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Midterm exam

Available next week (Wednesday 29. September, 14:00)

* Due: two weeks later (Wednesday 13. October, 23:59)

« Take-home exam

* Individual: corporation is not allowed

« Mandatory: need to pass in order to be eligible for the exam

« All sources allowed (save for explicitly searching for the solution)

« Submission: Canvas (file type = PDF; strongly prefer if you use provided LaTex template)

« Start early! The assignment may be more challenging than you expect



Basic goals of cryptography

Message integrity /

Message privacy authentication

Message authentication

Symmetric keys Symmetric encryption codes (MAC)

Asymmetric encryption
Asymmetric keys (a.k.a. public-key Digital signatures
encryption)




IND-CPA — Indistinguishability against chosen-plaintext attacks

World 1 World 0
Input M: Input M:
return X. Enc(K, M) return X. Enc(K, $)

I’m in World b’



IND-CCA - Indistinguishability against chosen-ciphertext attacks

World 1 World 0
Input M: Input M:
return X. Enc(K, M) return X. Enc(K, $)
=
Input C: %& Input C:
return 2. Dec(K, C) 2 return 2. Dec(K, C)

I’m in World b’

Restriction: not allowed to query
Dec(K, C) after Enc(K, M) call returned C




Xilinx FPGA - Starbleed attack
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Abstract
The security of FPGAs is a crucial topic, as any vulnera-
bility within the hardware can have severe consequences, if
they are used in a secure design. Since FPGA designs are
encoded in a bitstream, securing the bitstream is of the utmost
importance. Adversaries have many motivations to recover
and manipulate the bitstream, including design cloning, IP

g gates. The g this logic area;
in analogy to software, the bitstream can be considered the
“binary code’ of the FPGA. On SRAM-based FPGAs, which
are the dominant type of FPGA in use today. the bitstream is
stored on an external non-volatile memory and loaded into
the FPGA during power-up.

In order to protect the bitstream against malicious actors, its

theft, manipulation of the design, or design subversions e.g.,
through hardware Trojans. Given that FPGAs are often part of
cyber-physical systems e.g., in aviation, medical, or industrial
devices, this can even lead to physical harm. Consequently,
vendors have introduced bitstream encryption, offering au-
thenticity and confidentiality. Even though attacks against
bitstream encryption have been proposed in the past, e.g..
side-channel analysis and probing, these attacks require so-
istica i and consi technical expertise.
In this paper, we introduce novel low-cost attacks against
the Xilinx 7-Series (and Virtex-6) bitstream encryption, re-
sulting in the total loss of authenticity and confidentiality. We
exploit a design flaw which piecewise leaks the decrypted bit-
stream. In the attack, the FPGA is used as a decryption oracle,
while only access to a configuration interface is needed. The

and icity must be assured. If an attacker
and breaks its iality. he
can reverse-engineer the design, clone intellectual property,
or gather information for subsequent attacks e.g., by finding
cryptographic keys or other design aspects of a system. If
the adversary succeeds in violating the bitstream authentic-
ity, he can then change the functionality, implant hardware
Trojans, or even physically destroy the system in which the
FPGA is embedded by using configuration outside the specifi-
cations. These problems are particularly relevant since access
to bitstream is often effortlessly possible due to the fact that,
for the vast majority of devices. it resides in the in external
non-volatile memory, e.g., flash chips. This memory can of-
ten either be read out directly. or the adversary wiretaps the
FPGA's ion bus during p p. A ively, a
microcontroller can be used to the FPGA, and conse-

has access to the bi

attack does not require any  tools and, ds ding
on the target system, can potentially be launched remotely. In

addition to the attacks, we discuss several countermeasures.

1 Introduction

Nowadays, Field Programmable Gate Arrays (FPGAs) are

common in consumer electronic devices, aerospace, financial
and military applicati Additionally, given the

trend towards a connected world, data-driven practices, and ar-

tificial intelli FPGAs play a sig role as hardware

platforms deployed in the cloud and in end devices. Hence,

trust in the underlying platform for all these applications is

vital. Altera, who are (together with Xilinx) the FPGA market

leader, was acquired by Intel in 2015.

FPGAs are le ICs, ining a rep
logic area with a few hundred up to millions of repro-

quently, the microcontroller’s firmware includes the bitstream.
When the adversary gains access to the microcontroller, he
also gains access to the configuration interface and the bit-
stream. Thus, if the microcontroller is connected to a network,
remotely attacking the FPGA becomes possible.

In order to protect the design. the major FPGA vendors
introduced bitstream encryption around the turn of the mil-
lennium, a technique which nowadays is available in most
mainstream devices [1,56]. In this paper, we investigate the se-
curity of the Xilinx 7-Series and Virtex-6 bitstream encryption.
On these devices, the bitstream encryption provides authen-
ticity by using an SHA-256 based HMAC and also provides
confidentiality by using CBC-AES-256 for encryption. By
our attack, we can circumvent the bitstream encryption and
decrypt an assumedly secure bitstream on all Xilinx 7-Series
devices completely and on the Virtex-6 devices partially. Ad-
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FPGA - Field Programmable Gate Array

Bitstream
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FPGA - Field Programmable Gate Array

Bitstream
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FPGA - Field Programmable Gate Array

Bitstream design typically a business secret

(or even a national/military secret) \ —

oo

FPGA applications:
« Aerospace and avionics
= « Digital signal processors
2 | @9 - Defense and military
* Medical devices
« General hardware accelerators

(e.g. cryptography)




FPGA - Field Programmable Gate Array

Bitstream

Decrypt bitstream with K
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FPGA - Field Programmable Gate Array

Bitstream

Decrypt bitstream with K
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Xilinx Starbleed attack

Decrypt bitstream with K

WBSTAR: ©x000000

WBSTAR = Warm-Boot Start-address

Header

AES-CBC
encrypted

Bitstream

L Nhadon S

KMAC

WRITE
WBSTAR

0x00000000

\

:‘?_DWD—

MAC TAG




Xilinx Starbleed attack

Bitstream

Decrypt bitstream with K

Reboot

WBSTAR: ©x23d0o1l

< Configure

WRITE
WBSTAR

//

BAD TAG

Decrypted




Xilinx Starbleed attack

Bitstream

“Read out
WBSTAR”

Decrypt bitstream with K

WBSTAR: 0x23d0o1

Ox23deo1




Xilinx Starbleed attack

Decrypt bitstream with K

WBSTAR: ©x23d0o1l

Bitstream

“Read out
WBSTAR”

WRITE
WBSTAR

BAD TAG




Xilinx Starbleed attack

Reboot

Decrypt bitstream with K

WBSTAR: Oxff0e15

Bitstream

“Read out
WBSTAR”

Configure

WRITE
WBSTAR

oxff0015

BAD TAG




Xilinx Starbleed attack

Reboot

Decrypt bitstream with K

WBSTAR: ©x6391dd

Bitstream

“Read out
WBSTAR”

Configure

WRITE
WBSTAR

0x6391dd

BAD TAG




Xilinx Starbleed attack

Reboot

Decrypt bitstream with K

WBSTAR: ©xballce

Bitstream

Configure

“Read out
WBSTAR”

Oxballco

WRITE
WBSTAR

BAD TAG




Xilinx Starbleed attack

Reboot

Decrypt bitstream with K

WBSTAR: ©x833ad7

Bitstream

“Read out
WBSTAR”

Configure

WRITE
WBSTAR

O0x833ad7

BAD TAG




Xilinx Starbleed attack

Decrypt bitstream with K

Reboot
Configure

“Read out
WBSTAR”

WBSTAR: ©xfe4115

Oxfed4115

Time to fully decrypt 48 MB bitstream: 26 hours

WRITE
WBSTAR

BAD TAG




Padding oracles

« Full decryption oracles are not always available/needed

« Padding attacks:
« Chosen-ciphertext attacks that exploit small timing variations when decrypting different ciphertexts

« Only a limited "decryption" oracle available to the attacker

« First described by Serge Vaudenay (2002) based on CBC-encryption in TLS and IPsec



DTLS padding oracle attack

DTLS padding o z, C, Cs

-

’

01 S O P
02 | 02 Il
Decrypt

03 | 03 | 03 !!

C = CBC(K, M || MAC, (M) || pad)

03 ] 03|03




DTLS padding oracle attack

DTLS padding G

01 A

02 | 02

03 | 03 | 03

00

Decrypt ﬂ
C = CBC(K, M || MAC, (M) || pad)

b3




DTLS padding oracle attack

DTLS padding G

01 A

02 | 02

03 | 03 | 03

01

Decrypt ﬂ
C = CBC(K, M || MAC, (M) || pad)

90




DTLS padding oracle attack

DTLS padding G

01 A

02 | 02

03 | 03 | 03

02

Decrypt ﬂ
C = CBC(K, M || MAC, (M) || pad)

77




DTLS padding oracle attack

DTLS padding G

01 A

02 | 02

03 | 03 | 03

03

Decrypt ﬂ
C = CBC(K, M || MAC, (M) || pad)

32




DTLS padding oracle attack

DTLS padding G

01 A

02 | 02

03 | 03 | 03

04

Decrypt ﬂ
C = CBC(K, M || MAC, (M) || pad)

b9




DTLS padding oracle attack

DTLS padding G

01 A

02 | 02

03 | 03 | 03

05

Decrypt ﬂ
C = CBC(K, M || MAC, (M) || pad)

a3




DTLS padding oracle attack

DTLS padding

01

02 | 02

03 | 03 | 03

01

M3[0] = R[O] S5 Cz[o] &b 01

R[0] & Z[0] = 01

R[0] & (C,[0] & M3[0]) = 01



DTLS padding oracle attack

DTLS padding Cs @
01 .% |

02 | 02

03 [ 03 | 03 R
06
- /
Y
Decrypt ﬂ
C = CBC(K, M || MAC, (M) || pad)
01
Lo | [ | [ M ]
o b D M;[0] = R[0] & C,[0] & 01 R[0] & Z[0] = 01
AN
Lod] | oo | o] "2 R[0] « R[0] & 01 & 02 (= 05)




DTLS padding oracle attack

DTLS padding

01

02

02

03 | 03

03

05

C = CBC(K, M || MAC, (M) || pad)

M3[0] = R[O] S5 Cz[o] &b 01




DTLS padding oracle attack

DTLS padding 63
02 | 02
03 |1 03 | 03 R
00 | 05
N~ _
V
Decrypt
C = CBC(K, M || MAC, (M) || pad)
83 | 02
L J[m | [ m ]
o —O —o M;[0] = R[0] & C,[0] & 01
AN
o) | Lo | [ 2




DTLS padding oracle attack

DTLS padding 63
02 | 02
03 |1 03 | 03 R
01 | 05
N~ _
V
Decrypt
C = CBC(K, M || MAC, (M) || pad)
96 | 02
L J[m | [ m ]
o —O —o M;[0] = R[0] & C,[0] & 01
AN
o) | Lo | [ 2




DTLS padding oracle attack

DTLS padding 63
02 | 02
03 |1 03 | 03 R
02 | 05
N~ _
V
Decrypt
C = CBC(K, M || MAC, (M) || pad)
de | 02
Lo [ [ | [ o |
o —O —o M;[0] = R[0] & C,[0] & 01
AN
o) | Lo | [ 2




DTLS padding oracle attack

DTLS padding

C3
02 | 02
R[1]
03 | 03 | 03 R 1
03 | 05
— _/
V
Decrypt ﬂ
C = CBC(K, M || MAC, (M) || pad)
02 | 02
Lo [ [ | [ o |
S —b —0 M;[0] = R[0] © C,[0] & 01 R[1] &® Z[1] = 02

AN

(o] | [o] | [o] Z  Mg[1l] = R[1] @ C,[1] & 02

R[1] @ (C;[1] © M3[1]) = 02
I I -




DTLS padding oracle attack

DTLS padding

01

02 | 02

03 | 03 | 03

C = CBC(K, M || MAC, (M) ||

L [ [ m [ [ m ]

(ah) A )
v 1/ >

AN
o] | Lo | (2] 2

I I -

02

06

pad)

Decrypt

02 | 02

M3[0] = R[O] S5 Cz[o] &b 01
M3[1] — R[l] S5 Cz[l] &b 02

R[1] &® Z[1] = 02
R[0] <« R[0] @ 02 & 03 (= 06)
R[1] « R[1] ® 02 @ 03 (= 02)



DTLS padding oracle attack

DTLS padding

C3
02 | 02
03 |1 03 | 03 R
00 | 02 | 06
S /
V
Decrypt ﬂ
C = CBC(K, M || MAC, (M) || pad)
5d | 03 | 03
Lo [ [ | [ o |
S —& —d M3[0] = R[0] @ C,[0] 6 01

o | o] | (507 Ms[1] = R[1] @ C,[1] @ 02

I I -




DTLS padding oracle attack

DTLS padding

C3
02 | 02
03 |1 03 | 03 R
01| 02 | 06
S /
V
Decrypt ﬂ
C = CBC(K, M || MAC, (M) || pad)
87 |1 03| 03
Lo [ [ | [ o |
S —& —d M3[0] = R[0] @ C,[0] 6 01

o | o] | (507 Ms[1] = R[1] @ C,[1] @ 02

I I -




DTLS padding oracle attack

DTLS padding

C3
02 | 02
03 |1 03 | 03 R
02 | 02 | 06
S /
V
Decrypt ﬂ
C = CBC(K, M || MAC, (M) || pad)
43 | 03 | 03
Lo [ [ | [ o |
S —& —d M3[0] = R[0] @ C,[0] 6 01

o | o] | (507 Ms[1] = R[1] @ C,[1] @ 02

I I -




DTLS padding oracle attack

DTLS padding

C3
02 | 02
03 |1 03 | 03 R
03 | 02 | 06
S /
V
Decrypt ﬂ
C = CBC(K, M || MAC, (M) || pad)
66 | 03 | 03
Lo [ [ | [ o |
S —& —d M3[0] = R[0] @ C,[0] 6 01

o | o] | (507 Ms[1] = R[1] @ C,[1] @ 02

I I -




DTLS padding oracle attack

DTLS padding

C3
02 | 02
03 |1 03 | 03 R
f7 | 02 | 06
S /
V
Decrypt
C = CBC(K, M || MAC, (M) || pad)
03 | 03 | 03
Lo [ [ | [ o |
S —& —d M3[0] = R[0] @ C,[0] 6 01

o | o] | (507 Ms[1] = R[1] @ C,[1] @ 02

(o ][ el [ ] Ms[2] = R[2] @ C,[2] & 03

...continue process until we've found all of M,




DTLS padding oracle attack

DTLS padding Cs @
3%“ ;:

01 Emasionnaniae

02 | 02

03 | 03 | 03

But how do we get i’ to act like ?
C = CBC(K, M || MAC, (M) || pad)
Answer: Timing differences:
Do) D ] Do) Repeat attack to decrypt C,, Cy, ...
T | X « |If padding is invalid then server does not compute MAC
el | [oe] | oo  If padding is valid then server computes MAC = longer time!




DTLS padding oracle attack

DTLS padding

01

02 | 02

03 | 03 | 03

C = CBC(K, M || MAC, (M) || pad)

L J[m | [ m ]
Fan) P Pan)
D NP, N7
o) | Lo | Lo

Plaintext-Recovery Attacks Against Datagram TLS

Nadhem J. AlFardan and Kenneth G. Paterson®
Information Security Group
Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK
{nadhem.alfardan.2009, kenny.paterson } @rhul.ac.uk

Abstract

The Datagram Transport Layer Security (DTLS) proto-
cal provides confidentiality and integrity of data exchanged
between a client and a server. We describe an efficient and
Sull plaintext recovery anack against the OpenSSI. imple-
mentation of DTLS, and a partial plaintext recovery attack
against the GnuTLS implementation of DTLS. The attack
against the OpenSSL implementation is a variant of Vaude-
nay’s padding oracle altack and exploits small timing differ-
ences arising during the cryptographic processing of DTLS
packers. It would have been prevented if the OpenSSL im-
plementation had been in accordance with the DTLS RFC.
In conirast, the GnullS implementation does follow the
DTLS RFC closely, but is still vulnerable to attack. The
cks require new insights to overcome the lack of error
messages in IS and io amplify the timing differences, We
discuss the reasons why these implementations are insecure,
drawing lessons far secure protocol design and implemen
tation in general.

atiac

Keywords  TLS, DTLS, CBC-mode cneryption,
padding oracle, attack, timing, OpenSSL, GnuTLS.

1 Introduction

DTLS, OpenSSL and GouTLS:  The Datagram Trans
port Layer Security (DTLS) protocol was first introduced
at NDSS in 2004 [10]. Two years later, the Internet En-
gineering Task Force (IETF) assigned Request for Com-
ments (RFC) 4347 [11] to DTLS. The aim of DTLS is to
provide a datagram-compatible variant of TL.Sv1.1 [6] that
eliminates the dependency on the Transport Control Proto-
col (TCP). Since its introduction, there has been a growing
interest in the security services offered by DTLS. Leading
implementations of DTLS can be found in OpenSSL' and

“This author’s research supported by an EPSRC Leadership Fellow
ship, EP/II005455/1
'http://www.openssl.org

GnuTLS?. Both of these provide source toolkits that imple-
ment TLS and DTLS as well as being general purpose cryp-
tographic libraries that software developers can use, The
first release of OpenSSL to implement DTLS was 0.9.8.
Since its release, DTLS has become a mainstream proto
col in OpenSSL.. There are also a number of commercial
products that have taken advantage of DTLS. For example,
DTLS is used (o secure Virtual Private Networks (VPN&)”
and wireless traffic®. Platforms such as Microsoft Windows,
Microsoft NET and Linux can also make use of DTLS®.
In addition, the number of RFC documents that are he-
ing published on DTLS is increasing. Recent examples in-
clude RFC 5415 [1], RFC 5953 [8] and RFC 6012 [13]. A
new version of DTLS is currently under development in the
IETF to bring DTLS inte line with TLSv1.2,

Padding oracle altacks: According to [I1], the DTLS
protocol is based on TLSv1.1 and provides equivalent secu-
rity guarantees. In particular, then, one would expect imple-
mentations of DTLS to be resilient to attacks on TLS known
prior to the development of TLSv1.1, especially those at-
tacks explicitly mentioned in RFC 4346 [6], the specifica-
tion for TLSvI. L

One such example is the padding oracle attack intro-
duced by Vaudenay in [15] and applied to OpenSSL by
Canvel er al. in [2]. This attack exploits the MAC-then-
Pad-then-Encrypt construction used by TLS and makes usce
of subtle timing differences that may arise in the crypto-
graphic processing carried out during decryption, in order
to glean information about the correctness or otherwise of
the plaintext format underlying a target ciphertext. Specifi-
cally, Canvel ef al. used timing of encrypied TLS error mes-
sages in order to distinguish whether the padding occurring

Zhttp: /fwew gno.org/sof tware/gonut 1=

bt/ S Lcomfen/US/product s /psl 0B84/
index.html

"http://campagnel . sourceforge . net

Thttp://www.cisco.com/en/US/docs/wireless/
controller/7.0MR1/configurat ion/guide/cqi_lwap.
html

Shttp://www.eldos.com/sbb/desc ssl.php

ct like

L C,, Cq, ...
S not compute MAC
putes MAC = longer time!




DTLS padding oracle attack

015

010

005 -

Valid padding

' Invalid padding

OJ:E
010;
DﬂSE
Dﬂﬁ;
054}

oozl

1580 1380 1600 1610 1620

w1
1650

« Timing difference between valid and invalid padding: a few ps

/ 1 i 1
520 530 540 530 560

(a) [ = 256

L
570

I
580

L P 1
1210 1215 1220

(b) [ =1024

(c) | = 1456

Figure 3. AES-256 — PDFs for n» = 10 and varying !.

« Enough to carry out the attack

« Repeat attack n = 10 - 50 times per byte to filter out timing noise
« Able to decrypt each byte with probability 0.97-0.99



DTLS padding oracle attack — conclusions

« Decryption oracles are real = chosen-ciphertext security is necessary
« Even a limited oracle that only leaks padding validity can be used to decrypt full ciphertext
« Tiny timing differences enough to induce oracle

« Many other timing attacks on TLS/DTLS done since
* Lucky-13



Authenticated encryption



Authenticated encryption

« Want privacy and integrity from a single primitive:

an authenticated encryption scheme

« Syntactically (almost) the same as a normal encryption scheme



Authenticated encryption — syntax

Enc: K XM - C
Enc(K,M) = Ency (M) = C

Dec: KX XC —-» M U {L}
Dec(K,C) = Decg(C) =M/ L



Authenticated encryption — security

World 1

Input M:
return X. Enc(K, M)

Input C:
return X. Dec(K, C)

I’m in World b’

World 0

Input M:
return 2. Enc(K, $)

Input C:
return X. Dec(K, C)

Restriction: not allowed to query
Dec(K, C) after Enc(K, M) call returned C




Authenticated encryption — security

Exp5°(4)
$
1. b < {0,1}
2. Ciphertexts « []
$
3. K « X.KeyGen
4. b« A5ODO)
5 return b’ i b
E(M)
$
1.  Re{0,1}M
2. Co < Z.Enc(K,R)
3. C; < Z.Enc(K,M)
4, Ciphertexts.add(Cp)
5. return C;,
D(C)
1. if C € Ciphertexts then // cheating!
2. return L
3. My <1
4, M; « X.Dec(K,C)
5. return M,

World 1 World 0
Input M: Input M:
return X. Enc(K, M) return X. Enc(K, $)
&
Input C: %&I Input C:
return X. Dec(K, C) - return L

I’m in World b’

Restriction: not allowed to query
Dec(K, C) after Enc(K, M) call returned C

\_

Definition: The AE-advantage of an adversary A is

Advi®(A) = |2 - Pr[Exp3®(A) = true] — 1|




AE security definition — implications

« Privacy: adversary cannot distinguish encryption of real messages from encryption random
messages

* Integrity: adversary is not able to forge ciphertexts: any ciphertext not produced by the
legitimate sender will decryptto L

« Does not protect against replay attacks



Generic composition: AE from Encryption + MAC

MAC-then-Encrypt (MtE) Encrypt-and-MAC (E&M) Encrypt-then-MAC (EtM)
M MACg, (M) M M
Encg, Encg, Encg,
l l v v l
C C MACg, (M) C MACg, (€)




Generic composition: secure?

Enc is IND-CPA secure and MAC is UF-CMA secure: which combination is secure?

« E&M: C||T « Enc(K,, M) || MAC(K,, M) X Enc(K;,M) || M || MAC'(K,, M)
« Usedin SSH
MAC(K,, M)
« MtE: C « Enc(Ky, M || MAC(K,, M)) X 0000 || Enc(K,, M, MAC(K,, M))

* UsedinTLSuptoTLS 1.2

+ EtM: C||T « Enc(Ky, M) || MAC(K,, C) v
« Usedin IPsec
« MAC must cover all of C (including IVs)



EtM — security

4 )
Theorem: for any AE adversary A against EtM there are adversaries B and C against Enc and MAC
such that

L Advis, (A) < Advi s P (B) + 2 - Adviis™@(0) )

Proof:

World 1

Input M:
return X. Enc(K, M)

World 0

IND-CPA

Q

Input M:
return 2. Enc(K, $)




CCA-attacks - revisited

Bitstream

 MIE used in both Starbleed attack
and in DTLS padding oracle attack

Decrypt bitstream with K

Reboot

C

« Gave rise to (partial) decryption oracles

« Attacks would not have been possible
with an AE secure scheme L

L1 E T T Teefoa]oo]
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AEAD — Authenticated encryption with associated data



AEAD — AE with associated data (AD)

AD — data that can't be encrypted but still need integrity protection

Integrity protected

AD

M

Headers in protocols
Configuration data
Metadata

Privacy protected

IP Header %

N
VAN

yload + Trailer

IPSec in ESP Tunnel Mode

\rerlhlenl TOS packet len

ID flgs

frag offset

TTL Iuro:o:Esn header cksum

src IP address

dst IP address

SPI (Security Parameters Index)

Sequence Number

IV (AES-CBC)

ESP payload

Padding

(variable) | pad len |ns-.xt-IP

ICV (Integrity Check Value)
<-> HMAC-SHAL signature

Encrypted Data

Authenticated Data



Authenticated encryption w/associated data (AEAD) — syntax

Enc: X XM - C

Enc(K,M) = Ency (M) =C W

Enc
Dec: K XC - M U{L} M — C

K——\__
Dec(K,C) = Decg(C) =M/L




Authenticated encryption w/associated data (AEAD) — syntax

Enc: X X A XM - C

Enc(K,A,M) = E A M) = Encd(M) =C
nc( ) nc ( ) ncy (M) N (—$\

Enc
Dec: K X /I XC->MU{l} M — C

K——_
Dec(K,A,C) = Decg(4,C) = Deck(C) =M/L




Authenticated encryption w/associated data (AEAD) — syntax

Enc: K XN X A XM ->C
Enc(K,N,A, M) = Enc¥ (A, M) = Enc}*(M) = C

Enc

Dec: K XN X A XC->MuU{L}
Dec(K,N,A,C) = Dec} (4,C) = Decy?(C) = M/ 1

x> =

K — key space
N —nonce space
— associated data space
M— message space
C — ciphertext space \_

(Correctness requirement: VK € X, VN € N', VA € A, VM € M:\

Dec(K,N, A, Enc(K,N,A,M)) =M




AEAD security (nonce-based)

Exp3®d (4)
$
. be{on EWN, 4, M)
2. Nonces <[] 7 T _
3 Ciphertexts « [ ] 1 if N € Nonces then // cheating!
$ 74 return L
4. K < X.KeyGen $
5. b’ — AS(""')' D (.‘.‘.) 3 R «— {0,1}|M| ( . — .
" ol = G S BIEGNE, Y Definition: The AEAD-advantage of an adversary 4 is
: return b’ = 5. C, « Z.Enc(K,N, A, M)
6 Nonces.add(N)
7 Ciphertexts. add(Cj) Advgead(A) = |2 . Pr‘[EXp%ead(A) = true] — 1|
8 return Cj,
G
D(N,A,C)
1 if C € Ciphertexts then // cheating!
2. return L
3. Co <L
4 C,; « X.Dec(K,N,A,C)
5 return C},




Constructing AEAD schemes



GCM = Galois/Counter Mode
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GCM = Galois/Counter Mode

gEN EEE N EEE B S B EEE ESE S S B SEE B B S B BEE B B B B BEE S B B B B B e oy

N = 96 bit nonce '/ CTR-mode ctr+1 ctr+2 ctr+3
ctr = N|[0%'1 | | ! 1
I
I
| EK EK EK
I
I ) 4 ) 4 ) 4
1 WA > .
I M1 ANV MZ '<> M3 V()
I
I v v \ 4
\ Cl CZ C3
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GCM = Galois/Counter Mode

N = 96 bit nonce
ctr = N||0311

H = Ex(0%2%)

S = Ex(N]|0311)

I
|

|

|

|

|

l A
| AH
|

|

|

|

A, Cy C, Cs |A| + [C|

W) War) War) War) W)
"/ \J/ "/ "/ "/
*H *H *H xH xH

A H? + AH Y

3 2 69 S
AH®> + A,H* + C;H
\ 4

A H* + A,H? + C H? + C,H T

AH® + A,H* + C{H3 + C,H? + C3H

—-—e . o e o o e e e e .



GCM — properties

Theorem: AE-secure if E is a secure PRF/PRP

* Very fast
« Especially with AES-NI and N = 06 bt momce e ctre2 ctr+3
Intel PCLMULQDQ instructions I l ! |
H = E(0%8) Ey Ex Ex

S = Ex(N||0°'1)

« Online '9

* Doesn't need to know the length of the (=) (=] ([ ij (o) (el )

message before starting encryption Y Y g h 4

) i ) b b T

° Brittle *H *H *H *H xH *H
* Nonce-reuse is very bad (see Problem set 5) Ef‘— s

» Tricky to implement correctly T

« Used everywhere
* Probably the most used mode on the Internet



ldeal solution: secure channels

How to build?
Alice Internet
Bob

Adversary

Security goals:

« Data privacy: adversary should not be able to read message M 4
« Data integrity: adversary should not be able to modify message M v
« Data authenticity: message M really originated from Alice 4



ldeal solution: secure channels

Alice Internet

Adversary

Security goals:

Data privacy: adversary should not be able to read message M

v

Data integrity: adversary should not be able to modify message M v/

Data authenticity: message M really originated from Alice

v

638



AES-GCM = secure channel?

"Send Bob $10"

774
N [ AES-GCM ] P 1
AES-GCM +10
>
AES-GCM +10
>
AES-GCM +10




Secure channels = TLS / IPsec

expected_counter

if 231 == expected_counter:

AES-GCM.decrypt
expected_counter++

7982 == expected_counter:

asEM. decrypt
expected counter++

if| 233 == expected_counter:

Qﬁs%ﬁ&:M.decrypt

expected_counter++
else
discard

associated data

/

103 AES-GCM
231 AES-GCM
232 AES-GCM
233 AES-GCM
104 AES-GCM

<

expected_counter

if 103 == expected_counter:
AES-GCM.decrypt
expected_counter++
else
discard

if 104 == expected_counter:
AES-GCM.decrypt
expected_counter++
else
discard



OCBv3 - Offset Codebook Mode

Aq A, M, M, M, Checksum

Auth Cl CZ C3 T

A; - derived from 96-bit nonce N Checksum =M, @ M, @ M,



OCBv3 — properties

* Theorem: AE secure if E is a secure PRF “ If OCB was your kid, he’ d play three sports and be on his
way to Harvard. You’ d brag about him to all your friends. ~

« The fastest AEAD algorithm
in the west “ Unfortunately OCB is not your kid. It belongs to Philip

Rogaway, who also happens to hold a patent on it.”

* Fully parallelizable and online Matthew Green

 |ncremental

La ) L 4. ] Cm ) Cm ) L ] [Coneoom ]

- Patented by Rogaway %?‘—A et e A; e A e s %?«A
« Hardly used anywhere Ex Ex Ex Ex Eq Ex

an Ded, Pen, Deay Dean

At ) (el e

A; - derived from 96-bit nonce N Checksum = M; @ M, @ M5



CCM = Counter Mode with CBC-MAC

Ex Ex Ex Ex Ex

A A A A A

D D AR 4A)

N Y N A4

% Ay M, M, M5
ctr+l — Ey =<> ctr+2 — Ey =<> ctr+3 — Ex =<> ctr —»

Gy G Cs

N = 104 bit nonce

IV = 08||N|| lenyc(AD + M)
ctr = 18||N|| 0%




CCM = Counter Mode with CBC-MAC

| M, M, M,
I

I

I ) 4 ) 4 ) 4
I ctr+l = By D ctr+2 = Ex D ctr+3 = Ex (D
I

I

I \ 4 \ 4 \ 4
| Cy C; C3
v CTR-mode

N =104bitnonce "= - m - - - e e e e e e e e e e ——— = — -

IV = 08||N|| lenyc(AD + M)
ctr = 18||N|| 0%



CCM = Counter Mode with CBC-MAC

e O S DS S DS S SN DS BN D B D S D S DS S B S D B D S B S B S B G B G S S B S B S S S G S G S G S D Sam B S S Ba e B e

7
/
|
I Ex Ex Ex Ex
|
I A A F N {k
|
[ D 4 N
| % % %
|
|
| v Ay M, M,
\

~

N = 104 bit nonce

IV = 08||N|| len,c(AD + M)
ctr = 18||N|| 0%



CCM = Counter Mode with CBC-MAC

! = XCBC-MAC
: Ex Ex Ex Ex Ex
I A A A {k {k
|
: D) +D D) D) T
| % % % %
[
|
| v Ay M, M, M;
\
\ ———————————————————————————————————————————
I ) 4
1
| ctr = Ex D
1
[ 4
|\ Cr
. S N e e o o e o o Em - s
N = 104 bit nonce

IV = 08||N|| lenyc(AD + M)
ctr = 18||N|| 0%

\

e o o o o o e e e e e o o o o .



CCM - properties

“ CCM is the 1989 Volvo station wagon of AEAD modes.

« Slow; needs 2 block cipher >t : _ : )
It'll get you to your destination reliably, just not in a hurry.

calls per message block

_ _ Matthew Green
« Sequential; not online

« Clunky message encoding

* Royalty-free D D D D r
« Designed specifically as an alternative v ) !ﬁ d&; @5 dwa

to OCB for use in WiFi (WPA2)

P
NP

Ne

P cr — E

Ne

»P cre3 B

) 4
el = B D ctre2 — By

. Widely used —/ 4 e 5

N = 104 bit nonce

» Default encryption algorithm in WPA2

IV = 08||N|| leny (AD + M)
ctr = 18||N|| 0%



Summary

« Authenticated encryption: privacy + intergrity in one primitive

« AEAD: AE + associated data: data that gets integrity protection, but not privacy protection
(e.g. protocol headers)

« AEAD examples:
- GCM
- CCM
- OCB

« AEAD is not a secure channel!
» Does not provide replay protection
 Secure channels from AEAD: add counters/nonces/timers

 Next week: hash functions



