Introduction to Cryptography
TEK 4500 (Fall 2020)
Problem Set 5

Problem 1.
Read Chapter 9.1-9.2 and 12 in [Ros] (Section 12.3 can be skipped).

Problem 2.
Let CTR$ be the CTR$ encryption scheme. Define X to be the following encryption scheme:

Y.Enc(K, M) = CTRS$.Enc(K, M||CRC32(M)),

where CRC32 : {0,1}* — {0,1}3? is the well-known error-detecting code. Suppose C' =
Co||C1]|C2 was the S-encryption of message M = 0'28, where Cj is the (random) IV of
CTR$ and |C| = 32. Explain how you would modify C so that it instead decrypts to
M = 1128.

Would changing CRC32 to another function, say a strong hash function like SHA2-256 or
a truly random (but public) function p, change anything?

Problem 3. [Problem 7.3 in [BR]]

Let ¥ = (KeyGen, Enc, Dec) be a symmetric encryption scheme and let IT = (KeyGen, , Tag, Vrfy)
be a message authentication code. Alice (A) and Bob (B) share a secret key K = (K1, K3)

where K; i 3.KeyGen and K> i I1.KeyGen. Alice wants to send messages to Bob in a
private and authenticated way. Consider her sending each of the following as a means to
this end. For each, say whether it is a secure way or not, and briefly justify your answer.
(In the cases where the method is good, you don’t have to give a proof, just the intuition.)

(a) M, Tagg, (Enck, (M))
(b) Enck, (M, Tagg,(M))

(c) Tagg, (Encr, (M))


https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/SHA-2

Exp$s(A) Evy(M):

’ Oy & 1]
K& Y. KeyGen 2 C_O < {0,1}™
Ciphertexts < [] 3: Ciphertexts.add(C3)
b o AEVSH().DVLy() 4: return C}

return b’ = b
Dv1y(C):
1: if C € Ciphertexts then
2 return |
3: My + ¥.Dec(K,C)
4: My <+ L
5: return M,

Adv(A) = |2 Pr[Expss(A) = true] — 1|

Figure 1: Authenticated encryption (AE) security experiment and AE-advantage defini-
tion.

(d) Note: this exercise was not included in my original write-up; it is included here
for completeness.

Encg, (M), Tagg, (M)
(6) EnCKl (M), EnCK1 (TagKg (M))

(f) C, Tagg,(C), where C < Encg, (M)

Note: this exercise originally said Encg, (M), Tagy, (Encg, (M)), for which it’s not
clear how you would do decryption.

(g) Enck, (M, A) where A encodes the identity of Alice; B decrypts the received cipher-
text C' and checks that the second half of the plaintext is “A”.

In analyzing these schemes, you should assume that ¥ is IND$-CPA secure and that II
is UF-CMA secure, but nothing else; for an option to be good it must work for any choice
of a secure encryption scheme and a secure MAC.

Now, out of all the ways you deemed secure, suppose you had to choose one to imple-
ment for a network security application. Taking performance issues into account, do all
the schemes look pretty much the same, or is there one you would prefer?



Problem 4. [Problem 9.1 in [BS]]

Note: this exercise has been updated, see details further below.

Let ¥ be an AE-secure cipher. Consider the following two derived ciphers:

¥1.KeyGen: ¥1.Enc(K, M): ¥1.Dec(K,C):
1: return X.KeyGen 1: C1 + X.Enc(K, M) 1: Parse C as (C1,C2)

2: Cy < Y.Enc(K, M) 2: M, < X.Dec(K,Cy)
3: return (C4,C>) 3: My < ¥.Dec(K, Cs)
4: if My = M, then
5: return M;
6: else
7 return L
Yo.KeyGen: Yo.Enc(K, M): Y9.Dec(K, C):

1: return X.KeyGen 1: C + X.Enc(K, M)
2: return (C,C)

1: Parse C as (C1,C>)

2: if C7 = C5 then

3: return X.Dec(K, Cy)
4: else

5 return L

Explain at a high level why ¥, is AE-secure, but ¥; is not.

Update: the first claim is false: s is not AE-secure according to Fig. 1. This exercise was
taken from [BS] who uses a slightly weaker definition of AE than us for which the claim
is true. Namely, in [BS]’s definition an encryption scheme is said to be AE-secure if it
is IND-CPA secure (note: not IND$-CPA secure) and that the adversary can’t create new
ciphertexts that decrypt to anything other than 1.!

So updated exercise: show that 3, is not AE-secure (according to Fig. 1), but that it is
IND-CPA secure (+ that the adversary can’t forge new ciphertexts).

Problem 5.

An important point about the Encrypt-then-MAC construction is that the encryption scheme
and the MAC scheme must use independent keys. In this problem we’ll look at what can
go wrong if this is not the case.

"More formally, let’s denote [BS]’s definition of AE as AE™. Then a scheme is said to be AE™ secure if it
satisfies two separate notions simultaneously: IND-CPA (privacy) and something called integrity of ciphertexts
(INT-CTXT). Basically, INT-CTXT is to an encryption scheme what UF-CMA security is to a MAC scheme: the
adversary shouldn’t be able to forge new ciphertexts.



a) As a warm-up, suppose we are only interested in encrypting messages of exactly
n/2-bits for some small n (say n = 128) and that we have access to a block cipher
E:{0,1}* x {0,1}" — {0, 1}" with the following property:

e F is asecure PRP; and

e the inverse direction of F, i.e.,, D (Y) = E;'(Y) is also a secure PRP.

A block cipher with this property is said to be a strong block cipher. Thus, a strong
block cipher is a secure PRP no matter if you're using it in the “forward” direction
or in the “backward” direction. As an example, AES is believed to be a strong block
cipher.

Given E we construct the following encryption and MAC schemes, defined by their
Enc and Tag algorithms (the remaining algorithms are the obvious ones):

e Enc(K,M) = Ex(R||M), where M € {0,1}"/? and R & {0,1}"/? is a random
string.
o Tag(K, M) = Dy (M).

It is possible to show that if E is a strong PRP then Enc is IND-CPA secure and that
Tag is UF-CMA secure?. However, show that the Encrypt-then-MAC combination of
Enc and Tag is not secure if you're using the same key K for both.

b) Suppose instead we're using Encrypt-then-MAC with CBC$-mode for encryption
and CBC-MAC for authentication, and that we're careful to only encrypt messages
having exactly ¢ n-bit blocks. From class we know that CBC$-mode encryption is
IND-CPA secure and that CBC-MAC is UF-CMA secure as long as we’re only MAC-
ing messages having ¢ + 1 blocks. However, show that the Encrypt-then-MAC com-
bination of the two is not secure if you're using the same key K for both.

Hint: Consider first ¢ = 1.

Problem 6. [IND-CCA security does not imply AE security |

In this exercise we will see that IND-CCA security (ref. Fig ??) does not imply AE security
(ref. Fig 1). In other words, AE is a stronger security notion than IND-CCA (since, recall
from the lecture, that AE security implies IND-CCA security). Let ¥ = (KeyGen, Enc, Dec)
be an IND-CCA secure encryption scheme. Define the following derived encryption scheme:

*The last point is trivial given what we saw in class: any secure PRF is also a good fixed-length MAC, and
all secure PRPs are also secure PRFs.



Y’ KeyGen: ¥ .Enc(K, M): ¥ .Dec(K, C):

1: return X.KeyGen 1: C « X.Enc(K, M) 1: Parse C as b||C’ where b is a bit
2: return 0||C 2: if b = 0 then
3: return X.Dec(K, C')
4: else
5: return 0

a) Argue why Y’ is also IND-CCA secure.

b) Show that ¥’ is AE insecure by demonstrating a concrete attack. Calculate the AE-
advantage of your attack. That is, compute Adv3y (A), where A is the adversary that
runs your attack.

Hint: You can attack both the privacy and the integrity of >'.

Problem 7. [Nonce-reuse in GCM leaks the authentication key. *Optional*]

Note: This isn't really an exercise per se (there isn't anything for you to answer!), instead,
it is a write-up of how bad the GCM mode can fail if you ever reuse a nonce. While op-
tional, reading through this exercise is a good way for you to become more familiar with
the GCM mode-of-operation. Also, this exercise requires some familiarity with polynomi-
als. If you want to read more about the (practical) consequences of nonce-reuse in GCM
inside the TLS protocol, have a look at the paper “Nonce-Disrespecting Adversaries: Practical
Forgery Attacks on GCM in TLS” (link) by Hanno Bock, Aaron Zauner, Sean Devlin, Juraj
Somorovsky, and Philipp Jovanovic.

Recall that the GCM mode-of-operation is essentially an instance of the Encrypt-then-
MAC paradigm. In particular, to encrypt a message M GCM first encrypts M with (nonce-
based) CTR to produce a ciphertext C. Then it applies a (nonce-based) MAC to C' called
GMAC to produce the final tag 7. In particular: 7' = GMAC(H, S, C)) where H is the MAC
key and S is the nonce for GMAC. See Fig. 2 for details. Note that when GMAC is used
inside GCM, both H and S are actually derived from the GCM nonce N and key K.

The GMAC function, which produces the tag 7" in GCM, can be considered to be an
evaluation of a polynomial

9(X) = Z%‘Xi,

where the coefficients «; are determined by the values of the additional data AD and the
ciphertext C', where the constant term is the “one-time pad”-like value S. For example,
suppose the additional data consists of two blocks AD = A;||As, and the ciphertext of
three blocks C' = C||C3||C3 (as shown in Fig. 2). Then we get the polynomial:

9(X) = A1X% 4+ Ao X + C1X* + Co X + C3X* + LX + 5, (1)

5



https://eprint.iacr.org/2016/475.pdf

N = 96 bit nonce ctr+1 ctr+2 ctr+3

ctr = N||0311
H = Ey(0128)
S = Eg(N[|0%11)

fooLa ] [La ]l o ] [ ¢ | [ | IR
N
7

I \
1 1
1 ]
1 D D 4 VAN VA 1
1 N> \ N> N |
1 1
| |
1 *xH *H *H *xH *H *H 1
1 1
I 1
1 1
1 }— S .
| |
\ /
\ T /
~ -’

e e en e e En En e En En e Em Em S EE Em EE E EE Em En S Em En G EE Em Em E Em Em En e Em e e

Figure 2: GCM mode-of-operation. The internal MAC function GMAC circled.

where L encodes the length of A and C and S is a nonce-derived value. To compute the
GMAC tag on A and C we simply evaluate g(X) on the (secret) value H = Ex (0'?8):

T=g(H)=A1H® + AyH® + C1H* + C2H? + C3H? + LH + S.

It is very important that GCM never reuses the same nonce N twice for the same key
K. We will now show why.

Suppose two messages M and M’ have been GCM encrypted under the same nonce
(and key). For simplicity, assume there is no additional data and that the messages only
consist of a single 128-bit block so the corresponding ciphertext also only consist of a single
block C' and C".

Referring to (1), the corresponding GMAC polynomials then become:

g(X)=CX*+LX+S
J(X)=C'X*+LX +8S
where L encodes the length of C' (and C’) and S = Ex(N||03!1). In particular, note that

S is the same for both since they are reusing the nonce N.
To compute the tag on C' and C’ we simply evaluate g(X) and ¢/(X) on H = Ex (0'%®):

T=g(H)=CH*>+LH+ S (2)
T =¢(H)=C'H* + LH + S (3)



Now, the multiplication and addition happening in (2) and (3) is not actually normal
multiplication and addition over the integers, but rather happening in a finite field. Fortu-
nately, we don’t have to care about the details of finite fields here. The only thing we need
to know is that the addition in the finite field used by GCM is the same as a standard XOR
operation. In particular, this means that addition and subtraction is the same (which is
the case for XOR).

Thus, if we add T and 7" we get:

T+T =g(H)+g(H)=CH*+C'H* = (C + C')H? (4)

where we used the fact that the “LH + S” term is the same for both T"and 7", hence cancel
out (as happens when you XOR two equal values). Rearranging (4) we have:

(C+CYH* 4+ (T +T')=0. (5)

Notice that the only value we (the attacker) don’t know in (5) is H, since C, C’, T, and
T are all known to us. Thus, if we could solve (5) for H we would actually be able to forge
any GCM ciphertext! Why? Look at Fig. 2: the H value does not depend on the nonce N.
It is re-used for all GCM computations, and can thus be reused by us to create forgeries
on new ciphertexts. However, we still need the value S to create the final tag (again, refer
to Fig. 2). Fortunately, this is a not a big problem: when creating a forgery, we simply
reuse the nonce from a previous message from which we can learn S (since we know H).
Concretely, suppose we use the nonce IV from above in our future forgeries. This would
also require us to use the same S. But this S can easily be deduced from (2) since we now
know H (together with C, L, and T'):

S=T+CH?+LH (6)

With all of this in hand, let’s see how we would use it to forge an arbitrary cipher-
text, say C* = Cf||C5]|C5. For an added bonus, suppose we also want to include some
additional data AD = Aj. Our final output will then be:

N|ICTIGlICSIT™,
where N is the same N used to create C' and C” above, and T™* is computed as:
T* = A{H® + CH* + C3H? + C3H? + L*H + S,
where S is the value recovered in (6).

The only thing we still haven’t answered is how to actually solve for H in (5). However,
this is easy: the equation in (5) is a quadratic equation hence can be solved by simple
algebra (in particular, the quadratic formula which is also valid in finite fields).

Conclusion: Reusing the nonce (with the same key) in GCM is bad! It essentially leaks
the GMAC key (H') which more or less voids all authentication guarantees that GCM was
supposed to give. Thus, the lesson is: never resuse the nonce when using GCM.

7


https://en.wikipedia.org/wiki/Finite_field

References

[BR] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. https:
//web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main. pdf.

[BS] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography, (version
0.5, Jan. 2020). https://toc.cryptobook.us/.

[Ros| Mike Rosulek. The Joy of Cryptography, (draft Feb 6, 2020). https://web.engr.
oregonstate.edu/~rosulekm/crypto/crypto.pdf.


https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://toc.cryptobook.us/
https://web.engr.oregonstate.edu/~rosulekm/crypto/crypto.pdf
https://web.engr.oregonstate.edu/~rosulekm/crypto/crypto.pdf

