
Introduction to Cryptography
TEK 4500 (Fall 2020)

Problem Set 3

Problem 1.
Read Chapter 5 in [BR] (Sections 5.6 and 5.8 can be skipped. The proofs in Section 5.7 can
be skipped on first reading, but it is recommended to have a look at it).

Problem 2.
An encryption scheme secure according to the IND-CPA definition is not required to hide
the length of the plaintext. This is captured in the formal IND-CPA security experiment
(see Fig. 1) by checking that the adversary does not submit unequal length messages M0,
M1 to be challenged on (see Lines 4+5 in Fig. 1). Suppose Lines 4+5 were not included
in Expind-cpa

Σ (A). Show how you can break any encryption scheme Σ = (KeyGen,Enc,Dec)
that doesn’t hide the plaintext length in this variant of IND-CPA.

Problem 3. [Problem 7.2 in [Ros]]
Let Σ = (KeyGen,Enc,Dec) be an encryption scheme having IND$-CPA security (recall
that in the IND$-CPA notion ciphertexts are required to be indistinguishable from random
strings (see the right-hand experiment in Fig. 2). From Σ define a new encryption scheme
Σ′ = (KeyGen,Enc′,Dec′), where the key generation algorithm is the same, but where the
encryption algorithm is defined as

Enc′K(M) = 00‖EncK(M),

and where Dec′ simply throws away the first two bits of the ciphertext and then calls Dec.
a) Does Σ′ have IND$-CPA security (according to Fig. 2)? If yes, give a justification; if

no, describe an adversary and calculate its IND$-CPA advantage.
b) Does Σ′ have IND-CPA security (according to Fig. 1)? If yes, give a justification; if

no, describe an adversary and calculate its IND-CPA advantage.

Problem 4.
Show that the CBC and CTR modes-of-operation are not IND-CCA secure (see definition
in Fig. 3) by describing concrete attacks and calculating their IND-CCA advantages.

1

Expind-cpa
Σ (A)

1: b← {0, 1}
2: K

$← Σ.KeyGen
3: (M0,M1)← AEK(·) . Find stage
4: if |M0| 6= |M1| then
5: return ⊥
6: C∗ ← Σ.Enc(K,Mb)
7: b′ ← AEK(·)(C∗) . Guess stage
8: return b′

?
= b

EK(M):
1: return Σ.Enc(K,M)

Advind-cpa
Σ (A) =

∣∣∣2 · Pr[Expind-cpa
Σ (A)⇒ true]− 1

∣∣∣
Figure 1: IND-CPA security experiment.

Expind$-cpa
Σ (A)

1: b← {0, 1}
2: K

$← Σ.KeyGen
3: b′ ← A$b(·)

4: return b′
?
= b

$b(M):
1: C1 ← Σ.Enc(K,M)

2: C0
$← {0, 1}|C1|

3: return Cb

Advind$-cpa
Σ (A) =

∣∣∣2 · Pr[Expind$-cpa
Σ (A)⇒ true]− 1

∣∣∣
Figure 2: IND$-CPA security experiment.

2

Expind-cca
Σ (A)

1: b← {0, 1}
2: K

$← Σ.KeyGen
3: (M0,M1)← AEK(·),DK(·)

4: if |M0| 6= |M1| then
5: return ⊥
6: C∗ ← Σ.Enc(K,Mb)
7: b′ ← AEK(·),DK(·)(C∗)

8: return b′
?
= b

EK(M):
1: return Σ.Enc(K,M)

DK(C):
1: if C = C∗ then
2: return ⊥
3: return Σ.Dec(K,D)

Advind-cca
Σ (A)) =

∣∣2 · Pr[Expind-cca
Σ (A)⇒ true]− 1

∣∣
Figure 3: IND-CCA security experiment.

3

Problem 5. [Problem 3.21 in [KL07]]
Let Σ1 = (Enc1,Dec1) and Σ2 = (Enc2,Dec2) be two encryption schemes for which it is
known that at least one is IND-CPA-secure. The problem is that you don’t know which
one is IND-CPA-secure and which one may not be. Show how to construct an encryption
scheme Σ that is guaranteed to be IND-CPA-secure as long as at least one of Σ1 or Σ2 is
IND-CPA-secure. Give a high-level justification for why your scheme is secure.

Hint 1: Split your original plaintext into two plaintexts so that knowledge about only one
reveals no information about the original plaintext, but knowledge of both allows you to
recover the original plaintext.

Hint 2: Look up secret sharing; in particular, look at Section 3.2 in [Ros].

Problem 6.
The defining equations for CBC encryption are

C0
$← {0, 1}n (1)

Ci ← EK(Mi ⊕ Ci−1) i = 1, . . . , ` (2)
where E is a block cipher with n-bit blocks. Write the corresponding equations for CBC
decryption.

Problem 7. [Problem 5.5 in [BR]]
The CBC-Implicit mode of operation is a CBC variant in which the IV that is used for
the very first message to be encrypted is random, while the IV used for each subsequent
encrypted message is the last block of ciphertext that was generated (see Fig. 4). The
scheme is probabilistic and stateful. Show that CBC-Implicit is insecure by giving a simple
and efficient adversary that breaks it in the IND-CPA sense.

Note: Curiously, CBC-Implicit was how CBC was implemented in TLS 1.0. This was
patched in TLS 1.1 and higher.

References

[BR] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. https:

//web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf.
[KL07] Jonathan Katz and Yehuda Lindell. Introduction toModern Cryptography. Chapman

and Hall/CRC Press, 2007.
[Ros] Mike Rosulek. The Joy of Cryptography, (draft Feb 6, 2020). https://web.engr.

oregonstate.edu/~rosulekm/crypto/crypto.pdf.

4

https://en.wikipedia.org/wiki/Secret_sharing#Trivial_secret_sharing
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://web.engr.oregonstate.edu/~rosulekm/crypto/crypto.pdf
https://web.engr.oregonstate.edu/~rosulekm/crypto/crypto.pdf

EK

P1

C1

EK

P2

C2

EK

P3

C3

IV

C0

EK

P ′1

C ′1

EK

P ′2

C ′2

EK

P ′1

C ′1

EK

P ′2

C ′2

Figure 4: CBC-Implicit mode-of-operation illustrated for two messages M1 = P1‖P2‖P3

and M2 = P ′1‖P ′2. The IV used for the second message is the last ciphertext block of the
previous ciphertext, i.e., C3.

5

