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Quantum computing – the starting point
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Elements of (quantum) computing

• Three elements of all computations: data, operations, results

• Quantum computation

• Data = qubit

• Operation = quantum gate

• Results = measurements
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Qubits

• Classical bit:

• Qubit: 

Can be in a superposition of two basic states 0 and 1

But we can never observe 𝛼 and 𝛽 directly!

Must measure 𝜓 to obtain its value ⟹ state randomly collapses to either 0 or 1

What's the probability of observing 0 or 1 ?

 0〉  1〉 𝛼 2 + 𝛽 2 = 1

0 1

𝜓 = 𝛼 + 𝛽 𝛼, 𝛽 ∈ 𝑪

Pr measure 𝜓 ⇒ 0 = 𝛼 2

Pr measure 𝜓 ⇒ 1 = 𝛽 2
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Quantum computation – quantum gates

• Classic bits are transformed using logical gates

• Qubits are transformed using 

quantum gates

𝜓 = 𝛼 0 + 𝛽 1 ↦ 𝜓′ = 𝛼′ 0 + 𝛽′ 1
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(Quantum) NOT-gate (or X gate)
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The Z gate
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Z gate:  
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The Hadamard or H gate

0 ↦
𝑯 0 + 1

2

1 ↦
𝑯 0 − 1

2
Pr measure 𝑯 0 ⇒ 0

Pr measure 𝑯 1 ⇒ 1

The Hadamard gate allows us to create random bits!
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H gate:  
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Many other gates
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Quantum gates

• Turns out all quantum gates can be described by matrices

• In fact, very special matrices: unitary matrices 

• … and only unitary matrices!  (fact of nature)

• Quantum operations are linear and can be combined
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Quantum computers – multiple qubits

• A quantum computer consists of multiple qubits

• Can apply quantum gates to a subset of qubits in a multi-qubit state

 00〉  01〉

𝛼 2 + 𝛽 2 + 𝛾 2 + 𝛿 2 = 1

𝜓0𝜓1 = 𝛼 + 𝛽 𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝑪 10〉  11〉+ 𝛾 + 𝛿
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What makes quantum computation special?

• Warning: a quantum computer does not

simply "try out all solutions in parallel"

• The magic comes from allowing complex

(or even just negative real) superposition amplitudes

• Can carefully choreograph computations so that 

wrong answers "cancel" out their amplitudes, while 

correct answers "combine" (quantum interference)

• increases probability of measuring correct result 

• only a few problems allow this choreography; speed up not possible for all computations
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https://www.smbc-comics.com/comic/the-talk-3

𝜓 = 𝛼 0 + 𝛽 1

https://www.smbc-comics.com/comic/the-talk-3


Shor's algorithm
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Factoring to order-finding

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,…

2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2… mod15

2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 11, 1, 2… mod21

these sequences are periodic
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Factoring to order-finding

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑟 , 𝑎1, 𝑎2…

Euler’s theorem: for all 𝑎 ∈ 𝒁𝑁
∗

𝑎𝜙 𝑁 = 𝑎 𝑝−1 (𝑞−1) = 1 mod𝑁
Fact: 𝑟 must divide 𝑝 − 1 𝑞 − 1

order of 𝑎

Proof:  

• 𝑝 − 1 𝑞 − 1 = 𝑠𝑟 + 𝑡 0 ≤ 𝑡 < 𝑟

• 𝑎(𝑝−1)(𝑞−1)

• 𝑝 − 1 𝑞 − 1 = 𝑠𝑟

= 𝑎𝑟 𝑠𝑎𝑡 = 1 ⋅ 𝑎𝑡 = 1mod𝑁

Q.E.D.

Conclusion: learn 𝑟 ⟹ we learn a factor of (𝑝 − 1)(𝑞 − 1)

repeat with a different 𝑎 ⟹ learn another factor of 𝑝 − 1 𝑞 − 1 (with high prob.)

eventually we learn full  𝑝 − 1 𝑞 − 1 ⟹ can find 𝑝 and 𝑞 (Problem set 10) 

⟹ 𝑡 = 0 (since 𝑟 is the smallest) 

mod𝑁

= the smallest positive 𝑟 such that 𝑎𝑟 = 1 mod𝑁

= 𝑎𝑠𝑟+𝑡 = 𝑎𝑠𝑟𝑎𝑡

𝑁 = 𝑝𝑞
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𝑎 = 𝑟



Factoring to order-finding

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑟 , 𝑎1, 𝑎2…

order of 𝑎

𝑁 = 𝑝𝑞

mod𝑁

= the smallest positive 𝑟 such that 𝑎𝑟 = 1 mod𝑁

Suppose: 𝑟 is even

Then: 𝑎𝑟 − 1 = 𝑎𝑟/2
2
− 1 = 𝑎𝑟/2 + 1 𝑎𝑟/2 − 1 = 0 mod𝑁 ⟹ 𝑁 divides 𝑎𝑟/2 + 1 𝑎𝑟/2 − 1

Then: 𝑁 does not divide 𝑎𝑟/2 + 1 or 𝑎𝑟/2 − 1

Then: gcd 𝑎𝑟/2 + 1,𝑁 = 𝑝

⟹ 𝑝 divides 𝑎𝑟/2 + 1 and 𝑞 divides 𝑎𝑟/2 − 1

and 𝑎𝑟/2 ≠ ±1

…or vice versa

…and gcd 𝑎𝑟/2 − 1, 𝑁 = 𝑞

how likely is this for random 𝑎 ∈ 𝒁𝑁
∗ ? Answer: very!    (prob. ≥ 0.5)
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𝑥2 − 1 = (𝑥 + 1)(𝑥 − 1)



Shor's algorithm

Shor's algorithm

Input: 𝑁 = 𝑝𝑞
Output: 𝑝 (or 𝑞)

1. while true do

2. 𝑎 
$
𝒁𝑁
∗

3. 𝑟  Order𝑁 𝑎
4. if 𝑟 is even then
5. 𝑥  𝑎𝑟/2 + 1 mod𝑁
6. 𝑝  gcd 𝑥,𝑁
7. if 𝑝 ≥ 2 then
8. return 𝑝

// how to find?

This is where the quantum 

magic happens! 
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Shor’s algorithm

• To factor 𝑁:  find order of 𝑎 in 𝒁𝑁
∗

• Problem: 𝑟 can be very large

• Classical solutions take exponential time

• Note: the function 𝑓 𝑖 = 𝑎𝑖mod𝑁 is periodic:

𝑓 𝑖 + 𝑘𝑟 = 𝑎𝑖+𝑘𝑟 = 𝑎𝑖mod𝑁 = 𝑓(𝑖)

• finding signal frequencies ⟺ finding signal period

• Key ingredient of Shor's algorithm: 

quantum Fourier transform (QFT)
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Consequences of Shor’s algorithm

• Quantum order-finding algorithm can be implemented in 𝒪 𝑘3 quantum gate steps (𝑘 = log𝑁)

• (quantum) polynomial time (BQP)

• Factoring is solvable in quantum polynomial time

• Totally breaks RSA

• Modified Shor can also solve discrete logarithm problem

• Totally breaks discrete log-based crypto

• Including elliptic curve cryptography 

• Public-key crypto is dead…

Shor's algorithm

Input: 𝑁 = 𝑝𝑞
Output: 𝑝 (or 𝑞)

1. while true do

2. 𝑎 
$
𝒁𝑁
∗

3. 𝑟  Order𝑁 𝑎 // QFT++
4. if 𝑟 is even then
5. 𝑥  𝑎𝑟/2 + 1 mod𝑁
6. 𝑝  gcd 𝑥,𝑁
7. if 𝑝 ≥ 2 then
8. return 𝑝
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The quantum menace

• How far away is a quantum computer?

• Nobody knows

• Building a large-scale quantum computer is a huge 

engineering challenge

• very susceptible to noise (decoherence)

• requires quantum error correction (is it even possible?)

• many physical qubits needed to simulate a single 

logical qubit

• ≈ 1000 physical qubits needed for 1 logical qubit

• ≈ 1000 logical qubits needed for Shor's algorithm

• largest (known) quantum computers: 

≈ 65 physical qubits (IBM; 2020) (no error correction)

≈ 53 physical qubits (Google; 2019) (no error correction; demonstrated quantum supremacy)
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https://www.sciencemag.org/news/2020/09/ibm-promises-1000-qubit-quantum-computer-milestone-2023
https://blog.google/perspectives/sundar-pichai/what-our-quantum-computing-milestone-means/


Dealing with quantum computers

• Symmetric cryptography

• Grover's algorithm: solves 𝒪 2𝑛 problems in 𝒪 2𝑛/2 quantum steps

• Solution: double key-lengths  (128 → 256)

• Quantum cryptography

• Use quantum mechanics to build cryptography

• Post-quantum cryptography

• Classical algorithms believed to withstand quantum attacks
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Post-quantum cryptography

• Public-key cryptography based on problems other than factoring and discrete logarithms

• Top candidates:

• Lattice-based cryptography

• Code-based cryptography

• Multivariate cryptography

• Hash-based cryptography

• Isogeny-based cryptography
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The NIST post-quantum competition

• Public competition to standardize 

post-quantum schemes

• Public-key encryption

• Digital signatures

• Started in 2017

• Round 1: 69 submissions

• Round 2: 26 candidates selected

• Round 3: 15 candidates selected (current)

• Winner(s) expected in about a year 
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Algorithm (public-key encryption) Problem

Classic McEliece Code-based

CRYSTALS-KYBER Lattice-based

NTRU Lattice-based

SABER Lattice-based

BIKE Code-based

FrodoKEM Lattice-based

HQC Code-based

NTRU Prime Lattice-based

SIKE Isogeny-based

Algorithm (digital signatures) Problem

CRYSTALS-DILITHIUM Lattice-based

FALCON Lattice-based

Rainbow Multivariate-based

GeMSS Multivariate-based

Picnic ZKP

SPHINCS+ Hash-based



• Very versatile computational problems

• Public-key encryption

• Digital signatures

• Hash functions

• Fully homomorphic encryption

• Key exchange

• Leads to efficient and compact schemes

• Based on hardness of problems in algebraic number theory

• Believed to be hard also for quantum computers

Lattice-based cryptography
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Shortest vector problem

Closest vector problem



Lattice-based cryptography
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https://cr.yp.to/talks/2017.12.28/slides-dan+nadia+tanja-20171228-latticehacks-16x9.pdf

https://cr.yp.to/talks/2017.12.28/slides-dan+nadia+tanja-20171228-latticehacks-16x9.pdf


Learn more about post-quantum cryptography?

• Want to learn more about post-quantum cryptography?

• Sign up for TEK5550 - Advanced Topics in Cryptology next spring!
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https://www.uio.no/studier/emner/matnat/its/TEK5550/index-eng.html


End of course
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Next week

• Summary lecture

• Nothing planned; tell me want you want me to repeat/explain further

• Exam

• Digital home exam

• Wednesday November 25

• 4 hours (possibly +0.5)

• Format: single PDF file made available on Inspera and Canvas (similar to midterm)

• Answers are typed directly into Inspera (no PDF upload); will create forms that mirrors problems in 

exam PDF

• NO collaboration is allowed

• Students may be picked out for conversations to prove ownership of answer


