Lecture 7 — Randomness, entropy, TRNG/PRNGs,
stream ciphers, conspiracy theories

TEK4500
06.10.2021
Hakon Jacobsen
hakon.jacobsen@its.uio.no

mailto:hakon.jacobsen@its.uio.no

Randomness

/ - f L .
‘~ . 9

TRNG

Thermal noise

Transistor 1 Transistor 2
| | 1.2
Clock—d = C{ -
Node A

o
Inverters g o064
S
0.4
Node B Node B

Node A

Logical1

W AELEL

i sﬂ”’ s '

mmn)l)))ll } l})

Logical 0

0.2 Clock
signal
O T T T T
o 10 20 30 40

Time, picoseconds

Ring oscillators

D>

7S

50

Entropy sources

https://www.cloudflare.com/learning/ssl/lava-lamp-encryption/

Quantum magic
(radioactive decay, quantum tunneling, etc...)

https://www.cloudflare.com/learning/ssl/lava-lamp-encryption/

Ring-oscillators

4@(| I\

Shot noise

Thermal agitation Clock

sample sample

Ring-oscillators

T

Clock

sample sample

Entropy

* Measure of uncertainty

« Measured in bits

def
* H, = min-entropy = —log, (max Pr[x])
X

Pr[best guessing strategy] < 27f

1 1
) Hm:—logzz=2) Hw=—log2§=1
0.8 0.8
0.6 0.6 172
0.4 0.4

1/4

0.2 I I I I 0.2 I 1/8 1/8
0 0 | |

00 01 10 11 00 01 10 11

« Examples:
e FaircoiniHy, =1
+ Fair 6-sided die: H,, = —log, ; ~ 2.58
* Uniform 128-bit string: H,, = 128
* Uniform n-bit string + uniform m-bit string: H, = n+m

0.8
0.6
0.4
0.2

00

Hy, =-1log,1=0

01

10

11

Claude Shannon

TRNG

Thermal noise

Transistor 1 Transistor 2
| | 1.2
Clock—d = C{ -
Node A

o
Inverters g o064
S
0.4
Node B Node B

Node A

Logical1

W AELEL

i sﬂ”’ s '

mmn)l)))ll } l})

Logical 0

0.2 Clock
signal
O T T T T
o 10 20 30 40

Time, picoseconds

Ring oscillators

D>

7S

50

Entropy sources

https://www.cloudflare.com/learning/ssl/lava-lamp-encryption/

Quantum magic
(radioactive decay, quantum tunneling, etc...)

https://www.cloudflare.com/learning/ssl/lava-lamp-encryption/

Problems with TRNGs

 Biased sources
» Biased bits: p, = 0.25 p; = 0.75
« Symmetric schemes (PRFs, MACs, encryption schemes, etc.) require uniform keys
* De-bias (von Neumann): create two bits; 01 -~ 0, 10 » 1, 00/11 » try again (in practice: hash with SHA2-256)

 Example:
password = 1xiglxptnpwhraxvfrdgubgfvhjx (28 random lower-case letters ASCII encoded)

. |PW| =262 > 2131 (i.e., password min-entropy =~ 131 bits)
« Bit-length password = 28 - 8 = 224 bits
« AES-128 key: key = bytes(password[0:15])

* What's the min-entropy of key?
- Each byte is between 0x61 (‘a’) and Ox7a ('z') = 4 top bits always starts with 0110 or 0111!

- min-entropy = 16 - 4.7 = 75.2 bits!

« Correlated sources
» Value of bit 73 may depend on bit 5
« Symmetric schemes (PRFs, MACs, encryption schemes, etc.) require independent keys
» De-correlate: much more difficult! (in practice: hash with SHA2-256)

Pseudorandom generators (PRG) — syntax

Have: a short string s in {0,1} (uniformly and independently distributed)
Want: a long string S in {0,1}} (uniformly and independently distributed)

Solution: a pseudorandom generator (PRG), i.e. a function G : {0,1}¢ - {0,1}*

:[S]—> G 4>[G(s)

 Expansion: L>> ¢

« Pseudorandomness: G (s) should look like a truly random string U € {0,1}*

Random generators

Common design:

Examples:

TRNG generates short random seed

PRNG expands seed to “infinite” length

/dev/urandom
CryptGenRandom
Intel RDRAND

Entropy Sources (n)

@l J

Ll

Control

#| sampling

[

Conditioning
Function

(optional)

DRBG
(optional)

A A
Data Qut
Reg

HW tests

Debian OpenSSL RNG bug

// MD_Update(&m,buf,j);
Only 32,767 possibilities for seed = 15 bits of entropy

Statistical tests

101010011101011000100100011111000010101000000001010011111

* Is this a random string? Our answer: question not valid!

« What does that even mean?

e Suggestions:
* A random string should have roughly 50% zeros and ones (how much can you deviate?)
« A continuous run of zeros (or ones) shouldn't be too long (how long?)
« = 25% of 2-bit substrings should be 00, 25% should be 01, ...
« =12.5% of 3-bit substrings should be 000, 12.5% should be 001,
* A random string should not be compressible (related to Kolmogorov-complexity)

PRNG - security definition

World 1 i World 0

Expgrg (4) " (a

$ S < {0,1}{) % U i {0’1}L
1. be<{01} return G (s) ‘ return U

$
2. s<{0,1}*
3. U1 — G(S) 6’

$

4 Uy {01}) /
5. b’ « A(Up) Y
6. return b’ = b '

I’'m in World b’

[Definition: The PRNG advantage of an adversary A is N oz Pr(b' =b]—1=Pr[b'=11b=1]+Pr[b'=0b=0]—-1

=Pr[b'=11b=1]—-Pr[b'=11b=0]

Adv} ®(A) = |2 - Pr[Exp} (4) = true| — 1|
\) [= Pr[A(G(s)) = 1] — Pr[A(U) = 1]]

Pseudorandomness

s € {0,1}¢ /

G(s)

{0,1}*

PRNG sec.

~
~

{o,1}*

Creating PRNGs — CTR-mode

(‘\\\J
(2\“60
Q‘\O\‘ N
ctr ctr+1 ctr+2 ctr+3 ctr+4 ctr+5
| l l
: Ex Ex Ex Ex Ex
i B D |
: keysteam [
: D
: M
1 =
Co C

AFTER THE BREAK...

19

Juniper Networks

« Juniper Networks: big manufacturer of network equipment (routers,

VPNSs, firewalls, etc.)
» Major customers: telcos, banks, US DoD

JuniPer

NETWORKS

- 2015:
IMPORTANT JUNIPER SECURITY ANNOUNCEMENT
During a recent internal code review, Juniper discovered unauthorized code

in ScreenOS that could allow a knowledgeable attacker to gain administrative
access to NetScreen® devices and to decrypt VPN connections.

« Hackers had obtained access to source code repository

* Only change:
--- QX 2c55e5e45edf713dc43475effe8813a60326a64d9ba3d2e39cb639b0f3b0adle
+++ Qx = 9585320eeat81044120d55030a035bllbece81c785e6c933e4a8al131f6578107

PRNG standardization

NIST Special Publication 800-90

Recommendation for Random
Number Generation Using
Deterministic Random Bit Generators

Elaine Barker
John Kelsey

Computer Security Division

Inforamtion Technology Laboratory

COMPUTER SECURITY

June 2006

y ‘“..:.m: g%‘k

7

a

T

Sargs of

pn * Be
5
&)
s,

Mea 4

E

U.S. Department of Commerce

Carlos M. Gutierrez, Secrelary

Technology Administration

Robert Cresanti, Under Secretary of Commerce for Technology

National Institute of Standards and Technology
Willicm Seffrey, Director

NH National Institute of Standards and Technolegy * Technology Administration » U.5. Department of Commerce

NIST SP 800-90 June 2006
872 A Input, 2

8.8 Prediction Resistance and Backtracking Resi: 21

9 DRBG Mechanism Functions 24
9.1 Instantiating a DRBG 24

9.2 a DRBG Ir 27

9.3 Generating Pseudorandom Bits Using a DRBG 29

931 TheG te Function 29

9.3.2 Reseeding at the End of the Seedlife 32

9.3.3 Handling Prediction Requests 33

9.4 Removing a DRBGI iati 33

10 DRBG Algorithm Specificati 35
10.1 DRBG Mechanisms Based on Hash Functi 35
10.1.1 Hash_DREG. 36

10.1.1.1 Hash_DRBG Internal State 36

10.1.1.2 Instantiation of Hash_DRBG 37

10.1.1.3 Reseeding a Hash_DRBG Ir i 38

10.1.1.4 Generating Pseudorandom Bits Using Hash_DRBG ..

10.1.2 HMAC_DRBG M
10.1.21 HMAC_DRBG Internal State. #
10.1.2.2 The Update Function (Update) 42
10.1.2.3 Instantiation of HMAC_DREG 43

10.1.24 Reseeding an HWAC_DRBG Instantiation .

10.1.2.5 Generating Pseudorandom Bits Using HMAC_DRBG 44
10.2 DREG Mechanisms Based on Block Ciphers 46
10.21 CTR_DRBG 46
10.2.1.1 CTR_DRBG Internal State 49
10.2.1.2 The Update Function (Update) 49
10.2.1.3 Instantiation of CTR_DRBG 50
10.2.1.4 Reseeding a CTR_DRBG | tiati 52
10.2.1.5 Generating Pseudorandom Bits Using CTR_DRBG.
10.3 DRBG Mechani Based on Number Th tic Prol 58
10.3.1 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)

PRNG

f(so) f(s1) f(s2)

Sy —— S§; —— Sy) — S

9(50)\ 9(51)\ g(Sz)I

Ro Ry R,

Elliptic curves 101

« P = (x,y) point on elliptic curve

« x and y are 32-byte integers

« Points P and Q can be added to get another point P + Q

« Special case: add P to itself n times

nP=P+P+-+P

« Fact: given P and nP for secret n, hard to find n

Dual EC DRBG

P, Q: public points on an elliptic curve

x(-) : x-coordinate (32 bytes)

x(syP) x(s,P) x(s,P)

\ 4
%)
=
\ 4
(9]
N

32-byte state So

X(50Q) X(510Q) X(s20)

keep 30 bytes 0 1 T,

Output

Where does Q (and P) come from?

Subject: RE: Minding our Ps and Qs in Dual EC
From: "Don Johnson" <DJohnson@cygnacom.com>
Date: Wed, October 27, 2004 11:42 am

To: "John Kelsey" <john.kelsey@nist.gov>
John,

P=G.

Q is (in essence) the public key for some random private key.

It could also be generated like a(nother) canonical G, but NSA kyboshed
this idea, and I was not allowed to publicly discuss it, just in case you

may think of going there.

Don B. Johnson

From: John Kelsey [mailto:john.kelsey@nist.gov]
Sent: Wednesday, October 27, 2004 11:17 AM

To: Don Johnson

Subject: Minding our Ps and Qs in Dual EC

Do you know where Q comes from in Dual EC DRBG?

Thanks,
-Joh

NIST SP 800-90 June 2006

Appendix A: (Normative) Application-Specific Constants
A.1 Constants for the Dual_EC_DRBG

The Dual_EC_DRBG requires the specifications of an elliptic curve and two points on the
elliptic curve. One of the following NIST approved curves with associated points shall be
used in applications requiring certification under FIPS 140-2. More details about these
curves may be found in FIPS PUB 186-3, the Digital Signature Standard.

Each of following curves is given by the equation:
_1; =x’-3x+b (mod p)
Notation:
p - Order of the field F), , given in decimal

r - order of the Elliptic Curve Group, in decimal . Note that r is used here for
consistency with FIPS 186-3 but is referred to as n in the description of the
Dual_EC_DRBG.

a —(-3) in the above equation
I - coefficient above
The x and y coordinates of the base point, 1.e., generator G, are the same as for the point P,
A.11 Curve P-256
P 11579208021035624876269744694940757353008614Y
34152903141955336313088670487853951

r o= 1157920B221035624876269744694940737352909695",

5224135760342422252061068512044369
b= 5ac635d8 aa3a%3e? b3ebbd55 769886bc 651d06b0 ccb53b0f6 3bceldcle
27d2604b

Px 6b17d1f2 21224247 f8bceteb 63a440£2 77037481 2deb33al
f4al13945 dB38c296

e342e? fela7f% BeeTebda Tclf% 16 2bcel357 6b3lSece

4068 3TRE51f5

Ox = c97445f4 Scdef9f0 dielSele 5B5£c297 235b82b5 beBfflef
cabTc598 52018182

(v = b28ef557 balldfchb dd2lacdé e2a%le3c 304f44ch 87058ada
2cb81515 legl0046

74

Dual EC DBRG — something's fishy

Dual EC is slow

» Orders of magnitude slower than HMAC/AES-CTR based alternatives

x(soP)
So S1

« 2006 — Kristian Gjgsteen: Dual EC is not a good PRNG
- Can distinguish output from random with Advp 2 . .(KG) ~ 0.0011 x(50Q) x(51Q)

» Slightly improved by Schoenmakers and Sidorenko

i 121

2007 — Shumow and Ferguson: Dual EC can be backdoored

x(s,1P)

x(s,0)

S2

x(s,P)

T2

« Whatif P = dQ for a secret d only you know?

Output

« If you know full s;Q, compute d(s;Q) = s,(dQ) =s;P = s,
« Because of truncation need to guess 2 top bytes (= 2¢ additional work)

« 2007 — NIST adds appendix to standard on how to create P and Q yourself
« Continues to recommend existing P and Q

* Most cryptographers: who cares? No one is going to use Dual EC anyway ...

2013 - Edward Snowden leak: a project called Bullrun exists within the NSA

* Purpose: "Insert vulnerabilities into commercial encryption systems, IT systems, networks, and endpoint communications devices used by targets."

* Turns out Juniper Networks made Dual EC their PRNG in ScreenOS from 2008

Juniper PRNG

ScreenOS does make use of the Dual EC_DRBG standard,
but is designed to not use Dual EC_DBRG as its primary random
number generator. ScreenOS uses it in a way that should not be
vulnerable to the possible issue that has been brought to light.
Instead of using the NIST recommended curve points it uses self-
generated basis points and then takes the output as an input to
FIPS/ANSI X.9.31 PRNG, which is the random number generator
used in ScreenOS cryptographic operations.

Juniper Knowledge Base Article KB28205

Juniper PRNG

ScreenOS v.6.1

ScreenOS v.6.2

1. char 8 seed[8], key[24]; // X9.31 vars 1.
2. 2.
3. unsigned int index, calls_since_reseed; 3.
4. 4.
5. void prng_reseed(void) { 5.
6. 6.
7. 7.
8. // same as v6.2 8.
9. 9.
10. 10.
11. } 11.
12. caller-supplied buffer 12.
13. 13.
14. void pr‘ng_gener‘ate { 14.
15. unsigned int index 0; 15
16. calls_since_r‘eseed:;\l\ private variable 16.
17. if (calls_since_reseed > 10 000) 17.
18. prng_reseed(); 18.
19. for (; index < 20; index += 8) { 19.
20. 00C 20.
21. x9_31 generate_blo seed, key, block); 21.
22. 00C 22.
23. memcp k, 8); 23.
24, } 24,
25. } only 20 bytes 25.

// X9.31 vars

char_block[8 seed[8], key[24];

unsigned 1int index;

void prng_reseed(vo;:;~;--~“-_--.___
dual_ec_generate(output, 32);
memcpy(seed, 8);
index = 8;

memcpy (key, &out
index = 32;

global variable

void prng_generate(void)
index = 0;

prng_reseed();
for (; index < 32; index += 8) {
x9_31_generate_block(seed, key, block);

memcpy(&output[index]) block, 8);
}

} global shared buffer

Source: Where did | leave my keys? Lessons from the Juniper Dual EC incident https://dl.acm.org/doi/10.1145/3266291

// prng_generate output

https://dl.acm.org/doi/10.1145/3266291

IKEV2 / IPsec

Knowledge of any of these allows deriving traffic encryption key

A _ client norge, *xG

\ >

server nonce,

/cv:hent\authent;gatlon

< server\auth ntication Dual EC

Created by Juniper PRNG

Juniper: 32 bytes

Juniper Networks backdoor

« Juniper Networks: big manufacturer of network equipment (routers,

VPNSs, firewalls, etc.)
» Major customers: telcos, banks, US DoD

JuniPer

NETWORKS

- 2015:
IMPORTANT JUNIPER SECURITY ANNOUNCEMENT
During a recent internal code review, Juniper discovered unauthorized code

in ScreenOS that could allow a knowledgeable attacker to gain administrative
access to NetScreen® devices and to decrypt VPN connections.

« Hackers had obtained access to source code repository

* Only change:
--- Qx 2c55e5e45edf713dc43475effe8813a60326a64d9ba3d2e39cb639b0f3b0adle —
+++ Qx = 9585320eeat81044120d55030a035bllbece81c785e6c933e4a8al131f6578107

Juniper created Q (yay! No NSA)

Who dis?

Juniper Networks backdoor

« 2008 — Juniper starts using Dual EC in ScreenOS

« 2012 - Someone hacks into Juniper's code repositories | l I | ‘ pe r
« Changes Q pointin Dual EC ®

NETWORKS

* 2015 — Juniper discovers intrusion
« Changes Q back to its original value

TLS

Only 28 bytes ®

/
client rando

server random, yG

xG

Dual EC

32

Extended Random

NSA: please make the TLS nonces bigger...for reasons ;-)

Implementing Extended Random makes
exploiting Dual EC 10,000 times easier

No real cryptographic justification exists
for making them longer

[Search] [txtlpdflbibtex] [Tracker] [Email] [Nits]

Versions: 00
Network Working Group
Internet-Draft

Network Resonance

E. Rescorla

Expires:

June 16, 2007 M.

Salter
National Security Agency
December 13, 2006

Opaque PRF Inputs for TLS
draft-rescorla-tls-opaque-prf-input-00.txt

[Search] [txt|xml|pdf|bibtex] [Tracker] [Email] [Nits

Versions: 00 01 02

Network Working Group
Internet-Draft

Intended status: Informational

Expires: October 31, 2008

Extended Random Values for TLS
draft-rescorla-tls-extended-random-00.t

Status of this Memo
By submitting this Internet-Draft, each author repr

applicable patent or other IPR claims of which he o
have been or will be disclosed, and any of which he

aware will be disclosed, in accordance with Section

Internet-Drafts are working documents of the Intern
Task Force (IETF), its areas, and its working group
other groups may also distribute working documents

National Security Agency

Draft, each author represents that any

E. Rescorla PR claims of which he or she is aware

RTFM, Inc. ed, and any of which he or she becomes
M. Salter accordance with Section 6 of BCP 79.

April 29, 2008 documents of the Internet Engineering

, and its working groups. Note that

[Search] [txtl|pdflbibtex] [Tracker] [Email] [Diffl] [Diff2] [Nits]

Versions: 00 01

Network Working Group J. Solinas

Internet-Draft National Security Agency

Intended status: Informational P. Hoffman

Expires: April 27, 2010 VPN Consortium
October 24, 2009

Additional PRF Inputs for TLS
draft-solinas-tls-additional-prf-input-01

Status of this Memo

[Search] [txt|pdfl|bibtex]
Versions: 00 01
Network Working Group

Internet-Draft

Expires: August 15, 2010

[Tracker] [WG] [Email] [Diffl]

Intended status: Standards Track

[Diff2] [Nits]

full conformance with the
ment may contain material
ublished or made publicly
rson(s) controlling the
have granted the IETF
uch material outside the
an adequate license from
such materials, this

Standards Track
P. Hoffman

VPN Consortium
February 11, 2010

Additional Random Extension to TLS
draft-hoffman-tls-additional-random-ext-01

BRbstract

RSA Security — BSAFE

Turns out Juniper weren't the only one using Dual EC

RSA Security
» Big computer and network security company
» Creator of BSAFE cryptographic library

2004 — accepted $10 million from the NSA in order to make Dual EC the default in BSAFE

2014 — adapted the TLS Extended Random extension

I'm not sayingit's the NSA

<~

- s
3 '_ ‘Q., " H ,
butitisthe NSA:-~- ¢

Cad e] L] (o]

[Aw] [Bea] [[Ga] [P

END OF PART 1
(SYMMETRIC CRYPTO)

Summary of symmetric cryptography

Primitive

Pseudorandom function

Block cipher/
pseudorandom permutation

Encryption

MAC

Authenticated encryption

Hash function

Functionality + syntax

Keyed function mapping fixed-length
input to fixed-length output
F: X x{0,1}™ - {0,1}°ut

Encrypt fixed-length block
E: XK x{0,1}* - {0,1}"

Encrypt variable-length input
Enc: K XM - C
Enc: X XN X M — C (nonce-based)

Produce fixed-length tag on variable-
length message

Tag: K XM > T

Vrfy : K X M x T — {Valid, Invalid}

Encrypt variable-length input
Enc: XK XM - C
Dec: K XC-> M uU{l}

With associated data + nonces (AEAD)
Enc: K XN XAXM - C
Enc: K XN XAXC->MU{Ll}

Keyless function mapping variable-
length messages to fixed-length tags
H:M->1TY

H:{0,1} - {0,1}"

Security goal

Indistinguishability from random
function

Indistinguishability from random
permutation

Confidentiality: attacker should
learn nothing about plaintext
(except length) from ciphertexts

Integrity: attacker shouldn't be able
to forge messages, i.e., create new
messages with valid tags

Confidentiality + ciphertext integrity

Confidentiality (message) +
ciphertext and AD integrity

Collision-resistance + one-wayness

Acronym

PRF

PRP

IND-CPA
IND-CCA

UF-CMA

AE

Examples

AES
HMAC

AES

CTR
CBC$

CBC-MAC
CMAC
HMAC

EtM

GCM
OCB
CCM

SHA1
SHA2-256
SHA2-512
SHA3

Summary of symmetric cryptography

Primitive Functionality + syntax Security goal Acronym Examples

Pseudorandom generator Function mapping short input seed to Indistinguishability: output G (s) PRNG/PRG AES-CTR
long (basically infinite) output string should look like random string in ChaCha20
{0,13*
G:{0,1}¢ - {0,1}

