
Lecture 7 – Randomness, entropy, TRNG/PRNGs,

stream ciphers, conspiracy theories

TEK4500

06.10.2021

Håkon Jacobsen

hakon.jacobsen@its.uio.no

mailto:hakon.jacobsen@its.uio.no

Randomness

2

TRNG

3

Ring oscillators

Thermal noise

Quantum magic
(radioactive decay, quantum tunneling, etc…)

https://www.cloudflare.com/learning/ssl/lava-lamp-encryption/

Entropy sources

https://www.cloudflare.com/learning/ssl/lava-lamp-encryption/

Ring-oscillators

4

Clock

sample sample

Shot noise

Thermal agitation

Ring-oscillators

5

sample sample

Clock

• Measure of uncertainty

• Measured in bits

• 𝐻∞ = min˗entropy =
def

max
𝑥
Pr 𝑥

• Pr best guessing strategy ≤ 2−𝐻∞

• Examples:

• Fair coin: 𝐻∞ = 1

• Fair 6-sided die: 𝐻∞ = −log2
1

6
≈ 2.58

• Uniform 128-bit string: 𝐻∞ = 128

• Uniform 𝑛-bit string + uniform 𝑚-bit string: 𝐻∞ = 𝑛 +𝑚

Entropy

6

Claude Shannon

1/4

1/8

1/2

1/8

0

0.2

0.4

0.6

0.8

1

00 01 10 11

0

0.2

0.4

0.6

0.8

1

00 01 10 11

0

0.2

0.4

0.6

0.8

1

00 01 10 11

− log2

𝐻∞ = − log2
1

2
= 1𝐻∞ = − log2

1

4
= 2 𝐻∞ = − log2 1 = 0

TRNG

7

Ring oscillators

Thermal noise

Quantum magic
(radioactive decay, quantum tunneling, etc…)

https://www.cloudflare.com/learning/ssl/lava-lamp-encryption/

Entropy sources

https://www.cloudflare.com/learning/ssl/lava-lamp-encryption/

Problems with TRNGs

• Biased sources

• Biased bits: 𝑝0 = 0.25 𝑝1 = 0.75

• Symmetric schemes (PRFs, MACs, encryption schemes, etc.) require uniform keys

• De-bias (von Neumann): create two bits; 01 ↦ 0, 10 ↦ 1, 00/11 ↦ try again

• Example:

password = lxiqlxptnpwhraxvfrdgubgfvhjx (28 random lower-case letters ASCII encoded)

• 𝒫𝒲 = 2628 > 2131 (i.e., password min-entropy ≈ 131 bits)

• Bit-length password = 28 ∙ 8 = 224 bits

• AES-128 key: key = bytes(password[0:15])

• What's the min-entropy of key?

- Each byte is between 0x61 ('a') and 0x7a ('z') ⟹ 4 top bits always starts with 0110 or 0111!

- min-entropy ≈ 16 ⋅ 4.7 = 75.2 bits!

• Correlated sources

• Value of bit 73 may depend on bit 5

• Symmetric schemes (PRFs, MACs, encryption schemes, etc.) require independent keys

• De-correlate: much more difficult!

8

…and slow!

(in practice: hash with SHA2-256)

(in practice: hash with SHA2-256)

Pseudorandom generators (PRG) – syntax

Have: a short string 𝑠 in 0,1 ℓ (uniformly and independently distributed)

Want: a long string 𝑆 in 0,1 𝐿 (uniformly and independently distributed)

Solution: a pseudorandom generator (PRG), i.e. a function 𝐺 ∶ 0,1 ℓ → 0,1 𝐿

• Expansion: 𝐿 > ℓ

• Pseudorandomness: 𝐺(𝑠) should look like a truly random string 𝑈 ∈ {0,1}𝐿

9

≫

𝑠 𝐺 𝐺 𝑠

ℓ 𝐿

Random generators

• Common design:

• TRNG generates short random seed

• PRNG expands seed to “infinite” length

• Examples:

• /dev/urandom

• CryptGenRandom

• Intel RDRAND

• Debian OpenSSL RNG bug

• // MD_Update(&m,buf,j);

• Only 32,767 possibilities for seed ≈ 15 bits of entropy

10

Statistical tests

• Is this a random string?

• What does that even mean?

• Suggestions:

• A random string should have roughly 50% zeros and ones (how much can you deviate?)

• A continuous run of zeros (or ones) shouldn't be too long (how long?)

• ≈ 25% of 2-bit substrings should be 00, 25% should be 01, …

• ≈ 12.5% of 3-bit substrings should be 000, 12.5% should be 001, ….

• A random string should not be compressible (related to Kolmogorov-complexity)

• …

11

101010011101011000100100011111000010101000000001010011111

Our answer: question not valid!

PRNG – security definition

12

𝐄𝐱𝐩𝐺
prg
𝐴

1. 𝑏
$
0,1

2. 𝑠
$
0,1 ℓ

3. 𝑈1 𝐺 𝑠

4. 𝑈0
$
0,1 𝐿

5. 𝑏′ 𝐴 𝑈𝑏

6. 𝐫𝐞𝐭𝐮𝐫𝐧 𝑏′ =
?
𝑏

World 1

𝑠
$
0,1 ℓ

return 𝐺(𝑠)

World 0

𝑈
$
0,1 𝐿

return 𝑈

I’m in World 𝒃′

Definition: The PRNG advantage of an adversary 𝐴 is

𝐀𝐝𝐯𝐺
prg

𝐴 = 2 ⋅ Pr 𝐄𝐱𝐩𝐺
prg
𝐴 ⇒ true − 1

2 ⋅ Pr 𝑏′ = 𝑏 − 1 = Pr 𝑏′ = 1 𝑏 = 1 + Pr 𝑏′ = 0 𝑏 = 0 − 1

= Pr 𝑏′ = 1 𝑏 = 1 − Pr 𝑏′ = 1 𝑏 = 0

= Pr 𝐴 𝐺 𝑠 ⇒ 1 − Pr 𝐴 𝑈 ⇒ 1

Pseudorandomness

13

0,1 𝐿

≈
𝐺(𝑠)

𝑠 ∈ 0,1 ℓ

0,1 𝐿

PRNG sec.

Creating PRNGs – CTR-mode

14

=

𝑀

𝐶

ctr

𝐶0

keystream

⋯

ctr+1

𝐸𝐾

ctr+2

𝐸𝐾

ctr+3

𝐸𝐾

ctr+4

𝐸𝐾

ctr+5

𝐸𝐾

19

AFTER THE BREAK…

Juniper Networks

20

• Juniper Networks: big manufacturer of network equipment (routers,

VPNs, firewalls, etc.)

• Major customers: telcos, banks, US DoD

• 2015:

• Hackers had obtained access to source code repository

• Only change:

--- Qx = 2c55e5e45edf713dc43475effe8813a60326a64d9ba3d2e39cb639b0f3b0ad10

+++ Qx = 9585320eeaf81044f20d55030a035b11bece81c785e6c933e4a8a131f6578107

IMPORTANT JUNIPER SECURITY ANNOUNCEMENT

During a recent internal code review, Juniper discovered unauthorized code

in ScreenOS that could allow a knowledgeable attacker to gain administrative

access to NetScreen® devices and to decrypt VPN connections.

PRNG standardization

21

PRNG

22

𝑠1𝑠0 𝑠2 𝑠3

𝑅0 𝑅1 𝑅2

𝑓 𝑠0 𝑓 𝑠1 𝑓 𝑠2

𝑔 𝑠0 𝑔 𝑠1 𝑔 𝑠2 ⋯

Elliptic curves 101

• 𝑃 = (𝑥, 𝑦) point on elliptic curve

• 𝑥 and 𝑦 are 32-byte integers

• Points 𝑃 and 𝑄 can be added to get another point 𝑃 + 𝑄

• Special case: add 𝑃 to itself 𝑛 times

𝑛𝑃 = 𝑃 + 𝑃 +⋯+ 𝑃

• Fact: given 𝑃 and 𝑛𝑃 for secret 𝑛, hard to find 𝑛

23

𝑃

𝑥

𝑦

𝐱

Dual EC DRBG

24

𝑠0 𝑠1 𝑠2

𝑠0𝑄

Output

⋯

32-byte state

keep 30 bytes

𝑃,𝑄: public points on an elliptic curve

𝐱 𝑠1𝑄 𝐱 𝑠2𝑄

𝐱 𝑠0𝑃 𝐱 𝑠1𝑃 𝐱 𝑠2𝑃

𝐱 ⋅ ∶ x-coordinate (32 bytes)

Where does 𝑸 (and 𝑷) come from?

25

From: John Kelsey [mailto:john.kelsey@nist.gov]

Sent: Wednesday, October 27, 2004 11:17 AM

To: Don Johnson

Subject: Minding our Ps and Qs in Dual_EC

Do you know where Q comes from in Dual_EC_DRBG?

Thanks,

-Joh

Subject: RE: Minding our Ps and Qs in Dual_EC

From: "Don Johnson" <DJohnson@cygnacom.com>

Date: Wed, October 27, 2004 11:42 am

To: "John Kelsey" <john.kelsey@nist.gov>

John,

P=G.

Q is (in essence) the public key for some random private key.

It could also be generated like a(nother) canonical G, but NSA kyboshed

this idea, and I was not allowed to publicly discuss it, just in case you

may think of going there.

Don B. Johnson

-----Original Message-----

Dual EC DBRG – something's fishy

• Dual EC is slow

• Orders of magnitude slower than HMAC/AES-CTR based alternatives

• 2006 – Kristian Gjøsteen: Dual EC is not a good PRNG

• Can distinguish output from random with 𝐀𝐝𝐯DualEC
prg

𝐾𝐺 ≈ 0.0011

• Slightly improved by Schoenmakers and Sidorenko

• 2007 – Shumow and Ferguson: Dual EC can be backdoored

• What if 𝑃 = 𝑑𝑄 for a secret 𝑑 only you know?

• If you know full 𝑠1𝑄, compute 𝑑 𝑠1𝑄 = 𝑠1 𝑑𝑄 = 𝑠1𝑃 = 𝑠2
• Because of truncation need to guess 2 top bytes (≈ 216 additional work)

• 2007 – NIST adds appendix to standard on how to create 𝑃 and 𝑄 yourself

• Continues to recommend existing 𝑃 and 𝑄

• Most cryptographers: who cares? No one is going to use Dual EC anyway

• 2013 – Edward Snowden leak: a project called Bullrun exists within the NSA

• Purpose: "Insert vulnerabilities into commercial encryption systems, IT systems, networks, and endpoint communications devices used by targets."

• Turns out Juniper Networks made Dual EC their PRNG in ScreenOS from 2008

26

𝑠0 𝑠1 𝑠2

𝐱 𝑠0𝑄

Output

⋯𝐱 𝑠1𝑄 𝐱 𝑠2𝑄

𝐱 𝑠0𝑃 𝐱 𝑠1𝑃 𝐱 𝑠2𝑃

…

Juniper PRNG

27

ScreenOS does make use of the Dual_EC_DRBG standard,

but is designed to not use Dual_EC_DBRG as its primary random

number generator. ScreenOS uses it in a way that should not be

vulnerable to the possible issue that has been brought to light.

Instead of using the NIST recommended curve points it uses self-

generated basis points and then takes the output as an input to

FIPS/ANSI X.9.31 PRNG, which is the random number generator

used in ScreenOS cryptographic operations.

Juniper Knowledge Base Article KB28205

Juniper PRNG

28

1. char block[8], seed[8], key[24]; // X9.31 vars
2. char output[32]; // prng_generate output
3. unsigned int index;
4.
5. void prng_reseed(void) {
6. dual_ec_generate(output, 32);
7. memcpy(seed, output, 8);
8. index = 8;
9. memcpy(key, &output[index], 24);
10. index = 32;
11. }
12.
13.
14. void prng_generate(void) {
15. index = 0;
16.
17. prng_reseed();
18.
19. for (; index < 32; index += 8) {
20. ...
21. x9_31_generate_block(seed, key, block);
22. ...
23. memcpy(&output[index], block, 8);
24. }
25. }

1. char block[8], seed[8], key[24]; // X9.31 vars
2.
3. unsigned int index, calls_since_reseed;
4.
5. void prng_reseed(void) {
6.
7.
8. // same as v6.2
9.
10.
11. }
12.
13.
14. void prng_generate(char *output) {
15. unsigned int index = 0;
16. calls_since_reseed++;
17. if (calls_since_reseed > 10 000)
18. prng_reseed();
19. for (; index < 20; index += 8) {
20. ...
21. x9_31_generate_block(seed, key, block);
22. ...
23. memcpy(&output[index], block, 8);
24. }
25. }

ScreenOS v.6.2ScreenOS v.6.1

global variable

global shared buffer

private variable

caller-supplied buffer

only 20 bytes

Source: Where did I leave my keys? Lessons from the Juniper Dual EC incident https://dl.acm.org/doi/10.1145/3266291

https://dl.acm.org/doi/10.1145/3266291

IKEv2 / IPsec

29

client nonce, xG

server nonce, yG

client authentication

server authentication

Created by Juniper PRNG

Knowledge of any of these allows deriving traffic encryption key

IKE: 8–256 bytes

Juniper: 32 bytes
Dual EC

Juniper Networks backdoor

30

• Juniper Networks: big manufacturer of network equipment (routers,

VPNs, firewalls, etc.)

• Major customers: telcos, banks, US DoD

• 2015:

• Hackers had obtained access to source code repository

• Only change:

--- Qx = 2c55e5e45edf713dc43475effe8813a60326a64d9ba3d2e39cb639b0f3b0ad10

+++ Qx = 9585320eeaf81044f20d55030a035b11bece81c785e6c933e4a8a131f6578107

IMPORTANT JUNIPER SECURITY ANNOUNCEMENT

During a recent internal code review, Juniper discovered unauthorized code

in ScreenOS that could allow a knowledgeable attacker to gain administrative

access to NetScreen® devices and to decrypt VPN connections.

Juniper created 𝑄 (yay! No NSA)

Who dis?

Juniper Networks backdoor

31

• 2008 – Juniper starts using Dual EC in ScreenOS

• 2012 – Someone hacks into Juniper's code repositories

• Changes 𝑄 point in Dual EC

• 2015 – Juniper discovers intrusion

• Changes 𝑄 back to its original value

TLS

32

client random

server random, yG

xG

Only 28 bytes

Dual EC

Extended Random

• NSA: please make the TLS nonces bigger…for reasons ;-)

• Implementing Extended Random makes

exploiting Dual EC 10,000 times easier

• No real cryptographic justification exists

for making them longer

33

RSA Security – BSAFE

• Turns out Juniper weren't the only one using Dual EC

• RSA Security

• Big computer and network security company

• Creator of BSAFE cryptographic library

• 2004 – accepted $10 million from the NSA in order to make Dual EC the default in BSAFE

• 2014 – adapted the TLS Extended Random extension

34

35

END OF PART 1

(SYMMETRIC CRYPTO)

36

Summary of symmetric cryptography

Primitive Functionality + syntax Security goal Acronym Examples

Pseudorandom function Keyed function mapping fixed-length

input to fixed-length output

𝐹 ∶ 𝒦 × 0,1 in → 0,1 out

Indistinguishability from random

function

PRF AES

HMAC

Block cipher /

pseudorandom permutation

Encrypt fixed-length block

𝐸 ∶ 𝒦 × 0,1 𝑛 → 0,1 𝑛
Indistinguishability from random

permutation

PRP AES

Encryption Encrypt variable-length input

Enc ∶ 𝒦 ×ℳ → 𝒞
Enc ∶ 𝒦 ×𝒩 ×ℳ → 𝒞 (nonce-based)

Confidentiality: attacker should

learn nothing about plaintext

(except length) from ciphertexts

IND-CPA

IND-CCA

CTR

CBC$

MAC Produce fixed-length tag on variable-

length message

Tag ∶ 𝒦 ×ℳ → 𝒯
Vrfy ∶ 𝒦 ×ℳ ×𝒯 → Valid, Invalid

Integrity: attacker shouldn't be able

to forge messages, i.e., create new

messages with valid tags

UF-CMA CBC-MAC

CMAC

HMAC

Authenticated encryption Encrypt variable-length input

Enc ∶ 𝒦 ×ℳ → 𝒞
Dec ∶ 𝒦 × 𝒞 → ℳ ∪ ⊥

With associated data + nonces (AEAD)

Enc ∶ 𝒦 ×𝒩 ×𝒜 ×ℳ → 𝒞
Enc ∶ 𝒦 ×𝒩 ×𝒜 × 𝒞 → ℳ ∪ {⊥}

Confidentiality + ciphertext integrity

Confidentiality (message) +

ciphertext and AD integrity

AE EtM

GCM

OCB

CCM

Hash function Keyless function mapping variable-

length messages to fixed-length tags

𝐻 ∶ ℳ → 𝒴
𝐻 ∶ 0,1 ∗ → 0,1 𝑛

Collision-resistance + one-wayness SHA1

SHA2-256

SHA2-512

SHA3 37

Summary of symmetric cryptography

Primitive Functionality + syntax Security goal Acronym Examples

Pseudorandom generator Function mapping short input seed to

long (basically infinite) output string

G ∶ 0,1 ℓ → 0,1 𝐿

Indistinguishability: output 𝐺 𝑠
should look like random string in

0,1 𝐿

PRNG/PRG AES-CTR

ChaCha20

38

