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ldeal solution: secure channels

How to build?
Internet

Al
ice / Boh

Adversary
Security goals:

« Data privacy: adversary should not be able to read message M v
« Data integrity: adversary should not be able to modify message M v/
« Data authenticity: message M really originated from Alice v



Creating secure channels: encryption schemes

Alice Internet
Bob
K K
C
e M — g S5sssonnnenas
M/ L
Adversary
& : encryption algorithm (public) K . encryption / decryption key (secret)

D : decryption algorithm (public)



Symmetric key distribution problem

* One user needs to store N symmetric keys
when communicating with N other users

N(N-1)

= O(N?) keys in total -
2 > G \
- Difficult to store and manage so many &= 2~ @i “v'

keys securely / ,A .

N
- Partial solution: key distribution centers D

* One central authority hands out temporary keys
* O(N) (long-term) keys needed (to the KDC) e

. . eded {to L N7
« Might be a feasible solution in a single organization / a

« Single point of failure
« What about the internet?




The public-key revolution



Diffie-Hellman key exchange

 Discovered in the 1970's

« Allows two parties to establish a shared secret
without ever having met

A

Ralph Merkle
Martin Hellman

« Diffie & Hellman paper also introduced:
« Public-key encryption
 Digital signatures

New Directions in Cryptography

Invited Paper

Whitfield Diffie and Martin E. Hellman

Abstract Two kinds of contemporary developments in cryp-
tography are examined. Widening applications of teleprocess-
ing have given rise to a need for new types of cryptographic
systems, which minimize the need for secure key distribution
channels and supply the equivalent of a written signature. This
paper suggests ways to solve these currently open problems.
It also discusses how the theories of communication and compu-
tation are beginning to provide the tools to solve cryptographic
problems of long standing.

1 INTRODUCTION

We stand today on the brink of a revolution in cryptography.
The development of cheap digital hardware has freed it from
the design limitations of mechanical computing and brought
the cost of high grade cryptographic devices down to where
they can be used in such commercial applications as remote
cash dispensers and computer terminals. In turn, such applica-
tions create a need for new types of cryptographic systems
which minimize the necessity of secure key distribution chan-
nels and supply the equivalent of a written signature. At the
same time, theoretical developments in information theory and
computer science show promise of providing provably secure
cryptosystems, changing this ancient art into a science.

The development of computer controlled communication net-

communications over an insecure channel order to use cryptog-
raphy to insure privacy, however, it currently necessary for the
communicating parties to share a key which is known to no
one else. This is done by sending the key in advance over some
secure channel such a private courier or registered mail. A
private conversation between two people with no prior acquain-
tance is a common occurrence in business, however, and it is
unrealistic to expect initial business contacts to be postponed
long enough for keys to be transmitted by some physical means.
The cost and delay imposed by this key distribution problem
is a major barrier to the transfer of business communications
to large teleprocessing networks.

Section III proposes two approaches to transmitting keying
information over public (i.e., insecure) channel without compro-
mising the security of the system. In public key cryptosystem
enciphering and deciphering are governed by distinct keys, E
and D, such that computing D from E is computationally infeasi-
ble (e.g.. requiring 10'® instructions). The enciphering key
E can thus be publicly disclosed without compromising the
deciphering key D. Each user of the network can, therefore,
place his enciphering key in a public directory. This enables
any user of the system to send a message to any other user
enciphered in such a way that only the intended receiver is
able to decipher it. As such, a public key cryptosystem is
multiple access cipher. A private conversation can therefore be

Whitfield Diffie




Basic goals of cryptography

Message privacy

Message integrity /
authentication

Symmetric keys

Symmetric encryption

Message authentication
codes (MAC)

Asymmetric keys

Asymmetric encryption
(a.k.a. public-key
encryption)

Digital signatures



Diffie-Hellman key exchange — idea




Diffie-Hellman key exchange — idea




Diffie-Hellman key exchange + authenticated encryption
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Public-key encryption
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Constructing asymmetric cryptography:

group theory + number theory
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A different kind of primitives

Symmetric crypto boils down to the security of a few primitives
« Block ciphers, PRFs, hash functions

(A& & & [o [ &k [6] &] IIH\IIH\IIHIHHI

-« Good candidates: AES-256, SHA2-256 - ﬁhﬁ(@ flf),(%’é ioh po00 i 299 |
 Why are these considered secure? : %; e
« Answer: lots and lots of cryptanalysis Wﬁg lfl s - |:|“]‘ |'[|1]H J[“JH
« However, they are artificial and man-made RN e e e T
« Want asymmetric crypto to be based on a few well-studied primitives too
« Candidates now come from a different place:
« hard mathematical problems Zy = 2;91 2 Z;z X eee X Z;;t
« (Good candidates: discrete logarithm problem, factoring aN)
« Much more algebraic structure C < M° (0 ©
“P G x G
2 > GT

v =2"+ar+b 13



Preliminaries

(integers) Z={.,-2,-1,01,23,..}

(reals) R = the real numbers
(integers “mod n”) Z,=1{0,1,2,..,n—1}

(integers ‘mod p)  Z, ={0,1,2,...,p — 1}

Examples:
Z,,=1{0,1,23,4,5,6,7,8,9,10}

Z:, =1{1,2,3,4,5,6,7,8,9,10}

R* = R\ {0}

Z;, = Z, \ {0}

14



Group — definition

Gefinition: A group (G,°) is a set G together with a binary operation o satisfying the following \
axioms.

Gr. (aecb)oc=ao(boc)forallab,c€G (associativity)
¢2: 3JeeGsuchthateoca=ace=aforallaecG (identity)
G3: Vae€Gthereexists a™! € Gsuchthataca™l=atoa=ce (inverse)

\_ /

A group is abelian/commutative if: aocb=>boa foralla,b € G

The order of a group is the number of elements in G, denoted |G|

15



Grou ps — exam p | es (" Definition: Agroup (G,e) ... )
Gl: (aeb)oc=ac(boc) (associativity)
G2: de€G:eca=ace=a (identity)
G3: 3a' €G: acal=aloa=e (inverse)
.
Groups Not groups
(Z,+) =0 "377"=-3 (Z,,) 2= (Z,-) A-2-3#1-(2-3)
(R,+) e=0 "9/ v =—-9/7 (R*,) e=1 9/D*=7/9 (R,) 0-x=17
(an +n) e=0 "37!"=x: 3+x=0modn (Zn' 'n) 2x = 1 (mod 4)?
*x e=1 .
(23, ) (Zp, )
"371"=x: 3-x=1modp
(G,o) (Z4r +4~) (G;*)

(Go) (Z3,+3) o le|lal|b]|c +, 10| 1|23 x |e|lal|lb]|c
°cl1€e|da +; 1 0| 1|2 e|lel|lal|b]|c o0 1] 2]|3 e|lel|lal|b]|c
e|le|alb 010 (1] 2 alal|lb|c|e 11112 (3]0 alal|le]|c|b
ala|b]|e 1111210 b c | e | a 21213011 b|b|c|el|a
b |b|e]|a 212 (0]1 c|lclel|lalb 31310 1]2 clc|b|al]e
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Group arithmetic

0%
n
gnEgoegoe-og
- Z (gHn
n m
Fact: 9"g™ =go-ogogo-og=g
n+m

(Z,+):

15

"315" =34+34+3+4+.-+43=15-3
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Cyclic groups

(Definition: A group (G,o) is cyclic if there exists g € G such that )
¢G={g'liez}={.,97%9749%9% 9% 4% ..}
Element g is called a generator for G and we write (G,°) = (g)
\_ J
Examples: Not cyclic groups:

(Z,+) =(1) (R,+) (R*))
(Zn; +n) — <1> (G,*x)
(Z*,‘) = (a> * | e|lal| b | c

(Z5,)) = (3) ={39,3%,32%,33,3%,3°} ={1,3,2,6,4,5}
= (5) = {5951, 52 53 5% 55} = {1,5,4,6,2,3)}
# (2) ={20,21,22 23 24 25} =1{1,2,4,1,2,4} = {1, 2,4}
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Subgroups

(Definition: AsetH € G is asubgroup, written H < G, if h
Ya,b e H: aob€H

\_ J
Fact: a subgroup H is a group
Examples: posi;[iv/ereal numbers

{e} < G (for all groups) R, < (R%,)

G < G (for all groups) {1,-1} < (R",)

2Z ={...,—2,0,2,4,6,..} < (Z,+) (20) < (10) < (5) < (Z40, 1)

32 ={...,-3,0,3,6,9,..} < (Z,+)

(5) =1{0,5,10, ..., 35}

(10) = {0, 10, 20, 30}
(20) = {0, 20}

19



Cyclic groups

(Theorem: if (G,0) is a finite group, then for all g € G: h
Gl = ¢
\_ & J
Proof (finite cyclic groups):
G
Gl = {g)| =n
e gl gz gS gn—l gn gn+1 gn+2
g"=9° = g'i=e = gi=ze j<n contradiction!
Corollary |- gi — gimodn — gimodIGI ]
-

Corollary Il (Lagrange's theorem): if H < G then the order of H divides the order of ¢ (i.e |H| | |G])

.

20



Groups of prime order

[Corollary Il (Lagrange's theorem): if H < G then the order of H divides the order of G ]

Fact: any prime-order group is cyclic
Fact: any non-trivial element (+ e) in a prime-order group Is a generator

Warning: (Z;,-) is not a prime-order group! |Z;|=p—1

Suppose p = 2q + 1, with g being prime; what are the possible sub-groups of (Z;,)?

Zpl|=p—1=2q Example: Z%, ={1,2,3,4,5,6,7,8,9,10} {1} <73,
(o 11=2-5+1 (1,-1} = {1,10} < Z},
zo =] L
=) H, |H| = q H=(3)=(4)=()=(9)={134509} <7},
Z*
N Z7,<Zi;

21



Before the break

 Groups
« Subgroups
« Cyclic groups

* (Zp)

* Prime order groups
- Not (Z3,")! (order p — 1)
- H<(Z;,) (prime-order subgroup)

22



Diffie-Hellman

#:
\*

$
a—{1,..,1Gl} <

7 « B = (gb)a — gab

G =(9)

A=g“

B = gb
Claim: Z = 7'

23



Diffie-Hellman — example

&
\"

21019 = (2)

570

&

72

$
493 «{1,...,1018} <

570 « 2%73 mod 1019

7 « 7243 mod 1019 = 531

:

$
901 « {1, ...,1018}
72 « 2°°1 10d 1019

7' «570°°2mod 1019 =531

24



Diffie-Hellman

={(9)

&
N

¢ aY:
a1, .. 16D < \\/\

:
> ’

$
b<{1,..,1G|}

Z < B%=(g")* =g 7'« AP = (gM)P= gab

2

Security:
« Must be hard to compute Z « g%’ given g, 4, B (DH assumption)
« Must be hard to find a (or b) given g, A, B (DLOG assumption)

Doesn't work: Ao B = g%o gl = g@tP = g%P

25



Discrete logarithm (DLOG) problem

Exp glg (4)

$
1. x<{12,..,1G]}
. Xeg”
3. x" « AX)
4
returnx = x

Public: ¢ = (g)

Challenger
’ 1,2 G
X x <_{ )=y = | |}
< X < g*

Adversary wins if x" = x
In other words: x" = DLog,(X)

(Definition: The DLOG-advantage of an adversary A Is

Advg'8(4) = Pr [Expgf;g(A) N true]
\_

~

26



Diffie-Hellman problem

Public: G = (g)
Expd? (4) Challenger
$
$
1. xye{12 ..,1G]} Yy x,y—{12,.., |G|}
2. X « gx < X « gx
3. Yeg? Y « g¥
4.z« AX,Y)
5.  returng? = gV

Adversary wins if gz = g*¥

Definition: The DH-advantage of an adversary A4 is

Advgg (4) = Pr[Expgi’g (4) = true]
\§ J




DLOG vs. DH

Exp

dl
6o (A

Expd", (A)

$
x<{1,2,..,|G|}
X « g*
x' « A(X)
]
returnx = x

DLOG security < DH security

?
DLOG security = DH security

.

s W N

%,y {12, ., 1G]}
X «g*

Y « g7

z < AX,Y)
mmmgzégw

28



Algorithms for solving DLOG

» Generic algorithms; works for all (cyclic) groups

* Brute-force
1. Givengand X € G
2. fori=1,2,..,|G| checkif g' =X

« Are there better algorithms?

running time: O(|G|) = 0(2™M),

« Group-specific algorithms; exploits algebraic features of given group

given |G| = 2™

29



Solving DLOG: the baby-step giant-step algorithm

Given:
Find: x

X <« g*
Xo < Xg7°
X, < Xg™!
X, « Xg~?
X; < Xg7?

X, < Xg™*

XpeXg™

feg ne |V

o (J1eT-10g,Te) ~ o (J1e])

Find “collision”: X; =Y/

Xg_i. gi = gn] . gi
X = gnj+i

DLog(X) = DLog(g™*?)

X =nj+1i

Time + memory: 0( IGI)

yJ

Yn

30



Generic algorithms for solving DLOG

- Baby-step, giant-step: time 0 ( IGI) memory O (w/ IGI)

* Pollard's rho: time O ( |G|) memory 0(1)

« Pohlig-Hellman: time max 0 (/D) memory O(1) (1G] = p;*py?
p

 Nechaev '94 & Shoup '97: Solving DLog requires time Q( |G|) in generic groups

« Consequence: /|G| must be large enough
« |G| = 2128 only gives V2128 = 2% security
« |G| = 225 only gives V2256 = 2128 gecurity

|G| = 2°12 only gives V2512 = 2256 gecurity
. etc...

...ptet)
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Non-generic algorithms for DLOG

Unfortunately, (Z3,") is not a generic group!

Much faster specific algorithms exist for solving DLOG in Z,

* Index-calculus

 Elliptic-curve method

« Special number-field sieve (SNFS) exceptionally complicated algorithms, requiring very
. General number-field sieve (GNFS) |/ advanced mathematics!

Current DLOG-solving record: |Z;| ~ 279° using GNFS (Heninger et al. '19)
* Previous records: https://en.wikipedia.org/wiki/Discrete logarithm records

> 22048 typically required as a minimum today

Zy

32


https://en.wikipedia.org/wiki/Discrete_logarithm_records

Better alternatives to Z;‘,?

33



Elliptic curves

yi=x3+ax+b

a,b,x,y €ER
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Elliptic curves

P+0Q

yi=x3+ax+b

a,b,x,y €ER
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Elliptic curves

yi=x3+ax+b

a,b,x,y €ER
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Elliptic curves

P+0Q

yi=x3+ax+b

a,b,x,y €ER
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Elliptic curves

P+Q

yi=x3+ax+b

a,b,x,y €ER
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Elliptic curves

P+Q

y2=x3+ax+b

a,b,x,y €ER
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Elliptic curves

P+Q=0

/

|dentity element

yi=x3+ax+b

a,b,x,y €ER

40



Elliptic curves

P+P

yi=x3+ax+b

a,b,x,y €ER
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Elliptic curves

[
\

yi=x3+a'x+b

a',b',x,y €R

42



Elliptic curves

Theorem: the points on an elliptic curve, together with O,
Is an abelian group under "geometric point addition"

y2=x3+ax+b

a,b,x,y €ER

P P+ Q = (x1,¥1) + (x2,¥2) = (x3,¥3)
_ (xxp = 2a)x1%, — 4b(x; + x) + a?
¥ = (x1x5 + a)(xq + x3) + 2y,y, + 2b
] o P _ x1%2(x1 +x2) — x3((x1 +x3)% — X%, + a) —Y1Y2—b
Notation: (E(R),+) = an elliptic +0Q Y3 Y1+ 72
. |
curve group defined over the :
reals

43



Elliptic curves

yi=x3+ax+b

a,b,x,yEZp

P+Q = (x1,y1) + (x2,¥2) = (x3,53)

_ (xxp = 2a)x1%, — 4b(x; + x) + a?

*3 = (x1x5 + a)(xq + x3) + 2y,y, + 2b
_x20(xg +x3) — x3 (0 +22)% — X%, + @) — y1y, — b
P + Q I Y3 = v+ ¥
I
I [
Still valid!
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Elliptic curves

Theorem: the points on an elliptic curve, together with O,

Is an abelian group under "geometric point addition"

Notation: (E(Z,), +) = an elliptic
curve group defined over Z,,

88 R e B T I B B I ma T R

84 (E(Z88)'+) _______ o TS _______ _____________ ¢ }OO ......... (;"Q ............. _____ ____________ _

80 : . ] i i
e S O
?22_ . N N . . |
68 _ : ! :
64 F e o0

52 O _
- 5 S

60 Fooooto AU U NN N SRS SO SO O USRI 3
56__ ..... ........................... ....... R ' IEE R .................... femees ................... O ...... _ ...... ............ .

yi=x3+ax+b

a,b,x,y € Zgg

et — _— — —_— _ —_— - — —_— _—
o e g : : : : | : :

40 F g RORE ' Qe O
36 F e Q

L ! . ! . . 0 . .
24 Foe A . o)
20 B

12f — - o

32 froeebee b e b O o T e T PR SPRE beeeees SPRR SR
28 :_ ..... ............................ ....... O ........................ ....... .................... ...... B O L L E LT ....... ............ :

T SRS SR SR S S S S R S SIRTP S j

P+Q = (x1,y1) + (x2,¥2) = (x3,53)

= (x1x5 — 2a)x1x, — 4b(x1 + x3) + a?
3 (x1x5 + a)(xq + x3) + 2y,y, + 2b

_x20(xg +x3) — x3 (0 +22)% — X%, + @) — y1y, — b

Y3 yi+ ¥,
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E(Z,) - properties

» Recall: (Z3,") is not a generic group

« Specialized attacks (GNFS) exploit algebraic structure = parameters must be bigger to compensate
z;
« Bigger parameters = slower systems

> 22048 required for security today

- Currently no attacks that manage to exploit the algebraic structure of (E(Z3), +)
« Best-know attacks are generic attacks:
« Baby-step giant-step
 Pollard-rho
* efc...

 Nechaev '94 & Shoup '97: Generic algorithms for solving DLog requires time Q («/IGI)

« Consequently: elliptic curve crypto can use much smaller parameters
E(Z,)| = 2%5¢,2384 2512 common in practice

 Much faster than Z;-based crypto
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Cryptographic groups in practice

- (23, groups:

« TLS 1.3: five specific groups allowed
e Sjze ~ 22048 23072 24096 26144 28192

« |IKEvV2 (IPsec key exchange protocol): MODP groups

e sSjze =~ 2768, 21024, 21536, 2204—8, 23072)24—096, 26144,28192

« all p’s are safe primes (i.e., of the form p = 2q + 1 where q is prime)

- (E(z;),+) groups
* NIST groups: , P-256, P-384, P-521
« Curve25519 (E : y? = x3 4+ 486662x% + x and p = 22°> —19)
e Curved448 (E : y?+x%=1 —39081x%y? and p = 2%48 — 2224 _ 1)

(RFC 7919)

(RFC 7296 and RFC 3526)

(Daniel J. Bernstein)
(Mike Hamburg)
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N-party Diffie-Hellman

N-party Diffie-Hellman possible in N — 1 rounds

1-round N-party Diffie-Hellman:

« N = 2 — normal Diffie-Hellman
« N = 3 — Diffie-Hellman with bilinear pairings (Joux ’00)

« N = 4 — open problem
» Possible with multilinear maps (very advanced)
« But we don’t know any secure multilinear maps
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Summary

« Group theory
» Group definition (associativity, identity, inverses)
« Subgroups
» Cyclic (subgroups)

« Diffie-Hellman key exchange protocol described in a generic group
» Discrete logarithm (DLOG) problem and Diffie-Hellman (DH) problem must be hard in the concrete group used

« Two main groups used in cryptography (where DLOG and DH problems are believed to be hard):

» (Z;,") the group of non-zero integers modulo a prime p
- Best algorithm to solve DLOG is the General Number Field Sieve (GNFS) which exploits the algrabraic structure of Z,,

- (E(z,),+) elliptic curve groups

Elements are points satisfying y? = x3 + ax + b where a, b, x,y € Z,, (additionally, we need an identity element, which we
artificially define to be the element 0. Note that O does not lay on the curve)

Group operation is "addition of points on curve" where the operation is motivated by the geometric idea

GNFS does not apply; best-known DLOG algorithms are generic: baby-step, giant-step, Pollard-rho, Pohlig-Hellman

Can use much smaller parameters = much faster than (Z3,-)-based DH
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