Introduction to Cryptography

TEK 4500 (Fall 2020) Problem Set 6

Problem 1.

Read Chapter 11 in [PP] and Chapter 6 in [BR] + Appendix A in [BR] (Birthday problem).

Problem 2.

Suppose we have three different hash functions producing output of lengths 64, 128 and 160 bits. How many random computations do you approximately need to find a collision with probability p=0.5? How many different random hash values do you approximately need to find a collision with probability p=0.1?

Hint: Use whatever formulation of the birthday paradox you want.

Problem 3.

Suppose $H_1, H_2; \mathcal{M} \to \mathcal{Y}$ are two hash functions for which we know that at least one is collision-resistant. Unfortunately, we don't know which. Consider now the following derived hash functions.

- *a*) $H: \mathcal{M} \to \mathcal{Y} \times \mathcal{Y}$, defined by $H(X) = H_1(X) \| H_2(X)$. Is H collision-resistant? Justify your answer.
- b) $H: \mathcal{M} \to \mathcal{Y}$ defined by $H(X) = H_2(H_1(X))$ (here we assume that $\mathcal{Y} \subset \mathcal{M}$). Is H collision-resistant? What about $H(X) = H_1(H_2(X))$? Justify your answer.

Problem 4. [2nd-preimage-resistance]

The two main security properties for hash functions are *collision-resistance* and *one-wayness*. However, there is also a third security property commonly defined for hash functions called 2nd preimage-resistance. In a 2nd-preimage attack the adversary is given $X \in \mathcal{M}$ and $Y \leftarrow H(X)$, and then asked to find a different $X' \in \mathcal{M}$ that hash to the same value as X. That is: given X and Y, find $X' \neq X$ such that H(X') = H(X) = Y. In other words, the adversary is asked to find a second pre-image for Y, hence the name. See Fig.1 for the formal definitions. Note that 2nd preimage-resistance is a weaker security requirement than collision-resistance, i.e., we're asking for more from the adversary. Indeed, for finite \mathcal{M} and \mathcal{Y} , and assuming $|\mathcal{M}| >> |\mathcal{Y}|$, we have

$\frac{\mathbf{Exp}_{H}^{cr}(\mathcal{A}):}{1:\ (X_{1},X_{2}) \leftarrow \mathcal{A}_{H}}$ 2: if $X_{1} \neq X_{2} \wedge H(X_{1}) = H(X_{2}):$ 3: return 1 4: else 5: return 0	$\frac{\mathbf{Exp}_{H}^{2pre}(\mathcal{A}):}{1:\ X \overset{\$}{\leftarrow} \mathcal{M}}\\2:\ Y \leftarrow H(X)\\3:\ X' \leftarrow \mathcal{A}_{H}(X,Y)\\4:\ \mathbf{if}\ X' \neq X \wedge H(X') = Y\mathbf{:}\\5:\ \mathbf{return}\ 1\\6:\ \mathbf{else}\\7:\ \mathbf{return}\ 0$	$\frac{\mathbf{Exp}_{H}^{ow}(\mathcal{A}):}{1:\ X \xleftarrow{\$} \mathcal{M}} \\ 2:\ Y \leftarrow H(X) \\ 3:\ X' \leftarrow \mathcal{A}_{H}(Y) \\ 4:\ \mathbf{if}\ H(X') = Y: \\ 5:\ \mathbf{return}\ 1 \\ 6:\ \mathbf{else} \\ 7:\ \mathbf{return}\ 0$
$\mathbf{Adv}_{H}^{cr}(\mathcal{A}) = \Pr[\mathbf{Exp}_{H}^{cr}(\mathcal{A}) \Rightarrow 1]$ $\mathbf{Adv}_{H}^{2pre}(\mathcal{A}) = \Pr[\mathbf{Exp}_{H}^{2pre}(\mathcal{A}) \Rightarrow 1]$ $\mathbf{Adv}_{H}^{ow}(\mathcal{A}) = \Pr[\mathbf{Exp}_{H}^{ow}(\mathcal{A}) \Rightarrow 1]$		

Figure 1: Security definitions for *collision-resistance*, 2nd preimage-resistance, and one-wayness for a hash function $H : \mathcal{M} \to \mathcal{Y}$.

collision-resistance \implies 2nd preimage-resistance \implies one-wayness.

- *a*) Explain why the first implication above holds, i.e., why collision-resistance implies 2nd preimage-resistance.
- b) Suppose $\{0,1\}^{200} \subset \mathcal{M}$ and that $H: \mathcal{M} \to \mathcal{Y}$ is a collision-resistant hash function. Now define $H': \mathcal{M} \to \mathcal{Y}$ as follows:

$$H'(X) = \begin{cases} 0^{200} & \text{if } X = 0^{200} \text{ or } X = 1^{200} \\ H(X) & \text{otherwise} \end{cases}$$

Show that H' is 2nd preimage-resistant, but not collision-resistant.

Problem 5.

Suppose that $F: \{0,1\}^m \to \{0,1\}^m$ is a one-way secure *permutation*. Define $H: \{0,1\}^{2m} \to \{0,1\}^m$ as follows. Given $X \in \{0,1\}^{2m}$, write

$$X = X'||X'',$$

where $X', X'' \in \{0,1\}^m$. Then define

$$H(X) = F(X' \oplus X'').$$

Is *H* one-way? Is it 2nd preimage-resistant? Justify your answers.

Problem 6.

Suppose $H_1: \{0,1\}^{2m} \to \{0,1\}^m$ is a collision resistant hash function.

- a) Define $H_2: \{0,1\}^{4m} \to \{0,1\}^m$ as follows:
 - Write $X \in \{0,1\}^{4m}$ as $X = X_1 || X_2$, where $X_1, X_2 \in \{0,1\}^{2m}$
 - Define $H_2(X) = H_1(H_1(X_1)||H_1(X_2))$.

Prove that H_2 is collision resistant.

- b) For an integer $i \geq 2$, define a hash function $H_i : \{0,1\}^{2^i m} \to \{0,1\}^m$ as follows:
 - Write $X \in \{0,1\}^{2^{i_m}}$ as $X = X_1 || X_2$, where $X_1, X_2 \in \{0,1\}^{2^{i-1}m}$
 - Define $H_i(x) = H_1(H_{i-1}(X_1)||H_{i-1}(X_2)).$

Prove that H_i is collision resistant.

Problem 7. [Problem 11.3 in [Ros]]

I've designed a hash function $H: \{0,1\}^* \to \{0,1\}^n$. One of my ideas is to make H(X) = X if X is an n-bit string (assume the behavior of H is much more complicated on inputs of other lengths). That way, we know with certainty that there are no collisions among n-bit strings. Have I made a good design decision?

Problem 8. [Davies-Meyer alternatives]

Recall that the Davies-Meyer construction is a way of turning a block cipher $E:\{0,1\}^b \times \{0,1\}^n \to \{0,1\}^n$ into a collision-resistant compression function $h:\{0,1\}^{n+b} \to \{0,1\}^n$ as:

$$h(V||M) = E(M,V) \oplus V.$$

Here we look at some alternative constructions to Davies-Meyer that all turn out to be insecure. For b) and c) we assume that b = n.

- a) $h_1(V||M) = E(M,V)$
- b) $h_2(V||M) = E(M,V) \oplus M$
- c) $h_3(V||M) = E(V, V \oplus M) \oplus V$

Show that none of the compression functions above are collision-resistant.

References

- [BR] Mihir Bellare and Phillip Rogaway. *Introduction to Modern Cryptography*. https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf.
- [PP] Christof Paar and Jan Pelzl. *Understanding Cryptography A Textbook for Students and Practitioners*. Springer, 2010.
- [Ros] Mike Rosulek. *The Joy of Cryptography*, (draft Feb 6, 2020). https://web.engr.oregonstate.edu/~rosulekm/crypto/crypto.pdf.