Lecture 12 - Quantum computers, Shor's algorithm, post-quantum cryptography

TEK4500
10.11.2020

Håkon Jacobsen
hakon.jacobsen@its.uio.no

MIT

Technology

Review

Topics+

Top Stories
Maga

Computing

NSA Says It "Must Act Now"

Against the Quantum Computing
Threat
The National Security Agency is worried that quantum
computers will neutralize our best encryption - but doesn't yet know what to do about that problem.
by Tom Simonite February 3,2016

Quantum computing - the starting point

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107
Received May 7, 1981

Elements of (quantum) computing

- Three elements of all computations: data, operations, results
- Quantum computation
- Data = qubit
- Operation = quantum gate
- Results = measurements

Qubits

- Classical bit:

- Qubit:

Can be in a superposition of two basic states $|0\rangle$ and $|1\rangle$

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \quad \alpha, \beta \in \boldsymbol{C} \quad|\alpha|^{2}+|\beta|^{2}=1
$$

But we can never observe α and β directly!

Must measure $|\psi\rangle$ to obtain its value \Rightarrow state randomly collapses to either $|0\rangle$ or $|1\rangle$

What's the probability of observing $|0\rangle$ or $|1\rangle$?

$$
\begin{aligned}
& \operatorname{Pr}[\text { measure }|\psi\rangle \Rightarrow|0\rangle]=|\alpha|^{2} \\
& \operatorname{Pr}[\text { measure }|\psi\rangle \Rightarrow|1\rangle]=|\beta|^{2}
\end{aligned}
$$

Quantum computation - quantum gates

- Classic bits are transformed using logical gates

- Qubits are transformed using quantum gates

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \mapsto\left|\psi^{\prime}\right\rangle=\alpha^{\prime}|0\rangle+\beta^{\prime}|1\rangle
$$

Operator	Gate(s)		Matrix
Pauli-X (X)	$-\mathbf{x}$	\bigcirc	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Pauli-Z (Z)	$-\mathbf{Z}$		$\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
Hadamard (H)	-		$\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$
Controlled Not (CNOT, CX)			$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

(Quantum) NOT-gate (or X gate)

$$
\begin{array}{cc}
|0\rangle \stackrel{\boldsymbol{X}}{\mapsto}|1\rangle \\
|1\rangle \stackrel{X}{\mapsto}|0\rangle \\
\alpha|0\rangle+\beta|1\rangle \stackrel{X}{\mapsto} \beta|0\rangle+\alpha|1\rangle & \begin{array}{c}
\text { X gate: } \\
\boldsymbol{X}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\end{array} \\
\boldsymbol{X}(|0\rangle)=\alpha|0\rangle+\beta|1\rangle \\
\left.|\psi\rangle=\binom{\alpha}{\beta} \quad \begin{array}{l}
|0\rangle=\binom{1}{0} \\
0
\end{array}\right)=\binom{0}{1} & \boldsymbol{X}(|1\rangle)=\boldsymbol{X}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\binom{1}{0} \\
{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\binom{1}{0}=\binom{0}{1}} & {\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\binom{0}{1}=\binom{1}{0}}
\end{array}
$$

The Z gate

$$
\begin{aligned}
& |0\rangle \stackrel{Z}{\mapsto}|0\rangle \\
& |1\rangle \stackrel{Z}{\mapsto}-|1\rangle \\
& \alpha|0\rangle+\beta|1\rangle \stackrel{Z}{\mapsto} \alpha|0\rangle-\beta|1\rangle \\
& Z \text { gate: } \\
& Z=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \\
& Z\binom{1}{0}=\binom{1}{0} \\
& {\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\binom{1}{0}=\binom{1}{0}} \\
& {\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\binom{0}{1}=\binom{0}{-1}} \\
& Z\binom{0}{1}=\binom{0}{-1} \\
& \boldsymbol{Z}\binom{\alpha}{\beta}=\text { ? } \\
& {\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\binom{\alpha}{\beta}=\binom{\alpha}{-\beta}}
\end{aligned}
$$

The Hadamard or H gate

$$
\begin{aligned}
&|0\rangle \stackrel{H}{\mapsto} \\
&|1\rangle \stackrel{|0\rangle+|1\rangle}{\sqrt{2}} \\
& \left\lvert\, \stackrel{H}{\mapsto} \frac{|0\rangle-|1\rangle}{\sqrt{2}}\right.
\end{aligned}
$$

H gate:

$$
\boldsymbol{H}=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

$$
\begin{aligned}
& \operatorname{Pr}[\text { measure }|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \Rightarrow|0\rangle]=|\alpha|^{2} \\
& \operatorname{Pr}[\text { measure }|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \Rightarrow|1\rangle]=|\beta|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}[\text { measure } \boldsymbol{H}|0\rangle \Rightarrow|0\rangle]=\left|\frac{1}{\sqrt{2}}\right|^{2}=0.5 \\
& \operatorname{Pr}[\text { measure } \boldsymbol{H}|1\rangle \Rightarrow|1\rangle]=\left|\frac{1}{\sqrt{2}}\right|^{2}=0.5
\end{aligned}
$$

The Hadamard gate allows us to create random bits!

$$
\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\binom{1}{0}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}
$$

$$
\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\binom{0}{1}=\binom{1 / \sqrt{2}}{-1 / \sqrt{2}}
$$

Many other gates

Operator	Gate(s)		Matrix
Pauli-X (X)	- \mathbf{X}	\bigcirc	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Pauli-Y (Y)	$-\mathbf{Y}$		$\left[\begin{array}{rr}0 & -i \\ i & 0\end{array}\right]$
Pauli-Z (Z)	\mathbf{z}		$\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
Hadamard (H)	$\xrightarrow{\mathbf{H}}$		$\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$
Phase (S, P)	\mathbf{S}		$\left[\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right]$
$\pi / 8$ (T)	$-\mathbf{T}^{-}$		$\left[\begin{array}{ll}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right]$
Controlled Not (CNOT, CX)			$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
Controlled Z (CZ)	$\sqrt{\underline{\mathbf{z}}-}$	\bigcirc	$\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$
SWAP		\pm	$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Toffoli (CCNOT, CCX, TOFF)			$\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline\end{array}\right.$

Quantum gates

- Turns out all quantum gates can be described by matrices
- In fact, very special matrices: unitary matrices
- ... and only unitary matrices! (fact of nature)
|0) $\stackrel{X}{\stackrel{ }{\mid}}|1\rangle$
|1) $\stackrel{X}{\stackrel{X}{\mapsto}}|0\rangle$
$\boldsymbol{X}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- Quantum operations are linear and can be combined

$$
\left|\psi_{0}\right\rangle \stackrel{Z}{\mapsto}\left|\psi_{1}\right\rangle \stackrel{X}{\mapsto}\left|\psi_{2}\right\rangle \stackrel{H}{\mapsto}\left|\psi_{3}\right\rangle \stackrel{Z}{\mapsto}\left|\psi_{4}\right\rangle
$$

$$
Z H X Z\left|\psi_{0}\right\rangle=\left|\psi_{4}\right\rangle
$$

$$
\begin{aligned}
\boldsymbol{Z} \boldsymbol{H} \boldsymbol{X} \boldsymbol{Z}|0\rangle & =\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{rr}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\binom{1}{0} \\
& =\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]\binom{1}{0}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}
\end{aligned}
$$

$\begin{array}{ll}|0\rangle & \stackrel{Z}{\mapsto}|0\rangle \\ & \underset{Z}{\mapsto} \\ |1-1\rangle\end{array} \quad Z=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
$\begin{aligned}|0\rangle & \stackrel{H}{\mapsto} \\ & \frac{|0\rangle+|1\rangle}{\sqrt{2}} \\ |1\rangle & H\end{aligned} \quad \boldsymbol{H}=\left[\begin{array}{rr}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right]$
|1) $\stackrel{H}{\stackrel{H}{\mid} \frac{|0\rangle-|1\rangle}{\sqrt{2}}}$

Quantum computers - multiple qubits

- A quantum computer consists of multiple qubits

$$
\begin{gathered}
\left|\psi_{0} \psi_{1}\right\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle \\
|\alpha|^{2}+|\beta|^{2}+|\gamma|^{2}+|\delta|^{2}=1
\end{gathered}
$$

- Can apply quantum gates to a subset of qubits in a multi-qubit state

What makes quantum computation special?

- Warning: a quantum computer does not simply "try out all solutions in parallel"
https://www.smbc-comics.com/comic/the-talk-3

> | "THE TALK" |
| :---: |
| BY SCOTT AARONSON \& ZACH WEINERSMITH |

- increases probability of measuring correct result
- only a few problems allow this choreography; speed up not possible for all computations

Shor's algorithm

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer*

Peter W. Shor ${ }^{\dagger}$

Abstract

A digital computer is generally believed to be an efficient universal computing device: that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

Keywords: algorithmic number theory, prime factorization, discrete logarithms, Church's thesis, quantum computers, foundations of quantum mechanics, spin systems, Fourier transforms

Factoring to order-finding

$$
\begin{aligned}
& 2,4,8,16,32,64,128,256,512,1024, \ldots \\
& 2,4,8,1,2,4,8,1,2,4,8,1,2 \ldots \\
& 2,4,8,16,11,1,2,4,8,16,11,1,2 \ldots \bmod 15 \\
& \text { these sequences are periodic } 21
\end{aligned}
$$

Factoring to order-finding

$$
N=p q
$$

$$
a^{1}, a^{2}, a^{3}, \ldots, a^{r^{\prime}}, a^{1}, a^{2} \ldots \quad(\bmod N)
$$

$$
\text { order of } a=\text { the smallest positive } r \text { such that } a^{r}=1(\bmod N)
$$

Fact: r must divide $(p-1)(q-1)$
Euler's theorem: for all $a \in Z_{N}^{*}$

$$
a^{\phi(N)}=a^{(p-1)(q-1)}=1(\bmod N)
$$

Proof:

- $(p-1)(q-1)=s r+t \quad 0 \leq t<r$
- $a^{(p-1)(q-1)}=a^{s r+t}=a^{s r} a^{t}=\left(a^{r}\right)^{s} a^{t}=1 \cdot a^{t}=1 \bmod N \Rightarrow t=0$
(since r is the smallest)
- $(p-1)(q-1)=s r$
Q.E.D.

Conclusion: learn $r \Rightarrow$ we learn a factor of $(p-1)(q-1)$
repeat with a different $a \Rightarrow$ learn another factor of $(p-1)(q-1)$
(with high prob.)
eventually we learn full $(p-1)(q-1) \Rightarrow$ can find p and q
(Problem set 10)

Factoring to order-finding

$$
N=p q
$$

$$
a^{1}, a^{2}, a^{3}, \ldots, a^{r^{\prime}}, a^{1}, a^{2} \ldots \quad(\bmod N)
$$

$$
\text { order of } a=\text { the smallest positive } r \text { such that } a^{r}=1(\bmod N)
$$

how likely is this for random $a \in \boldsymbol{Z}_{N}^{*}$? Answer: very! (prob. ≥ 0.5)
Suppose: r is even and $a^{r / 2} \neq \pm 1 \quad x^{2}-1=(x+1)(x-1)$
Then: $a^{r}-1=\left(a^{r / 2}\right)^{2}-1=\left(a^{r / 2}+1\right)\left(a^{r / 2}-1\right)=0 \bmod N \Rightarrow N$ divides $\left(a^{r / 2}+1\right)\left(a^{r / 2}-1\right)$
Then: N does not divide $\left(a^{r / 2}+1\right)$ or $\left(a^{r / 2}-1\right) \Rightarrow p$ divides $\left(a^{r / 2}+1\right)$ and q divides $\left(a^{r / 2}-1\right)$
Then: $\operatorname{gcd}\left(a^{r / 2}+1, N\right)=p$

$$
\text { .. and } \operatorname{gcd}\left(a^{r / 2}-1, N\right)=q
$$

Shor's algorithm

This is where the quantum magic happens!

Shor's algorithm

Input: $N=p q$
Output: p (or q)
while true do
$a \stackrel{\$}{\leftarrow} Z_{N}^{*}$
$r \leftarrow \operatorname{Order}_{N}(a) \quad / /$ how to find?
if r is even then
5. $\quad x \leftarrow a^{r / 2}+1(\bmod N)$
6. $\quad p \leftarrow \operatorname{gcd}(x, N)$
7. if $p \geq 2$ then
8. return p

Shor's algorithm

- To factor N : find order of a in Z_{N}^{*}
- Problem: r can be very large
- Classical solutions take exponential time
- Note: the function $f(i)=a^{i} \bmod N$ is periodic:

$$
f(i+k r)=a^{i+k r}=a^{i} \bmod N=f(i)
$$

- finding signal frequencies \Leftrightarrow finding signal period
- Key ingredient of Shor's algorithm:
quantum Fourier transform (QFT)

Consequences of Shor's algorithm

- Quantum order-finding algorithm can be implemented in $\mathcal{O}\left(k^{3}\right)$ quantum gate steps $(k=\log N)$
- (quantum) polynomial time (BQP)
- Factoring is solvable in quantum polynomial time
- Totally breaks RSA
- Modified Shor can also solve discrete logarithm problem
- Totally breaks discrete log-based crypto
- Including elliptic curve cryptography $(\underset{y}{ }$
- Public-key crypto is dead...

```
Shor's algorithm
Input: \(N=p q\)
Output: \(p\) (or \(q\) )
    while true do
        \(a \stackrel{\$}{\leftarrow} \mathbf{Z}_{N}^{*}\)
        \(r \leftarrow \operatorname{Order}_{N}(a) \quad / /\) QFT++
        if \(r\) is even then
        \(x \leftarrow a^{r / 2}+1(\bmod N)\)
        \(p \leftarrow \operatorname{gcd}(x, N)\)
        if \(p \geq 2\) then
            return \(p\)
```


The quantum menace

- How far away is a quantum computer?
- Nobody knows
- Building a large-scale quantum computer is a huge engineering challenge
- very susceptible to noise (decoherence)
- requires quantum error correction (is it even possible?)
- many physical qubits needed to simulate a single logical qubit
- ≈ 1000 physical qubits needed for 1 logical qubit

- ≈ 1000 logical qubits needed for Shor's algorithm
- largest (known) quantum computers:
≈ 65 physical qubits (IBM; 2020)
≈ 53 physical qubits (Google; 2019)
(no error correction)
(no error correction; demonstrated quantum supremacy)

Dealing with quantum computers

- Symmetric cryptography
- Grover's algorithm: solves $\mathcal{O}\left(2^{n}\right)$ problems in $\mathcal{O}\left(2^{n / 2}\right)$ quantum steps
- Solution: double key-lengths ($128 \rightarrow 256$)
- Quantum cryptography
- Use quantum mechanics to build cryptography
- Post-quantum cryptography
- Classical algorithms believed to withstand quantum attacks

Post-quantum cryptography

- Public-key cryptography based on problems other than factoring and discrete logarithms
- Top candidates:
- Lattice-based cryptography
- Code-based cryptography
- Multivariate cryptography
- Hash-based cryptography
- Isogeny-based cryptography

The NIST post-quantum competition

- Public competition to standardize post-quantum schemes
- Public-key encryption
- Digital signatures
- Started in 2017
- Round 1: 69 submissions
- Round 2: 26 candidates selected
- Round 3: 15 candidates selected
- Winner(s) expected in about a year

	Algorithm (public-key encryption)	Problem
	Classic McEliece	Code-based
	CRYSTALS-KYBER	Lattice-based
NTRU	Lattice-based	
	SABER	Lattice-based
	BIKE	Code-based
	FrodoKEM	Lattice-based
	HQC	Code-based
	NTRU Prime	Lattice-based
	SIKE	Isogeny-based
	Algorithm (digital signatures)	Problem
CRYSTALS-DILITHIUM	Lattice-based	
	FALCON	Lattice-based
	Rainbow	Multivariate-based
	GeMSS	Multivariate-based
	Picnic	ZKP
	SPHINCS+	Hash-based

Lattice-based cryptography

- Very versatile computational problems
- Public-key encryption
- Digital signatures
- Hash functions
- Fully homomorphic encryption
- Key exchange

Shortest vector problem

Closest vector problem

Lattice-based cryptography

Learn more about post-quantum cryptography?

- Want to learn more about post-quantum cryptography?
- Sign up for TEK5550 - Advanced Topics in Cryptology next spring!

End of course

Next week

- Summary lecture
- Nothing planned; tell me want you want me to repeat/explain further
- Exam
- Digital home exam
- Wednesday November 25
- 4 hours (possibly +0.5)
- Format: single PDF file made available on Inspera and Canvas (similar to midterm)
- Answers are typed directly into Inspera (no PDF upload); will create forms that mirrors problems in exam PDF
- NO collaboration is allowed
- Students may be picked out for conversations to prove ownership of answer

