Introduction to Cryptography

TEK 4500 (Fall 2020) Problem Set 5

Problem 1.

Read Chapter 9.1–9.2 and 12 in [Ros] (Section 12.3 can be skipped).

Problem 2.

Let CTR\$ be the CTR\$ encryption scheme. Define Σ to be the following encryption scheme:

$$\Sigma.\mathsf{Enc}(K,M) = \mathsf{CTR}\$.\mathsf{Enc}(K,M||\mathsf{CRC32}(M)),$$

where CRC32 : $\{0,1\}^* \to \{0,1\}^{32}$ is the well-known error-detecting code. Suppose $C = C_0 \|C_1\|C_2$ was the Σ -encryption of message $M = 0^{128}$, where C_0 is the (random) IV of CTR\$ and $|C_2| = 32$. Explain how you would modify C so that it instead decrypts to $M' = 1^{128}$.

Would changing CRC32 to another function, say a strong hash function like SHA2-256 or a truly random (but public) function ρ , change anything?

Problem 3. [Problem 7.3 in [BR]]

Let $\Sigma=({\sf KeyGen},{\sf Enc},{\sf Dec})$ be a symmetric encryption scheme and let $\Pi=({\sf KeyGen},{\sf Tag},{\sf Vrfy})$ be a message authentication code. Alice (A) and Bob (B) share a secret key $K=(K_1,K_2)$ where $K_1 \stackrel{\$}{\leftarrow} \Sigma.{\sf KeyGen}$ and $K_2 \stackrel{\$}{\leftarrow} \Pi.{\sf KeyGen}$. Alice wants to send messages to Bob in a private and authenticated way. Consider her sending each of the following as a means to this end. For each, say whether it is a secure way or not, and briefly justify your answer. (In the cases where the method is good, you don't have to give a proof, just the intuition.)

- (a) M, $\mathsf{Tag}_{K_2}(\mathsf{Enc}_{K_1}(M))$
- (b) $\operatorname{Enc}_{K_1}(M, \operatorname{Tag}_{K_2}(M))$
- (c) $\mathsf{Tag}_{K_2}(\mathsf{Enc}_{K_1}(M))$

```
\mathbf{Exp}^{\mathsf{ae}}_{\Sigma}(\mathcal{A})
                                                                                                    \mathcal{E}v\$_b(M):
                                                                                                       1: C_1 \leftarrow \Sigma.\mathsf{Enc}(K,M)
  1: b \stackrel{\$}{\leftarrow} \{0,1\}
                                                                                                      2: C_0 \stackrel{\$}{\leftarrow} \{0,1\}^{|C_1|}
  2: K \xleftarrow{\$} \Sigma.KeyGen
                                                                                                       3: Ciphertexts.add(C_b)
  3: Ciphertexts ← []
                                                                                                       4: return C_b
  4: b' \leftarrow \mathcal{A}^{\mathcal{E}v\$_b(\cdot),\mathcal{D}v\perp_b(\cdot)}
  5: return b' = b
                                                                                                    \mathcal{D}\mathbf{v}\perp_b(C):
                                                                                                       1: if C \in Ciphertexts then
                                                                                                                    return \perp
                                                                                                       3: M_1 \leftarrow \Sigma.\mathsf{Dec}(K,C)
                                                                                                       4: M_0 \leftarrow \bot
                                                                                                       5: return M_b
 \mathbf{Adv}_{\Sigma}^{\mathsf{ae}}(\mathcal{A}) = |2 \cdot \Pr[\mathbf{Exp}_{\Sigma}^{\mathsf{ae}}(\mathcal{A}) \Rightarrow \mathsf{true}] - 1|
```

Figure 1: Authenticated encryption (AE) security experiment and AE-advantage definition.

(d) Note: this exercise was not included in my original write-up; it is included here for completeness.

$$\mathsf{Enc}_{K_1}(M)$$
, $\mathsf{Tag}_{K_2}(M)$

- (e) $\operatorname{Enc}_{K_1}(M)$, $\operatorname{Enc}_{K_1}(\operatorname{Tag}_{K_2}(M))$
- (f) C, $\mathsf{Tag}_{K_2}(C)$, where $C \leftarrow \mathsf{Enc}_{K_1}(M)$

Note: this exercise originally said $\operatorname{Enc}_{K_1}(M)$, $\operatorname{Tag}_{K_2}(\operatorname{Enc}_{K_1}(M))$, for which it's not clear how you would do decryption.

(g) $\operatorname{Enc}_{K_1}(M,A)$ where A encodes the identity of Alice; B decrypts the received ciphertext C and checks that the second half of the plaintext is "A".

In analyzing these schemes, you should assume that Σ is IND\$-CPA secure and that Π is UF-CMA secure, but nothing else; for an option to be good it must work for any choice of a secure encryption scheme and a secure MAC.

Now, out of all the ways you deemed secure, suppose you had to choose one to implement for a network security application. Taking performance issues into account, do all the schemes look pretty much the same, or is there one you would prefer?

Problem 4. [Problem 9.1 in [BS]]

Note: this exercise has been updated, see details further below.

Let Σ be an AE-secure cipher. Consider the following two derived ciphers:

Σ_1 .KeyGen: 1: return Σ .KeyGen	$\frac{\Sigma_1.Enc(K,M):}{1:\ C_1 \leftarrow \Sigma.Enc(K,M)}$ $2:\ C_2 \leftarrow \Sigma.Enc(K,M)$ $3:\ \mathbf{return}\ (C_1,C_2)$	
	$\frac{\Sigma_2.Enc(K,M):}{1:\ C\leftarrow\Sigma.Enc(K,M)}$ $2:\ \mathbf{return}\ (C,C)$	$\frac{\Sigma_2.Dec(K,C)\colon}{1\colon Parse\ C\ as\ (C_1,C_2)}$ $2\colon \ if\ C_1 = C_2\ then$ $3\colon return\ \Sigma.Dec(K,C_1)$ $4\colon \ else$ $5\colon return\ \bot$

Explain at a high level why Σ_2 is AE-secure, but Σ_1 is not.

Update: the first claim is false: Σ_2 is *not* AE-secure according to Fig. 1. This exercise was taken from [BS] who uses a slightly weaker definition of AE than us for which the claim *is* true. Namely, in [BS]'s definition an encryption scheme is said to be AE-secure if it is IND-CPA secure (note: *not* IND\$-CPA secure) *and* that the adversary can't create new ciphertexts that decrypt to anything other than \bot .¹

So updated exercise: show that Σ_2 is *not* AE-secure (according to Fig. 1), but that it is IND-CPA secure (+ that the adversary can't forge new ciphertexts).

Problem 5.

An important point about the Encrypt-then-MAC construction is that the encryption scheme and the MAC scheme must use *independent* keys. In this problem we'll look at what can go wrong if this is not the case.

 $^{^{1}}$ More formally, let's denote [BS]'s definition of AE as AE $^{-}$. Then a scheme is said to be AE $^{-}$ secure if it satisfies two separate notions simultaneously: IND-CPA (privacy) and something called *integrity of ciphertexts* (INT-CTXT). Basically, INT-CTXT is to an encryption scheme what UF-CMA security is to a MAC scheme: the adversary shouldn't be able to forge new ciphertexts.

- *a*) As a warm-up, suppose we are only interested in encrypting messages of exactly n/2-bits for some small n (say n=128) and that we have access to a block cipher $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ with the following property:
 - *E* is a secure PRP; and
 - the inverse direction of E, i.e., $D_K(Y) = E_K^{-1}(Y)$ is also a secure PRP.

A block cipher with this property is said to be a *strong* block cipher. Thus, a strong block cipher is a secure PRP no matter if you're using it in the "forward" direction or in the "backward" direction. As an example, AES is believed to be a strong block cipher.

Given E we construct the following encryption and MAC schemes, defined by their Enc and Tag algorithms (the remaining algorithms are the obvious ones):

- $\operatorname{Enc}(K, M) = E_K(R||M)$, where $M \in \{0, 1\}^{n/2}$ and $R \xleftarrow{\$} \{0, 1\}^{n/2}$ is a random string.
- $Tag(K, M) = D_K(M)$.

It is possible to show that if E is a strong PRP then Enc is IND-CPA secure and that Tag is UF-CMA secure². However, show that the Encrypt-then-MAC combination of Enc and Tag is *not* secure if you're using the same key K for both.

b) Suppose instead we're using Encrypt-then-MAC with CBC\$-mode for encryption and CBC-MAC for authentication, and that we're careful to only encrypt messages having exactly ℓ n-bit blocks. From class we know that CBC\$-mode encryption is IND-CPA secure and that CBC-MAC is UF-CMA secure as long as we're only MACing messages having $\ell+1$ blocks. However, show that the Encrypt-then-MAC combination of the two is not secure if you're using the same key K for both.

Hint: Consider first $\ell = 1$.

Problem 6. [IND-CCA security does not imply AE security]

In this exercise we will see that IND-CCA security (ref. Fig ??) does *not* imply AE security (ref. Fig 1). In other words, AE is a *stronger* security notion than IND-CCA (since, recall from the lecture, that AE security implies IND-CCA security). Let $\Sigma = (\text{KeyGen}, \text{Enc}, \text{Dec})$ be an IND-CCA secure encryption scheme. Define the following derived encryption scheme:

²The last point is trivial given what we saw in class: any secure PRF is also a good fixed-length MAC, and all secure PRPs are also secure PRFs.

- *a*) Argue why Σ' is also IND-CCA secure.
- b) Show that Σ' is AE insecure by demonstrating a concrete attack. Calculate the AE-advantage of your attack. That is, compute $\mathbf{Adv}^{\mathsf{ae}}_{\Sigma'}(\mathcal{A})$, where \mathcal{A} is the adversary that runs your attack.

Hint: You can attack both the privacy and the integrity of Σ' .

Problem 7. [Nonce-reuse in GCM leaks the authentication key. *Optional*]

Note: This isn't really an exercise *per se* (there isn't anything for you to answer!), instead, it is a write-up of how bad the GCM mode can fail if you ever reuse a nonce. While optional, reading through this exercise is a good way for you to become more familiar with the GCM mode-of-operation. Also, this exercise requires some familiarity with polynomials. If you want to read more about the (practical) consequences of nonce-reuse in GCM inside the TLS protocol, have a look at the paper "*Nonce-Disrespecting Adversaries: Practical Forgery Attacks on GCM in TLS*" (link) by Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp Jovanovic.

Recall that the GCM mode-of-operation is essentially an instance of the Encrypt-then-MAC paradigm. In particular, to encrypt a message M GCM first encrypts M with (noncebased) CTR to produce a ciphertext C. Then it applies a (nonce-based) MAC to C called GMAC to produce the final tag T. In particular: $T = \mathsf{GMAC}(H,S,C)$ where H is the MAC key and S is the nonce for GMAC. See Fig. 2 for details. Note that when GMAC is used inside GCM, both S0 are actually derived from the GCM nonce S1 and key S2.

The GMAC function, which produces the tag T in GCM, can be considered to be an evaluation of a polynomial

$$g(X) = \sum_{i} \alpha_i X^i,$$

where the coefficients α_i are determined by the values of the additional data AD and the ciphertext C, where the constant term is the "one-time pad"-like value S. For example, suppose the additional data consists of two blocks $AD = A_1 || A_2$, and the ciphertext of three blocks $C = C_1 || C_2 || C_3$ (as shown in Fig. 2). Then we get the polynomial:

$$g(X) = A_1 X^6 + A_2 X^5 + C_1 X^4 + C_2 X^3 + C_3 X^2 + LX + S,$$
 (1)

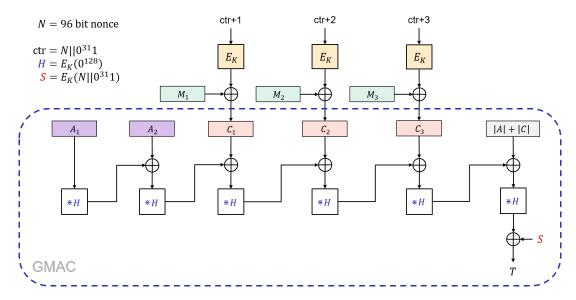


Figure 2: GCM mode-of-operation. The internal MAC function GMAC circled.

where L encodes the length of A and C and S is a nonce-derived value. To compute the GMAC tag on A and C we simply evaluate g(X) on the (secret) value $H = E_K(0^{128})$:

$$T = g(H) = A_1 H^6 + A_2 H^5 + C_1 H^4 + C_2 H^3 + C_3 H^2 + LH + S.$$

It is very important that GCM *never* reuses the same nonce N twice for the same key K. We will now show why.

Suppose two messages M and M' have been GCM encrypted under the same nonce (and key). For simplicity, assume there is no additional data and that the messages only consist of a single 128-bit block so the corresponding ciphertext also only consist of a single block C and C'.

Referring to (1), the corresponding GMAC polynomials then become:

$$g(X) = CX^{2} + LX + S$$
$$g'(X) = C'X^{2} + LX + S$$

where L encodes the length of C (and C') and $S = E_K(N||0^{31}1)$. In particular, note that S is the same for both since they are reusing the nonce N.

To compute the tag on C and C' we simply evaluate g(X) and g'(X) on $H = E_K(0^{128})$:

$$T = g(H) = CH^2 + LH + S \tag{2}$$

$$T' = g'(H) = C'H^2 + LH + S$$
(3)

Now, the multiplication and addition happening in (2) and (3) is not actually normal multiplication and addition over the integers, but rather happening in a finite field. Fortunately, we don't have to care about the details of finite fields here. The only thing we need to know is that the addition in the finite field used by GCM is the *same* as a standard XOR operation. In particular, this means that addition and subtraction is the same (which is the case for XOR).

Thus, if we add T and T' we get:

$$T + T' = g(H) + g(H') = CH^2 + C'H^2 = (C + C')H^2$$
(4)

where we used the fact that the "LH + S" term is the same for both T and T', hence cancel out (as happens when you XOR two equal values). Rearranging (4) we have:

$$(C+C')H^2 + (T+T') = 0. (5)$$

Notice that the only value we (the attacker) don't know in (5) is H, since C, C', T, and T' are all known to us. Thus, if we could solve (5) for H we would actually be able to *forge any GCM ciphertext*! Why? Look at Fig. 2: the H value does not depend on the nonce N. It is re-used for *all* GCM computations, and can thus be reused by us to create forgeries on new ciphertexts. However, we still need the value S to create the final tag (again, refer to Fig. 2). Fortunately, this is a not a big problem: when creating a forgery, we simply reuse the nonce from a previous message from which we can learn S (since we know H). Concretely, suppose we use the nonce S from above in our future forgeries. This would also require us to use the same S. But this S can easily be deduced from (2) since we now know S (together with S).

$$S = T + CH^2 + LH \tag{6}$$

With all of this in hand, let's see how we would use it to forge an arbitrary ciphertext, say $C^* = C_1^* \| C_2^* \| C_3^*$. For an added bonus, suppose we also want to include some additional data $AD = A_1^*$. Our final output will then be:

$$N||C_1^*||C_2^*||C_3^*||T^*$$

where N is the same N used to create C and C' above, and T^* is computed as:

$$T^* = A_1^* H^5 + C_1^* H^4 + C_2^* H^3 + C_3^* H^2 + L^* H + S,$$

where S is the value recovered in (6).

The only thing we still haven't answered is how to actually solve for H in (5). However, this is easy: the equation in (5) is a quadratic equation hence can be solved by simple algebra (in particular, the quadratic formula which is also valid in finite fields).

Conclusion: Reusing the nonce (with the same key) in GCM is bad! It essentially leaks the GMAC key (H) which more or less voids all authentication guarantees that GCM was supposed to give. Thus, the lesson is: never resuse the nonce when using GCM.

References

- [BR] Mihir Bellare and Phillip Rogaway. *Introduction to Modern Cryptography*. https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf.
- [BS] Dan Boneh and Victor Shoup. *A Graduate Course in Applied Cryptography*, (version 0.5, Jan. 2020). https://toc.cryptobook.us/.
- [Ros] Mike Rosulek. *The Joy of Cryptography*, (draft Feb 6, 2020). https://web.engr.oregonstate.edu/~rosulekm/crypto/crypto.pdf.