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NSA Says It “Must Act Now”
Against the Quantum Computing
Threat

The National Security Agency is worried that quantum
computers will neutralize our best encryption —but doesn't yet
know what to do about that problem.

by Tom Simonite  February 3, 2016



Quantum computing — the starting point
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Elements of (Quantum) computing

 Three elements of all computations: data, operations, results

« Quantum computation
« Data = qubit
« Operation = quantum gate
* Results = measurements =
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Qubits

Classical bit: O ® ’

)
p—

Qubit:
Can be in a superposition of two basic states |0) and |1)

) = «]0) + 1) a,B €C a2 + |82 =1

But we can never observe a and £ directly!
Must measure |y) to obtain its value = state randomly collapses to either |0) or |1)
What's the probability of observing |0) or |1)?

Pr[measure |¢) = |0)] = |a|?

Pr[measure [¢) = |1)] = |S]?




Quantum computation — quantum gates

« Classic bits are transformed using logical gates AND  NAND OR NOR
> -
NOT XOR XNOR
Operator Gate(s) Matrix
Pauli-X (X) X —P- i
* Qubits are transformed using
quantum gates Pauli-Z (Z) —Z o 9
Hadamard (H) —H[— % } _}
) = al0) + BI1) » [P') = a'|0) + B'|1) i -

oo =O
O OO

1
Controlled Not 0
(CNOT, CX) 0



(Quantum) NOT-gate (or X gate)

X
0) = [1)
[) = l0) + B11)

X
1) » [0) X gate: |0)=<é>

“=[; o] 0= (;)

a|0) + B|1) 5 £10) + a|1) '”:((1))

X(|0)) = X(é) - (2) X(|1)) = X@ - (3) X(lp)) = X(Z) = 7
Fall)-C) Eal6)-G) [ al(s)- ()



The Z gate

10) 5 10) ) = |0) + BI1)
1) 5 1) Z gate: o |0>=<é>
_ )=
a|0) + B|1) 5 a|0) — B|1) ’ [0 _1] ¢ <ﬁ> '”:((1))

#(o)=(0) 2(1)=(7) 2(5) =
L al6)=6) L AI0-G) B S16)-()



The Hadamard or H gate

H [0)+]1)
|O) - Pr[measure |¢) = a|0) + £]1) = |0)] = |a|?
V2
Pr{measure [) = «[0) + 5|1) = [1)] = ||
H |0)—|1
0y 2101 2
\/i Pr[measure H|0) = |0)] = i =0.5
V2
1 2
H gate: Pr[measure H|1) = |1)] = [—=| = 0.5
) [1/\/7 /N2 V2
1/\/E _1/\/7 The Hadamard gate allows us to create random bits!

N2 N2 |1\ (142 N2 N2 o\ [ 1/V2
1/V2 —1/42 (0)‘ 1/4/2 1/V2 —1/42 <1>_ —1/42



Many other gates

Operator

Gate(s)

Matrix

Pauli-X (X)
Pauli-Y (Y)
Pauli-Z (Z)
Hadamard (H)
Phase (S, P)

7/8 (T)

Controlled Not
(CNOT, CX)

Controlled Z (CZ)

SWAP

Toffoli
(CCNOT,
CCX, TOFF)
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Quantum gates

Turns out all quantum gates can be described by matrices
 In fact, very special matrices: unitary matrices
« ... and only unitary matrices! (fact of nature)

Quantum operations are linear and can be combined

z X H z
[Yo) = [P1) = [2) = [h3) = [1ha)

ZHXZ|Y,) =

1 0
ZHXZ|0) = lo —1][1/&

|

|W4)

1/V2
1/V2

1/V2

—1/42
1/V2

] | [ 6

6)-

1/V2
1/V2

|

|0)

z
10)

X

= |1)
X

1) =

10)

0)

Zz
1) = |-1)

H [0)+]1)

10) =

V2

H [0)—11)

1) »

V2

X=

H =

1 0

0

1N2  1/N2
1N2 =12

|
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Quantum computers — multiple qubits

« A quantum computer consists of multiple qubits

[Yo1) = «[00) + £|01) + y[10) + 5]11) a,pB,y,6 €C

la|? + [B1Z + [y + 6] =1

« Can apply guantum gates to a subset of qubits in a multi-qubit state

single-qubit gate measurment
0) —H |- X —e H /I N
input 0) 1 L - ! -
0) DB
0) D
~N

two-qubit gate
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What makes quantum computation special?

 Warning: a quantum computer does not https://www.smbc-comics.com/comic/the-talk-3

"THE TALK®
BY 6COTT AARONSON Z ZACH WEANERSM\TH

simply "try out all solutions in parallel”

 The magic comes from allowing complex
(or even just negative real) superposition amplitudes

) = 2|0) + B[1)

« Can carefully choreograph computations so that
wrong answers "cancel" out their amplitudes, while
correct answers "combine"” (Qquantum interference)

NANAA

ANVANVANVANVAN JANVANIVANVA
\VIRVIRYIAVIAY, \VARVARVARVARY,
ANVANVANYANVAN JANVANVANYANVAN
\VARVARVERVERV/ \VARVARVARV)

 increases probability of measuring correct result
« only a few problems allow this choreography; speed up not possible for all computations


https://www.smbc-comics.com/comic/the-talk-3

Shor's algorithm

Polynomial-"Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer®
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Ahstract V-

Peter W. Short

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
triue when gquantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems, Lfficient randomized algorithms are given for
these Lwo problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, eg., the number of digits of the
integer to be lactored.

Keywords: algorithmic number theory, prime [actorizalion, diserete logarithms,
Chureh’s thesis, quantum computers, foundations of quantum mechanics, spin svstems,
Fourier transforms
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Factoring to order-finding

2,4,8,16,32,64,128,256,512,1024, ...

2,4,8,1,2,4,8,1,2,4,8,1,2 ... mod 15

2,4,8,16,11,1,2,4,8,16,11,1, 2 ... mod 21

these sequences are periodic
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Factoring to order-finding

N = pq N Ka)| = r

2
at,a? a3 ...,a",a',a’.. (modN)
| |

order of a = the smallest positive r such that a” = 1 (mod N)

o Euler’s theorem: for all a € Z
Fact: » must divide (p — 1)(g — 1)

a(.b(N) — a(p—l)(q—l) =1 (mod N)

]

Proof:
c p—-D@—-1)=sr+t 0<t<r

o g DD = g5+ = STt = (g")Sat =1-at =1modN = t=0 (since r is the smallest)

c p—-D@—-1) =sr Q.E.D.

Conclusion: learnr = we learn a factor of (p — 1)(g — 1)
repeat with a different a = learn another factor of (p — 1)(g — 1) (with high prob.)

eventually we learn full (p —1)(q —1) = can find p and ¢ (Problem set 10)
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Factoring to order-finding

N =pq P
at,a? a3 ...,a",a',a’.. (modN)
| |
| ]

order of a = the smallest positive r such that a” = 1 (mod N)

how likely is this for random a € Zy? Answer: very! (prob. > 0.5)

Suppose: riseven and a”/? # +1 1=t D1

Then: a" —1 = (a’"/z)2 —1=(a’?+1)(a”/?-1) =0 modN = N divides (a2 +1)(a"? - 1)

Then: N does not divide (a’/? + 1) or (a™/? — 1) = p divides (a’/2 + 1) and ¢ divides (a’/2 — 1)

...0or vice versa

Then: ged(a’™/2+1,N) =p

...and ged(a’/?2 —1,N) = ¢
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Shor's algorithm

Shor's algorithm

This is where the quantum

magic happens! \

Input: N = pg
Output: p (or q)

1. while true do

$ *
a—Zy

r « Ordery (a) // how to find?
if r is even then
x «a’?+ 1 (modN)
p < ged(x, N)
if p = 2 then
return p

90.\1.@91%9&/
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Shor’s algorithm

To factor N: find order of a in Z)

Problem: r can be very large
» Classical solutions take exponential time

Note: the function £ (i) = a mod N is periodic:
fl+kr)=a™™ =a'modN = (i)
 finding signal frequencies < finding signal period

Key ingredient of Shor's algorithm:
guantum Fourier transform (QFT)

time
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Consequences of Shor’s algorithm

Quantum order-finding algorithm can be implemented in O(k3) quantum gate steps (k = log N)

* (quantum) polynomial time (BQP)

Factoring is solvable in quantum polynomial time
« Totally breaks RSA

Modified Shor can also solve discrete logarithm problem
« Totally breaks discrete log-based crypto
 Including elliptic curve cryptography ®

Public-key crypto is dead...

Shor's algorithm

Input: N = pgq
Output: p (or q)

while true do

$ *
a—Zy

r « Ordery (a) // QFT++
if r is even then
x «a’?> +1 (mod N)
p < ged(x, N)
if p > 2 then
return p

C N
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The quantum menace

« How far away is a guantum computer?
* Nobody knows

« Building a large-scale qguantum computer is a huge
engineering challenge

« very susceptible to noise (decoherence)
* requires quantum error correction (is it even possible?)

« many physical qubits needed to simulate a single
logical qubit
» =~ 1000 physical qubits needed for 1 logical qubit
« =~ 1000 logical qubits needed for Shor's algorithm
» largest (known) guantum computers:

~ 65 physical qubits (IBM; 2020) (no error correction)
~ 53 physical qubits (Gooqgle; 2019) (no error correction; demonstrated quantum supremacy)
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https://www.sciencemag.org/news/2020/09/ibm-promises-1000-qubit-quantum-computer-milestone-2023
https://blog.google/perspectives/sundar-pichai/what-our-quantum-computing-milestone-means/

Dealing with quantum computers

« Symmetric cryptography
- Grover's algorithm: solves 0(2™) problems in 0(2™/2) quantum steps
« Solution: double key-lengths (128 — 256)

* Quantum cryptography
« Use quantum mechanics to build cryptography

« Post-quantum cryptography
« Classical algorithms believed to withstand quantum attacks
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Post-quantum cryptography

« Public-key cryptography based on problems other than factoring and discrete logarithms

« Top candidates:
« Lattice-based cryptography
« Code-based cryptography
« Multivariate cryptography
« Hash-based cryptography

« Isogeny-based cryptography
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The NIST post-quantum competition

Public competition to standardize
post-quantum schemes

Public-key encryption
Digital signatures

Started in 2017

Round 1: 69 submissions
Round 2: 26 candidates selected
Round 3: 15 candidates selected

Winner(s) expected in about a year

(current)

Algorithm (public-key encryption)

Problem

Classic McEliece
CRYSTALS-KYBER
NTRU

SABER

BIKE

FrodoKEM

HQC

NTRU Prime

SIKE

Code-based
Lattice-based
Lattice-based
Lattice-based
Code-based
Lattice-based
Code-based
Lattice-based

Isogeny-based

Algorithm (digital signatures)

Problem

CRYSTALS-DILITHIUM
FALCON

Rainbow

GeMSS

Picnic

SPHINCS+

Lattice-based
Lattice-based
Multivariate-based
Multivariate-based
ZKP

Hash-based
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Lattice-based cryptography

* Very versatile computational problems
 Public-key encryption Shortest vector problem
 Digital signatures
« Hash functions
* Fully homomorphic encryption
« Key exchange

« Leads to efficient and compact schemes

« Based on hardness of problems in algebraic number theory o ©
« Believed to be hard also for quantum computers o ©
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Lattice-based cryptography
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https://cr.yp.to/talks/2017.12.28/slides-dan+nadia+tanja-20171228-latticehacks-16x9.pdf

Learn more about post-quantum cryptography?

« Want to learn more about post-quantum cryptography?

« Sign up for TEK5550 - Advanced Topics in Cryptology next spring!

40


https://www.uio.no/studier/emner/matnat/its/TEK5550/index-eng.html

End of course
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Next week

« Summary lecture

« Nothing planned; tell me want you want me to repeat/explain further

« Exam
« Digital home exam
« Wednesday November 25
* 4 hours (possibly +0.5)
« Format: single PDF file made available on Inspera and Canvas (similar to midterm)

« Answers are typed directly into Inspera (no PDF upload); will create forms that mirrors problems in
exam PDF

* NO collaboration is allowed
« Students may be picked out for conversations to prove ownership of answer



