 261. The need for ongoing design
stems from the fact that complex design problems are ill-
structured [24], meaning that one cannot completely under-
stand design requirements before making significant steps
toward the solution. There will always remain some re-
quirements that can only be recognized when the artifact is
used [13]. Design theorists advocate iterative problem-
solving processes that emphasize communication between
designers and are grounded by design representations. For
example, Rittel [20] views design as an argumentative
process, and Schoen [2 l] sees design as a conversation with
the materials of the design.

Complexity in design arises from the need to synthesize
different perspectives on a problem, to manage large
amounts of information potentially relevant to a design
task, and to understand the design decisions that have deter-
mined the possibly long-term evolution of a designed ar-
tifact. Our approach to supporting design with computers
focuses on human-centered design support with domain-
oriented design environments (DODEs). Design cnviron-
ments are human-computer collaborative problem-solving
systems [25] that provide (1) design media and tools with
which designers can represent their design, and (2) intel-
ligent agents that support designers in using the system’s
design knowledge for understanding and reflecting upon
their emerging design artifacts. Rather than modeling the
cognitive processes ‘of designers, DODEs augment the
abilities of designers to understand, manage, and communi-
cate complexity.

This paper argues that design environments must enable the
evolution of design artifacts by supporting collaboration

‘Stakeholders of a design task include people with various roles, such as
designers, clients. and end-users. To focus our discussion on issues of
collaboration between people and computers. rather than among different
roles. we use the term “designers” to refer to stakeholders in general. and
do not distinguish among the different roles of stakeholders.

7

(a)

Shared Context

Shared’Context

Figure 1: The Shared Context and Communication of Intent in Design

People use background context to represent intent and understand the representation. If a speaker and listener have different
context, communication breakdown occurs because a listener assigns a meaning to a representation that is different from the
original meaning of the representation the speaker intended. The more context they share, the smaller the communication gap
becomes.

between designers. Design environments support collabora-
tion by serving as a media for communication. Because
design environments house the evolving artifacts, they
provide a context for communication. As representations
to commu.nicate intent accumulate in the design environ-
ment, they, in turn, contribute to the evolution of context
that supports subsequent collaboration.

In this paper, we first describe the evolution of design ar-
tifacts and the necessity of communication of design intent.
Then, we discuss how our DODEs support the communica-
tion of iment with an example scenario using the KID
(Knowing-in-Design) design environment. Section 4 dis-
cusses issues in representations for context and intent and
presents other approaches.

2. Evolution of Design Artifacts Through
Communication of Intent

This section takes a close look at the relation between the
evolution of design artifacts and the communication be-
tween collaborative designers. In particular, we look at
communication in terms of intent (the meaning behind the
message) and context (the background against which the
message is articulated and understood). In what follows, we
first describe everyday communication, then describe com-
munication in design, mediated by design environments.

In everydaly interpersonal communication, intent is often
casually articudated and understood against a rich back-
ground of shared experience and circumstances. To

8

describe the process of communication of intent, we use the
terms “speakers” and “listeners” to refer to two roles: those
who articulate their intent and those who try to understand
(assign a meaning to) the articulated representation, respec-
tively.

Speakers express their intent by implicitly using back-
ground conte:xt. Listeners, using their own context, try to
assign a meaning to the representation. Ideally, the
speaker’s intent behind the representation and the assigned
meaning by the listener should be the same. However, if the
listener uses ,B context that is different from the the one that
the speaker used (and this is true for most cases) when
interpreting the representation, mis-communication occurs.

As depicted in Figure 1, each stakeholder has a different
context, as each person has a different understanding of a
problem. Such context is vague and cannot be comple.tely
described or expressed. Communication breakdown occurs
when a speaker and a listener have little shared context
because the assigned meaning to the representation by a
listener mismatches to the original meaning of the represen-
tation that the speaker intended. As illustrated in
Figure l-(b), the more context the speaker and the listener
share (i.e., intersection), the less mismatch between the
speaker’s intent and assigned meaning by the listener.

In contrast to everyday interpersonal communication,
designers express their intentions using explicit design
representations. According to Schoen’s theory, designers
work in an alternating cycle of action and reflection [:21].
The designer acts to shape the design situation by creating

or modifying design representations, and the situation
“talks back” to the designer, revealing unanticipated con-
sequences of the design actions. In order to understand the
situation’s back-talk, the designer rejlects on the actions
and consequences, and plans the next course of action.
Thus, designers are speakers when they act on a design
representation, and listeners when they reflect on the
representation. This interaction between designers as
speakers and designers as listeners drives the evolution of
artifacts.

Complex design may span over a long period of time, and
even expert designers cannot attend to all facets of a com-
plex design task. Externally articulating a partially under-
stood design intention is equally as important as externaliz-
ing the partial solution. As Sharples has noted, making
ideas explicit “is not a matter of emptying out the mind but
of actively reconstructing it, forming new associations, and
expressing concepts in linguistic, pictorial, or any explicit
representational forms” [22]. When designers pause for
reflection, they are directing attention toward an intimate
relationship between the partially understood problem and
solution. Because intentions become context for sub-
sequent design moves, their original meaning are easily lost
if not made explicit.

Computer support for ongoing and collaborative design
must provide representations of both intent and context in
order for meaning to be communicated from speaker to
listener over time. Representations created to communicate
intent in the past can be reused as context to understand
design problems in the present. The representations that are
created to communicate intent in the present become part of
the evolving context for the future because they are at-
tached to artifacts. As part of the evolving context, these
representations support interpretation of subsequent com-
munication, which, in turn, also becomes part of the evolv-
ing context. Thus, the evolution of design artifacts is both
driven by, and supported by, communication of intent.

In summary, supporting the communication of intent in
design environments requires that (1) intent is explicitly
represented, and (2) that representations of intent are ac-
cumulated and reused as context for understanding sub-
sequent communication of intent. The next section
describes how our DODEs support this communication of
intent.

3. DODEs: Explicit Representation of Context
In our work, we have created collaborative systems named
domain-oriented design environments in support of design.
As the name suggests, DODEs are built to support design
in a specific domain, such as kitchen design or LAN
design.

DODEs are built upon a domain-independent architecture
that provides a structure for domain knowledge, and
mechanisms for delivering knowledge as it is needed to
support design. We have developed our domain-
independent architecture through numerous attempts to
create domain-oriented design environments (for details see

[3]). The architecture consists of the following five com-
ponents: (I) a construction component, (2) an argumen-
tation component, (3) a catalog of interesting design ex-
amples, (4) a specification component, and (5) a simulation
component. The individual components are linked by
knowledge-based mechanisms: a construction analyzer
(built as a critiquing system [6]), an argumentation il-
lustrator and a catalog explorer.

DODEs instantiate the architecture for a particular design
domain. A DODE instantiated to support kitchen design,
for example, contains a construction component for con-
structing a floor layout, a specification component for
specifying abstract kitchen characteristics, an argumen-
tation component containing issue-based information
relevant to kitchen design, and a catalog for storing
kitchens designed using the system. The construction and
specification components are used by the designer to ex-
press intentions, or to make design moves, for a given
design task. As the design task proceeds, the states of the
construction and specification form an explicit context that
is shared between designer and DODE.

DODEs provide feedback to designers as they design,
rather than requiring designers to construct a final product
before receiving feedback. In this way, DODEs help desig-
ners evolve designs and understand the effects of individual
design moves. The interaction between a designer and a
DODE can be seen as a conversation in which the designer
speaks by making a design move and listens to the feed-
back provided by the environment. Conversely, the DODE
listens to the designer’s design moves and speaks by
providing feedback. The history of the design process, in-
cluding the designer’s moves and the DODE’s feedback,
forms a shared and evolving context that grounds com-
munication between designer and DODE.

In what follows, we first describe how DODEs support
generic and specific levels of context, and then we describe
how DODEs use the context to support both individual and
collaborative aspects of design through communication of
intent. A demonstration of our approach using the KID sys-
tem follows.

3.1. Two Levels of Context
DODEs provide an explicit context for design at two levels:
(,l) at a generic level, the DODE is a domain-level substrate
for designing artifacts, and (2) a specific level, the context
becomes specialized according to the individual artifact be-
ing designed.

Because a DODE is tuned to support design of artifacts for
a particular domain, there is a generic context that provides
the initial basis for communication between designers and a
DODE. This generic context consists of all the domain
knowledge in the DODE at a given time. Because each
design task is in some sense unique, it is not possible to
perfectly anticipate the intentions of designers who use the
DODE. Each artifact designed using the DODE has the
potential to add to the cumulative generic context. Thus,
the generic level of context evolves as the DODE is used to
design artifacts.

9

When designers first begin a design, the DODE can inter-
pret the designers’ actions only against the generic context.
As designers construct the design, they are incrementally
representing their intentions for this artifact. As the design
progresses, the designers make more and more intent ex-
piicit, and the shared context for the specific design task
becomes more specific. Thus, the specific level of context
evolves as designers make design moves toward the design

place around design artifacts. By capturing the intentions
and priorities of past designers and associating them with
artifacts, design environments are able to locate stored ar-
tifacts and information that are relevant to the current
designer’s intention, providing a rich context for assessing
the relevance of delivered information.

of an artifact.
3.3. An Example: the Use of KID

3.2. The Use of Shared Context
The two levels of context provided by DODEs enables sup-
port for designer-computer communication, and for long-
term communication between designers:

l specific level context supports designer-computer
communication by making the system’s feedback
relevant to the current design intent, and

The KID system [151 is a design environment for creating
kitchen floor plans that substantially extends the JANUS sys-
tern [8]. Figures 2 and 3 show screen images of the
KIDSPECIFICP,TION and KIDCONSTRUCTION components of
KID. The specification component supports designers in
framing their design problem; i.e., specifying design go.als,
objectives, and criteria or constraints. The construction
component supports designers in constructing the solution
form (a floor plan) of the design artifact.

l generic level context supports long-term collabora-
tion among designers by grounding their communica-
tion around design artifacts [191.

DODEs offer great capacity for storing large volumes of
information and integrating diverse information sources,
such as solutions to previous design problems and collec-
tions of argumentation. However, access to large infor-
mation spaces creates a new problem for designers: infor-
mation overload. In situations of information overload, the
critical resource for designers is not information, but rather
the attention needed to process information. Therefore,
when presenting designers with information, the primary
concern is to present items that are relevant to the task at
hand [9].

The specif:ic context defined by the construction and
specification components allow the system to provide in-
formation relevant to a dynamic context that is shared by
the designer and the design environment. This shared con-
text enables precise intervention by the system’s
knowledge delivery mechanisms (e.g., critics [6]), reduces
annoying interruptions, and increases the relevance of in-
formation delivered to designers.

In addition to supporting individual designers to design,
DODEs support long-term indirect collaboration between
designers [5]. Long-term collaboration is required in the
design of complex and evolving artifacts, which are main-
tained and modified over a span of years. Such artifacts are
not designed from scratch but are iteratively refined. In
this sense, design artifacts are never complete but instead
are constantly evolving.

As designers use a DODE for many design tasks over a
long period of time, design artifacts as well as represen-
tations for inte.nt are accumulated in repositories of the
DODE. These repositories allow designers to collaborate
indirectly with past designers by utilizing the generic
domain-level context in the form of information and ar-
tifacts from prior designs.

In summary, in our DODEs, communication of intent takes

The following scenario illustrates how KID uses context to
support designer-computer interaction as well as long-term
indirect collaboration between designers.

A kitchen designer, Jane, specifies requirements for her
design task using KIDSPECIFICATION (Figure 2), and starts
constructing a floor plan using KIDCONSTRUCTION
(Figure 3). When she puts a dishwasher on the right side of
a double-bowl sink, critic messages appear on the screen,
one of which notifies her that she should put the dishwasher
on the lefr side of the sink (see the Message window in
Figure 3). Wondering why, she clicks on the critic message.

The corresponding argument is presented, stating that I:his
kitchen should have the dishwasher on the left side of the
sink because she specified that this kitchen is for a left-
handed cook (see Figure 2). Jane understands this sugges-
tion, but at the same time, she notices the additional ar-
gument stating that a dishwasher on the left side of a sink
may affect the resale value (see the Argumentation window
in Figure 2). Realizing that the resale value of the kitchen is
actually a very important concern, she adds this require-
ment using KIDSPECIFICATION, and leaves the dishwasher
on the right side of the sink. When she completes her
design, Jane adds it to KID’S catalog of kitchen designs.

Later, another designer, Bob, uses KID to design a kitchen.
Using KIDSPECIFICATION, Bob specifies that he would like
to design a kitchen for a left-handed cook and starts his
design. When he places the dishwasher on the right side of
the sink, the same critic rule fires, notifying him that the
dishwasher should be to the left side of the sink. He looks
at the catalog window, where KID has presented Jane’s
kitchen as an artifact relevant to his design. He notices that
Jane’s kitchen has the dishwasher to the right of the sink
(not shown). Wondering why KID presented Jane’s kitchen
as a relevant example, which also violates the critic rule,
Bob looks at the specification for her design, and sees that
for Jane’s design task, the resale value was more important
than left-handedness.

10

Kltchcn Specification

- Facts

- Personal Infornation

-Three
-Four to Six

- Do both husband and uifc uork?
-Husband Only
.Uifc Only
-Both
-Neither

- Hou many cooks usually use the
kitchen at once?

Questions I Current Soecifrcations for:

. Is the prinary cook ri9hc-handed or
left-handed?

‘Right handed
*Left hmded
.Suitchablc

- Cooking Habits

- Hou many meals are generally prepared
a day’

-Three tines
-Once

Tmc: ‘kitchen Nane: nat-kitchen

- Sire of family?
3.’ One

. Is the’prinary cook right-handed or
left-handed?

9- Left handed
. Do you need e dishuashcr?

7- Yes

gumentetlon for

Yhere should a dishuasher be?

.left side of a sink
‘Left-Of(Jc::Dl.huasher,Jc::Sink)”

+(+) If you are left handed, a dlshuashcr
should be on the left side of a sink.

(-) Having a dishusher on the left s,dc of a
sink nay affect the resale value.

‘right side of a sink
‘Right-Of(Jc::Dishua.her,Jc::Sink)’
(*) If you arc right handed. a dlshuasher

Figure 2: KIDSPECIFICATJON

The user interface is based on the questionnaire forms used by professional kitchen designers to elicit their clients’ requirements.
KIDSPECIFICATION provides an extensible collection of questions (issues) and alternative answers from which designers select the
requirements associated with their current design intent (see the QrresGons window). The summary of currently selected answers
appears in the Current Specificarion~for window, and designers can assign weights to the selected answers to represent the relative
importance of the specified requirements. If no existing alternatives express their position, designers can add or modify information
in the underlying argumentation base. Arg~4mentution for window provides further explanation about how a presented critic
message (i.e., a location of a dishwasher with regard to a sink) (see Figure 3) is related to the current specification (i.e., one of the
selected answers - a left-handed cook), as well as alternatives for the location of a dishwasher.

Figure 3: KIDCONSTRUCT~ON

Designers construct a kitchen floor plan in the Work Area using a direct manipulation style to select and place design units from the
appliance palette. Designers may copy an example from the Catalog window, where catalog examples are presented in the order of
accordance with the current specification (see Figure 2). The Messages window presents critiquing messages that are detected by
KID. Numbers indicate computed relative importance of each critiquing message in terms of the current specification.

3.4. Discussion
Support for Designer-DODE communication. In KID,
the designer’s intention is articulated by manipulating inter-
face objects in the construction and specification com-
ponents. The specification provides information about the
dcsigncr’s high-level intentions. From the construction, the
system obtains information about the design moves that
have been made, which represent the designer’s solution-

The system uses the cumulative state of the specification
and construction components as the current specific con-
text. The representations in the specification and construc-
tion that define the specific context are shared because the
state of the representations is accessible to both the desig-
ner and the system.

In the scenario, the specific context for Jane’s design in-

level intentions.
11

chided tha.t she wanted to design a kitchen for a left-handed
person, and that she placed the dishwasher on the right side
of the sink. Because KID provides explicit representations
for both specification and construction, it is able to provide
feedback specific to Jane’s design situation. If KID
provided .support for only construction, it couldn’t have
provided feedback relevant to Jane’s high-level intentions.

KID uses computational critic mechanisms [6] to alert
designers ‘to problematic design situations, such as a viola-
tion of domain design rules, and to provide information
relevant to the situation. This mechanism allows designers
to become aware of implications of the current design con-
text in which they are engaged. Using the shared specific
context, KID ‘was able to detect a conflict between Jane’s
high-level intentions (left-handed) and solution-level inten-
tions (dishwasher on right side of sink), and to point Jane
toward the. malization that designing a kitchen for a left-
handed person would sacrifice resale value.

Support for Long-term Collaboration. KID contains two
collections of domain knowledge: an argumentation base
that stores design rationale and a catalog base that stores
design artifacts. The argumentation base is a semi-
structured design space that expresses interdependencies
between design decisions as well as the contexts in which
the interdependencies are relevant. The catalog base con-
tains precedent design cases represented as a construction
(floor plan) and a specification (design requirements),
which are created by designers in the past. Thus, the
domain knowledge is a generic domain-level context that
allows users of KID to collaborate over a long period of
time.

In the scemuio, Bob and Jane communicated indirectly in
the sense that Jane’s design was placed into the catalog
base and subsequently delivered by KID to Bob as a design
relevant to his task. Jane’s kitchen added to the domain
knowledge stored in KID, thereby increasing the generic
domain-level context. Although not illustrated in the
scenario, Jane might also have added new arguments to the
argumentation base, rather than agreeing with an argument
that was already in the argumentation.

Mechanisms. KID uses speci~cation-linking rules to map
from a preference articulated in the specification to a cor-
responding combination of constraints that should be
satisfied in the construction. The specification-linking
rules enable K:ID to detect design situations in which the
construction and specification are in conflict. Such con-
flicts are brought to the designer’s attention by two
knowledge-,delivery mechanisms:

l RULE:-DIZLIVERER locates information in the ar-
gume.ntation base corresponding to the conflict be-
tween the specification and construction detected
through .specific critics [6]. The argumentative infor-
mation helps designers to understand the problem
and alternative means for resolving it. In the
scenario, RULE-DELIVERER detected a conflict be-
tween Jane’s desire to design a kitchen for a left-
handed person and her placement of the dishwasher
to the right of the sink.

l CASE-DELIVERER orders the catalog space so that ex-
amples relevant to the current design situation are
easily accessible to the designer [16].
CASE-DELIVERER computes the conformity of each
catalog example to the current partial specification
by (1) applying specific critics to each catalog ex-
ample, (2) computing an appropriateness value for
the example as the weighted sum cd the critic evalua-
tions, (3) ordering the examples according to the
values, and (4) presenting the ordered catalog ex-
amples. In the scenario, CASE-DELIVERER presented
Jane’s design to Bob because both designers
specified that they wished to design a kitchen for a
left-hander.

In summary, KID’S explicit representations of a problem
specification and solution construction help designers to
achieve and maintain a common understanding of the
problem and prevent them from overlooking important ‘con-
siderations. KID uses these representations as the current
context to identify task-relevant information. KID’s
knowledge bases contain design information and artifacts
accumulated through past design efforts, enabling designers
to collaborate indirectly with their peers from the past.

The approach described here in terms of KID has
demonstrated how the representations of specification and
construction of a DODE serve as a context to facilitate
communication of intent between designers and a system,
and among designers, for a relatively mature, stable domain
such as kitchen design. For immature or unstable domains,
which are relatively new, still under exploration, or heavily
dependent on state-of-the-art technologies, it is difficult to
to identify and design such representations. In the next sec-
tion, we discuss other approaches to represent design intent
and context in DODEs.

4. :;ss;;t in Representations for Context and.

The representation of design context and intent is not a
well-defined problem, and constructing such represen-
tations (i.e., a DODE itself) is yet another design task. We
have constructed DODEs for varieties of design domains
including user-interface design, kitchen design, LAN
design, voice-dialogue design, and software design. With
each prototype, we have studied a variety of represen-
tational formalities.2 On the one hand, the more formally
designers represent their intent, the better understanding of
the intent the DODE will have and, consequently, the more
context the system and the designers share. On the other
hand, imposing the machine’s formality on designers forces
them to represent design actions in an unfamiliar language
and thus undermines their expressive ability.

We have identified the following requirements for
representations of context and intent that both DODEs and
designers can use:

‘By fornudity, we. mean the degree to which the system can interpret the
semantics (content) of the representation.

12

9 expressive: Designers must be able to represent in-
tended concepts directly and distinctly using familiar
notations and languages;

l associative: Designers and/or DODEs must be able
to associate representations with those for related
concepts. “What something means lies in how it
connects to other things we know” [14]. By provid-
ing links, relations, and connections among multiple
representations, designers gain an understanding of
the content of the design and the partial design task.

Construction kits and critiquing rules are considered to be
formal representations because the association of the
representation is automatically done by the system. Ar-
gumentation is a semi-formal representation where infor-
mal textual and graphical representations are linked by
designers.

We have developed the Seeding - Evolutionary Growth
- Reseeding (SER) model to support the gradual develop-
ment and refinement of representational formalisms [7]. In
the model, the evolution of a DODE (i.e., representations of
a DODE) is driven by its use in designing individual ar-
tifacts, which create new requirements. Explicit represen-
tations of context serve not only evolution of individual
design artifacts but also the evolution of DODEs them-
selves.

In what follows, we describe several forms for a DODE for
representing design intent. The first four representations are
associative by systems, and the last one is associative by
designers supported by systems.

The Construction. The representation in a construction
component is a formal design form. A DODE provides a
palette of objects pre-assigned with domain semantics and a
workplace where a user can manipulate those objects in
order to construct a design solution. This representation
can be “parsed” by the system, providing the system with
information about the artifact under construction. For ex-
ample, with KID (as presented in Section 3.3), the system
knows that a rectangle displayed in the workplace with a
label “DW” represents a dishwasher, and that the dish-
washer is next to a double-bowl sink, an adjacent rectangle
with two smaller rectangles inside.

The representation for the design solution is interpretable
into a single meaning and can be represented formally
within a computer system. Research in formal approaches
in the AI in Design field [2] studies the interpretation of
such solution representation.

The Specification. A specification component provides
informal representations associated with formal rules. In
some design domains, a set of natural language statements
exists to represent goals, objectives, and constraints of the
task, shared by a community of designers. In the kitchen
design, for example, a questionnaire is used to elicit a
client’s requirements. In the LAN design, there are a set of
typical questions asked by expert network designers before
installing a network.

Such statements are associated with design decisions, and

the same associations are used repeatedly in many design
tasks within the domain. The interdependencies among
those design decisions are captured as design rationale, or
“arguments.” As discussed in the previous section, KID
provides an argumentation base that is based on the IBIS
structure [11. Some of design decisions (i.e., answers in the
IBIS) and interdependencies (i.e., arguments in the IBIS)
are associated with predefined predicates over the construc-
tion, as described above. KIDSPECIFICATION allows desig-
ners to select some answers in the argumentation base, and
KID infers interdependencies using the partial specification.
These interdependencies are used as specification-linking
rules to identify relevant critiquing rules (i.e., “specific
critics”; see [6]) and relevant reusable design examples
[161.

Sketches. Sketches are graphics drawn by designers that
can be parsed by a DODE. Designers use drafting paper
and pencil to gain their own understanding about the design
problem. Most of existing design drawing systems do not
allow designers to deal with abstract, vague, or uncertain
properties of a partial design. Designers do not feel com-
fortable in using such tools, especially at the initial stages
of design. And yet, such rough drafting conveys very im-
portant information regarding design intent. For example,
we observed that a kitchen designer drew several bubbles
with labels such as working center, cooking center. and
storage area on a piece of paper at the very beginning of
her design process. The sketch gave her a rough idea of
how the workflow might be in the design without worrying
about detailed precise dimensions of each appliance.

It would have been possible to ask the designer to formally
represent her design intention, such as the cooking center
should be adjacent to the storage area. However, in general,
designers will not expend the effort until they see the
benefit of entering it into the computer [4]. Supporting
early design in the way that designers are accustomed to
doing it (i.e., such as drafting) enables DODEs to bear at a
time when they can have the least cost and the most impact
1111.

Gross et al. have attempted to use hand-drawn diagrams to
index architectural design cases as well as retrieve useful
design cases. The underlying Electronic Cocktail-Napkin
system recognizes the elements of a diagram and interprets
them in the context of the architectural design domain [121.
This syntactic analysis of a graphic has enabled the DODE
for symbolic and numerical analysis such as critiquing,
simulation, visualization, and retrieval of relevant cases.
The eMMa system, a design environment for multimedia
authoring [171, also provides a mechanism to retrieve
images by analyzing pictorial data from a library of 1,000
images. The system uses free-hand writing by a user as a
query to match the graphic by tracing the border of images
(see Figure 4). The system also allows users to specify a
theme color and retrieve images that have similar hues.

History. The INDY network design system [191 supports
representations of the history of design artifact. History
provides the background context of design decisions in
terms of the temporal relationship. The order of design

13

Free Hand Draw Border Trace

Figure 4: Retrieval of Images using Free-hand Drawing in eMMa

decisions made implies prioritization of dependencies and
thus plays a crucial role in understanding the design. The
INDY system keeps track of all the design decisions made
by whom. over a network design, and allows designers to
play back:ward and forward to simulate how the design has
evolved.

Descriptive Annotations. The INDY system discussed
above allows designers to annotate a network design. An-
notations are written in natural language and provide design
rationale for associated design decisions.

The XNETWORK system [23] for LAN design supports
designers to associate electronic mail to a network design.
In the LAN network design, change requests and bug
reports are communicated through e-mail, which drives
long-term evolution of the design. The system supports
designers in incrementally formalizing the accumulated in-
formation. The system suggest to designers to which design
objects an e-mail is likely to be related by parsing the e-
mail and :inferring attribute values for predefined attributes
of design objects, such as machine types, names, users,
capacity, and performance. Using this information, net-
work designers make a final decision on how to structure
the information space.

The EVA system [181 is a hypermedia substrate that allows
system analysts, software designers, and end-users to col-
laboratively Ievolve software prototypes. The’ system in-
tegrates executable prototypes and descriptive represen-
tations, such as text, graphics, and e-mail. Users of EVA can
assign semantics to an association among representations.
Multiple designers gradually evolve the design space by
visiting representations constructed by other designers, ad-
ding their design intent and understanding of their own, and
associating them with the existing information. Using EVA,
mediating collaboration, design intent, solution, and con-
text can coevolve by multiple designers.

5. Conclusiion
This paper presented our domain-oriented design environ-
ment approach and demonstrated how the evolution of
design artifac.ts can be supported with explicit represen-
tations of design intent. We have identified that such
representations need to be expressive and associative in or-
der to be useful both to designers and to the knowledge-
based design support mechanisms in design environments.

Because designers explicitly articulate their design intent
and build design artifacts in DODEs, these representations
can be reused as context for reflecting upon a partially con-
structed design as well as understanding previous design
cases. A challenge is to identify appropriate representations
for a given design domain. The formalisms described in
the previous section are by no means an exhaustive
enumeration of possible representations for design intent.
Rather they should be viewed as a starting point for future
research into representations of context and intent in
design.

Acknowledgments
We thank the people at the Center for LifeLong Learning
and Design (L3D) at the University of Colorado, who con-
tributed to the conceptual framework and the systems dis-
cussed in this paper. The research was supported by the
National Science Foundation under grants No. IRI-
9015441 and MDR-9253425; Software Research As-
sociates, Inc. (Tokyo); NYNEX Science and Technology
Center; the Colorado Advanced Software Institute; US
WEST Advanced Technologies; and the National Science
Foundation and the Advanced Research Projects Agency
under Cooperative Agreement No. CDA-940860.

REFERENCES
1. J. Conk:lin, M. Begeman. gIBIS: A Hypertext Tool for

Ex loratory Policy Discussion. Transactions ofC@ce
In armation Systems 6, 4 (October 1988), 303-33 1. f

2. R.D. Coyne, M.A. Rosenman, A.D. Radford,
M. Balachandran, J. Gero. Knowledge-based Design
Systems. Addison Wesley Publishing Company,
Reading, MA., 1989.

3. G. Fischer. Domain-Oriented Design Environments.
Automated Sojiware Engineering I (1994), 177-203.

4. G. Fischer, A.C. Lemke, R. McCall, A. March.
Making Argumentation Serve Design. Human Com-
puter Interaction 6, 3-4 (1991), 393-419.

5. G. Fischer, J. Grudin, A.C. Lemke, R. McCall,
J. Ostwald, B.N. Reeves, F. Shipman. Supporting In-
direct, Collaborative Design with Integrated
Knowledge-Based Desi n Environments. Human
Conlpurer Interaction, kecial Issue on Computer
Supponed Cooperative ork 7, 3 (1992), 281-314.

14

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

G. Fischer, K. Nakakoji, J. Ostwald, G. Stahl,
T. Sumner. Embedding Critics in Design Environ-
ments. The Knowledge Engineering Review Journal
8,4 (December 1993), 285307.

G. Fischer, R. McCall, J. Ostwald, B. Reeves,
F. Shipman. Seeding, Evolutionary Growth and
Reseeding: Supporting Incremental Develo ment of
Design Environments. Human Fuctors in 8 otnputing
Systems, CHI’94 Conference Proceedings (Boston,
MA), ACM, 1994, pp. 292-298.

G. Fischer, R. McCall, A. March. JANUS: Integrating
Hypertext with a Knowledge-Based Design Envlron-
ment. Proceedings of Hypertext’89 (Pittsburgh, PA),
ACM, New York, November, 1989, pp. 105-l 17.

G. Fischer, K. Nakakoji. Beyond the Macho Ap-
proach of Artificial Intelligence: Empower Human
Designers - Do Not Replace Them. Knowledge-Bused
Systems Journal 5, 1 (1992), 15-30.

J. Greenbaum, M. Kyng (Eds.). Design at Work:
Cooperutive Design of Cotnputer Systems. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1991.

M. Gross. Computers as Cocktail Napkin: Recogniz-
ing and Interpreting Hand Drawn Diagrams in Design.
Proceedings of the Conference on Advanced Visual
Interface, Ban, 1994.

M. Gross, C. Zimring, E.Do. Using Diagrams to Ac-
cess a Case Base for Architectural Desi ns.
J. S..Ge,ro, F. Sudweeks (Ed:), Artifcra Intelli

? 4
ence in

y;e!yi494, Kluwer Academic Pubhshers, 199 , pp.

A. Henderson, M. Kyng. There’s No Place Like
Home: Continuing Design in Use. In J. Greenbaum.
M. Kyng (Eds.), Design al Work: Cooperarive Design
of Corn

P
uter Systems. Lawrence Erlbaum Associates,

Hillsda e, NJ, 1991, Chap. 11, pp. 219-240.

M. Minsky. Logical Versus Analogical or Symbolic
Versus Connectlonist or Neat versus Scruffy. AI
Magazine 12, 2 (Summer 1991), 35-51.

K. Nakakoji. Increasing Shared Understanding of a
Design Task Between Designers and Design Environ-
tnenCs: The Role of a Spectfication Component. Ph.D.
Thesis, Department of Corn uter Science, University
of Colorado, Boulder, CO, P 993. Also available as
TechReport CU-CS-651-93.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

K. Nakakoji. Case-Deliverer: Retrieving Cases
Relevant to the Task at Hand. In S. Wess, K. Althoff,
M.M. Richter (Eds.), Lecture Notes in Artificial Intel-
ligence: Topics in Case-Based Reasoning: Selected
Papers from EWCBR-93, S
Kaiserslautem, Germany,

ringer-Verlag,
1 r; 94, pp. 446-470.

K. Nakakoji, B.N. Reeves, A. Aoki, H. Suzuki,
K. Mizushlma. eMMaC: Knowledpe-Based Color
Critiquing Su port for Novice Mulyitnedia Authors.
Submitted to hultimedia’95.

J. Ostwald. The Evolving Artifact Approach for Build-
ing Knowledge Systems in Information Intensive
Domains. Department of Computer Science, Univer-
sity of Colorado, Boulder, CO, August, 1993.

B.N. Reeves, F. Shipman. Su porting Communica-
tion between Designers with R. tlfact-Centered Evolv-
ing Information Spaces. Proceedings of the Con-
ference on Corn uter-Sup orted Cooperative Work
(CSCW’92), AEM, New fork, November, 1992, pp.
394-401.

H.W.J. Rittel. Second-Generation Design Methods.
In N. Cross (Ed.), Developments in Desi n
Methodology, John Wiley & Sons, New b ork, 1984,
pp. 317-327.

D.A. Schoen. The Rejlective Practitioner: How
Projkssionals Think in Action. Basic Books, New
York, 1983.

M. Sharples. Cognitive Support and the Rhythm of
Design. In T. Dartnall (Ed.), Artificial Intelligence
and Creativity, Kluwer Academic Publishers, Nether-
lands, 1994, pp. 385-402.

F. Shipman, R. McCall. Su orting Knowledge-Base
Evolution with Incremental ormahzation. Human v
Factors in Computing Systems, CHI’94 Conference
Proceedings, ACM, 1994.

H.A. Simon. The Sciences of die Artificial. The MIT
Press, Cambridge, MA, 198 1.

L.G. Terveen. An Overview of Human-Computer
Collaboration. Knowledge-Based Systems Journal
(1995). (in press).

D. Walz, J. Elam and B. Curtis. Inside a Software
Design Team: Knowledge Acquisition, Sharing, and
Integration. CACM 36, 10 (October 1993), 63-77.

15

