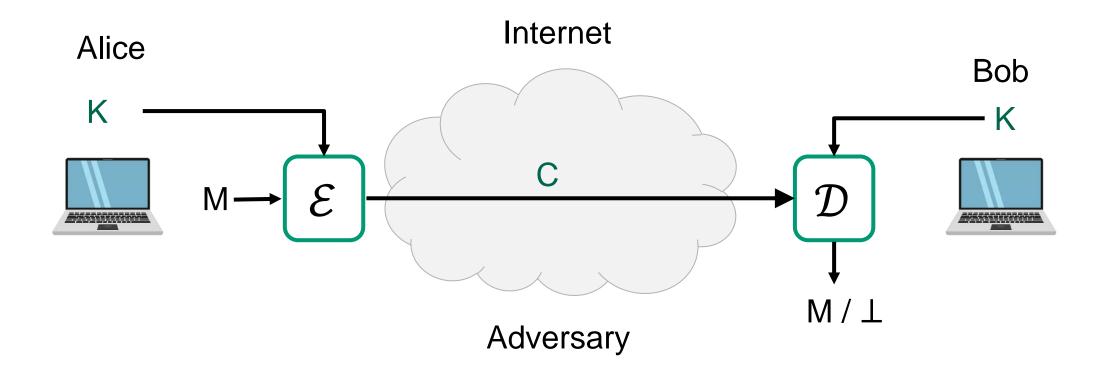
Lecture 8 – Group theory, Diffie-Hellman key exchange

TEK4500

13.10.2021 Håkon Jacobsen hakon.jacobsen@its.uio.no

Creating secure channels: encryption schemes

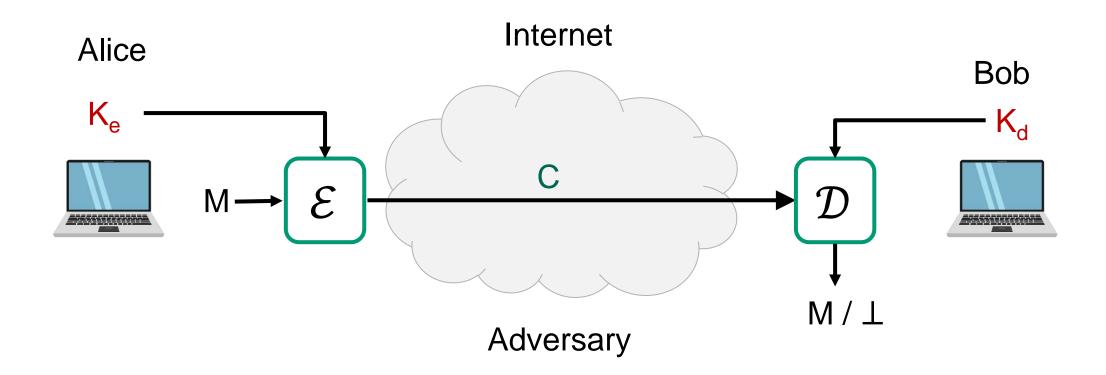


E : encryption algorithm (public)

K : encryption / decryption key (secret)

 \mathcal{D} : decryption algorithm (public)

Creating secure channels: encryption schemes



E : encryption algorithm (public)

 \mathcal{D} : decryption algorithm (public)

- **K**_e : encryption key (public)
- K_d : decryption key (secret)

The public-key revolution

	Message privacy	Message integrity / authentication	
Symmetric keys	Symmetric encryption	Message authentication codes (MAC)	
Asymmetric keys	Asymmetric encryption (a.k.a. public-key encryption)	Digital signatures	(Key exchange)

Diffie-Hellman key exchange

- Discovered in the 1970's •
- Allows two parties to establish a shared secret ۲ without ever having met
- Diffie & Hellman paper also introduced: ٠
 - Public-key encryption
 - Digital signatures

Ralph Merkle Whitfield Diffie Martin Hellman

New Directions in Cryptography

Invited Paper

Whitfield Diffie and Martin E. Hellman

Abstract Two kinds of contemporary developments in cryp- communications over an insecure channel order to use cryptogtography are examined. Widening applications of teleprocess- raphy to insure privacy, however, it currently necessary for the ing have given rise to a need for new types of cryptographic communicating parties to share a key which is known to no systems, which minimize the need for secure key distribution one else. This is done by sending the key in advance over some channels and supply the equivalent of a written signature. This secure channel such a private courier or registered mail. A paper suggests ways to solve these currently open problems. It also discusses how the theories of communication and computation are beginning to provide the tools to solve cryptographic problems of long standing.

1 INTRODUCTION

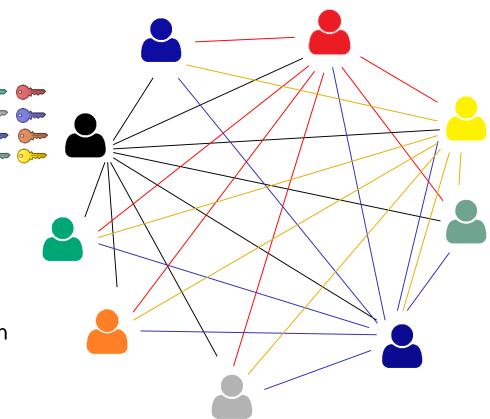
We stand today on the brink of a revolution in cryptography. The development of cheap digital hardware has freed it from the design limitations of mechanical computing and brought the cost of high grade cryptographic devices down to where they can be used in such commercial applications as remote cash dispensers and computer terminals. In turn, such applications create a need for new types of cryptographic systems which minimize the necessity of secure key distribution channels and supply the equivalent of a written signature. At the same time, theoretical developments in information theory and computer science show promise of providing provably secure cryptosystems, changing this ancient art into a science. The development of computer controlled communication net-

private conversation between two people with no prior acquaintance is a common occurrence in business, however, and it is unrealistic to expect initial business contacts to be postponed long enough for keys to be transmitted by some physical means. The cost and delay imposed by this key distribution problem is a major barrier to the transfer of business communications to large teleprocessing networks.

Section III proposes two approaches to transmitting keying information over public (i.e., insecure) channel without compromising the security of the system. In public key cryptosystem enciphering and deciphering are governed by distinct keys, E and D, such that computing D from E is computationally infeasible (e.g., requiring 10100 instructions). The enciphering key E can thus be publicly disclosed without compromising the deciphering key D. Each user of the network can, therefore, place his enciphering key in a public directory. This enables any user of the system to send a message to any other user enciphered in such a way that only the intended receiver is able to decipher it. As such, a public key cryptosystem is multiple access cipher. A private conversation can therefore be

Symmetric key distribution problem

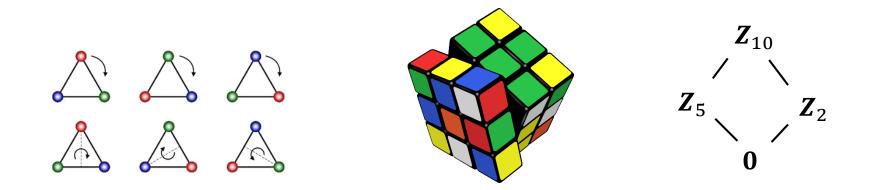
- One user needs to store *N* symmetric keys when communicating with *N* other users
- $N(N-1) = O(N^2)$ keys stored in total
- Difficult to store and manage so many keys securely
- Partial solution: key distribution centers
 - One central authority hands out temporary keys
 - O(N) (long-term) keys needed (to the KDC)
 - Might be a feasible solution in a single organization
 - Single point of failure
 - What about the internet?



Diffie-Hellman key exchange – idea



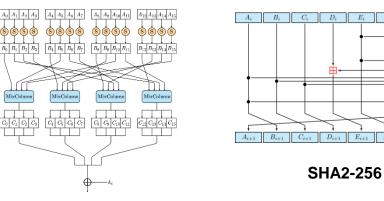
Public-key encryption



Constructing asymmetric cryptography: group theory + number theory

A different kind of primitives

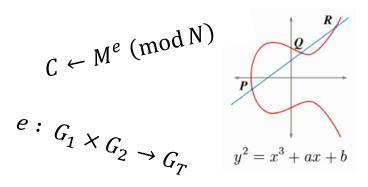
- Symmetric crypto boils down to a few *primitives*
 - Block ciphers/PRFs, hash functions
 - Why are these considered secure?
 - Lots and lots of cryptanalysis (well-studied!)
 - Artificial and man-made



AES

- Want asymmetric crypto to be based on a few well-studied primitives too
 - Candidates come from a different place:
 - Hard mathematical problems
 - Good candidates: discrete logarithm problem, factoring
 - Much more algebraic structure

$$\mathbf{Z}_n^* \simeq \mathbf{Z}_{p_1}^* \times \mathbf{Z}_{p_2}^* \times \cdots \times \mathbf{Z}_{p_t}^*$$



(reals) R = the real numbers

An integer p > 1 is **prime** if it's only divisible by 1 and p

 $\boldsymbol{R}^* = \boldsymbol{R} \setminus \{0\}$

(integers "mod *n*") $Z_n = \{0, 1, 2, ..., n-1\}$

(integers "mod p") $Z_p = \{0, 1, 2, ..., p-1\}$ $Z_p^* = Z_p \setminus \{0\}$

Examples:

 $\boldsymbol{Z}_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

 $\boldsymbol{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Definition: A group (G, \circ) is a set G together with a binary operation \circ satisfying the following axioms.

G1:
$$(a \circ b) \circ c = a \circ (b \circ c)$$
 for all $a, b, c, \in G$ (associativity)G2: $\exists e \in G$ such that $e \circ a = a \circ e = a$ for all $a \in G$ (identity)G3: $\forall a \in G$ there exists $a^{-1} \in G$ such that $a \circ a^{-1} = a^{-1} \circ a = e$ (inverse)

A group is **abelian/commutative** if: $a \circ b = b \circ a$ for all $a, b \in G$

The **order** of a group is the number of elements in G, denoted |G|

Definition: A group (*G*,•) ...

G1: $(a \circ b) \circ c = a \circ (b \circ c)$ (associativity)**G2**: $\exists e \in G: e \circ a = a \circ e = a$ (identity)**G3**: $\exists a^{-1} \in G: a \circ a^{-1} = a^{-1} \circ a = e$ (inverse)

Groups

Not groups

		_ 、							(G ,∘)				$(Z_4, +_4)$					(G ,★)					
	(6	, ∘)	1		(Z_3)	,+ ₃)			0	е	а	b	с	$+_{4}$	0	1	2	3	*	е	а	b	с
0	е	а	b	+3	0	1	2	-	е	е	а	b	С	0	0	1	2	3	е	е	а	b	С
е	е	а	b	0	0	1	2	_	а	а	b	С	е	1	1	2	3	0	 а	а	е	С	b
a	а	b	е	1	1	2	0		b	b	С	е	а	2	2	3	0	1	b	b	С	е	а
b	b	е	а	2	2	0	1	-	С	С	е	а	b	3	3	0	1	2	 С	С	b	а	е

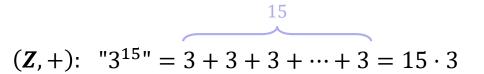
Group arithmetic

$$g^{0} \stackrel{\text{def}}{=} e$$
$$g^{n} \stackrel{\text{def}}{=} \overbrace{g \circ g \circ \cdots \circ g}^{n}$$

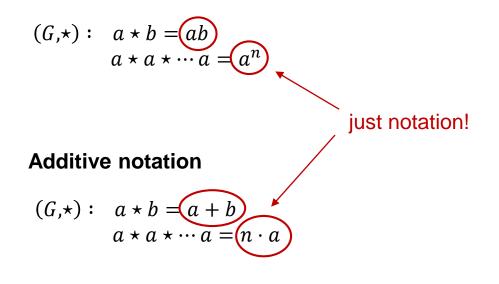
 $g^{-n} \stackrel{\mathrm{def}}{=} (g^{-1})^n$

Fact: $g^n g^m = \underbrace{g \circ \cdots \circ g}_{n+m} \circ \underbrace{g \circ \cdots \circ g}_{n+m} = g^{n+m}$

Fact: $(g^n)^m = g^{nm} = (g^m)^n$



Multiplicative notation



Definition: A group (G, \circ) is cyclic if there exists $g \in G$ such that

$$G = \left\{ g^i \mid i \in \mathbb{Z} \right\} = \{ \dots, g^{-2}, g^{-1}, g^0, g^1, g^2, g^3, \dots \}$$

g is called a **generator** for G and we write $(G, \circ) = \langle g \rangle$

Examples:

 $(\mathbf{Z}, +) = \langle 1 \rangle$ $(\mathbf{Z}_n, +_n) = \langle 1 \rangle$ $(\mathbf{Z}_7, \cdot) = \langle 3 \rangle = \{3^0, 3^1, 3^2, 3^3, 3^4, 3^5\} = \{1, 3, 2, 6, 4, 5\}$ $= \langle 5 \rangle = \{5^0, 5^1, 5^2, 5^3, 5^4, 5^5\} = \{1, 5, 4, 6, 2, 3\}$ $\neq \langle 2 \rangle = \{2^0, 2^1, 2^2, 2^3, 2^4, 2^5\} = \{1, 2, 4, 1, 2, 4\} = \{1, 2, 4\}$ $(\mathbf{Z}_p^*, \cdot) = \langle a \rangle$ Not cyclic groups:

 $(\mathbf{R},+)$ (\mathbf{R}^*,\cdot)

Definition: A set $H \subseteq G$ is a **subgroup**, written H < G, if

 $\forall a, b \in H: \quad a \circ b \in H$

Fact: a subgroup *H* is a group

Examples:

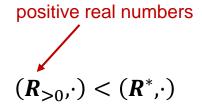
 $\{e\} < G$ (for all groups)

G < G (for all groups)

 $2\mathbf{Z} = \{\dots, -2, 0, 2, 4, 6, \dots\} < (\mathbf{Z}, +)$

 $3\mathbf{Z} = \{\dots, -3, 0, 3, 6, 9, \dots\} < (\mathbf{Z}, +)$

G H x^{-1} $x \circ y$ y e x



 $(\{1,-1\},\cdot) < (\boldsymbol{R}^*,\cdot)$

 $\langle 20 \rangle < \langle 10 \rangle < \langle 5 \rangle < (\mathbf{Z}_{40}, +)$

 $\langle 5 \rangle = \{0, 5, 10, ..., 35\}$ $\langle 10 \rangle = \{0, 10, 20, 30\}$ $\langle 20 \rangle = \{0, 20\}$

Cyclic groups

Theorem: if (G, \circ) is a finite group, then for all $g \in G$: $g^{|G|} = e$

Proof (finite cyclic groups):

$$\begin{aligned} |G| &= |\langle g \rangle| = n \\ & \overbrace{e \quad g^1 \quad g^2 \quad g^3 \quad \cdots \quad g^{n-1} \quad g^n \quad g^{n+1} \quad g^{n+2} \quad \cdots \\ & g^n = g^3 \quad \implies \quad g^{n-3} = e \quad \implies \quad g^j = e \quad j < n \end{aligned}$$

Theorem: $g^{i} = g^{i \pmod{n}} = g^{i \pmod{|G|}}$

Theorem (Lagrange's theorem): if H < G then |H| divides |G|

Groups of prime order

Theorem (Lagrange's theorem): if H < G then |H| divides |G|

Fact: any prime-order group is cyclic

Fact: any non-trivial element $(\neq e)$ in a prime-order group is a generator

Warning: $(\mathbf{Z}_{p}^{*}, \cdot)$ is *not* a prime-order group! $|\mathbf{Z}_{p}^{*}| = p - 1$

Suppose p = 2q + 1, with q being prime; what are the possible sub-groups of $(\mathbf{Z}_{p}^{*}, \cdot)$?

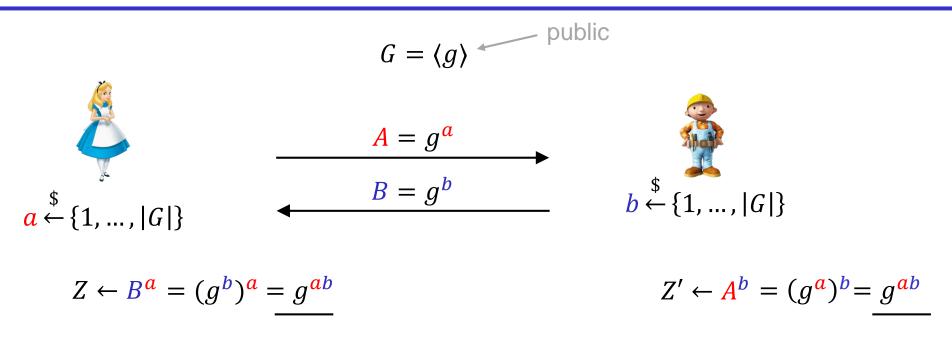
 $|\mathbf{Z}_p^*| = p - 1 = 2q$ Example: $\mathbf{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ $\{1\} < \mathbf{Z}_{11}^*$

$$\mathbf{Z}_{p}^{*} = \begin{cases}
\{1\}, & 11 = 2 \cdot 5 + 1 \\
\{1, -1\}, \\
H, & |H| = q \\
\mathbf{Z}_{p}^{*}
\end{cases} \quad H = \langle 3 \rangle = \langle 4 \rangle = \langle 5 \rangle = \langle 9 \rangle = \{1, 3, 4, 5, 9\} < \mathbf{Z}_{11}^{*} \\
\mathbf{Z}_{11}^{*} < \mathbf{Z}_{11}^{*}
\end{cases}$$

Before the break

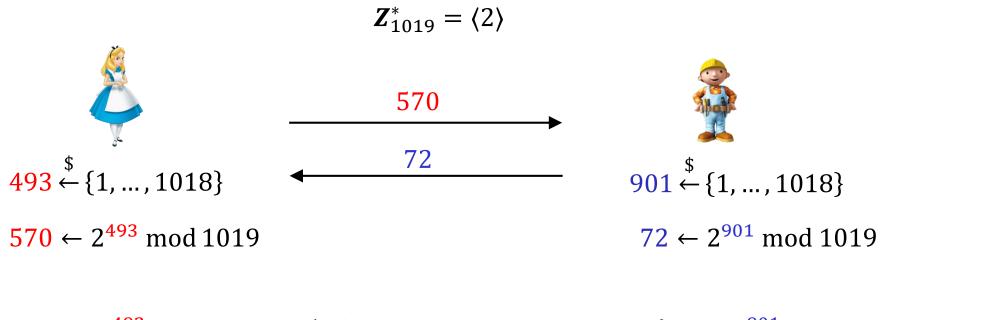
- Groups
- Subgroups
- Cyclic groups
 - (\mathbf{Z}_p^*, \cdot)
- Prime order groups
 - Not $(\mathbf{Z}_p^*, \cdot)!$ (order p-1)
 - $H < (\mathbf{Z}_p^*, \cdot)$ (prime-ord
- (prime-order subgroup)

Diffie-Hellman



Claim: Z = Z'

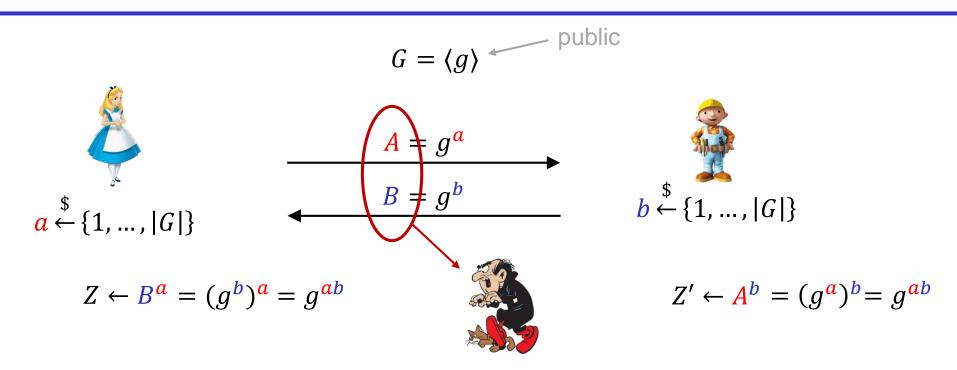
Diffie-Hellman – example



 $Z \leftarrow 72^{493} \mod 1019 \equiv \underline{531}$

 $Z' \leftarrow \mathbf{570}^{901} \mod 1019 \equiv \mathbf{531}$

Diffie-Hellman



Security:

- Must be hard to compute $Z \leftarrow g^{ab}$ given g, A, B
- Must be hard to find *a* (or *b*) given *g*, *A*, *B*

(DH assumption) (DLOG assumption)

Doesn't work:
$$A \circ B = g^a \circ g^b = g^{a+b} \neq g^{ab}$$

Discrete logarithm (DLOG) problem

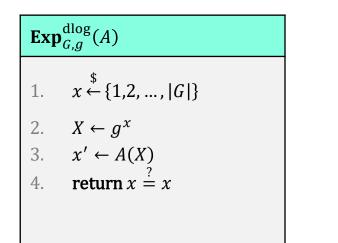
Adversary wins if x' = xIn other words: $x' = \log_g X$

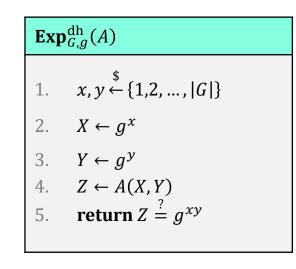
Definition: The **DLOG-advantage** of an adversary *A* is $Adv_{G,g}^{dlog}(A) = Pr\left[Exp_{G,g}^{dlog}(A) \Rightarrow true\right]$

Diffie-Hellman (DH) problem

Adversary wins if $Z = g^{xy}$

Definition: The **DH-advantage** of an adversary *A* is $Adv_{G,g}^{dh}(A) = Pr[Exp_{G,g}^{dh}(A) \Rightarrow true]$





DLOG security $\stackrel{?}{\Rightarrow}$ DH security

DLOG security \leftarrow DH security

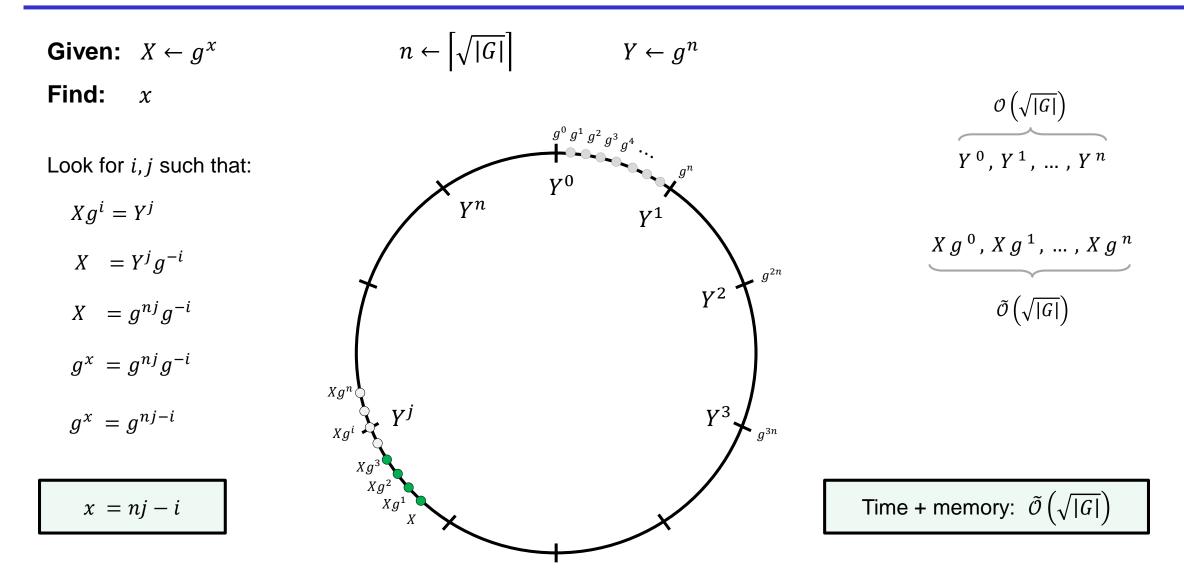
 $\label{eq:def} \texttt{DLOG} \text{ insecurity} \Longrightarrow \mathsf{DH} \text{ insecurity}$

Algorithms for solving DLOG

- Generic algorithms: works for *all* (cyclic) groups
 - Brute-force
 - 1. Given g and $X \in G$
 - 2. for i = 1, 2, ..., |G| check if $g^i = X$ running time: $\mathcal{O}(|G|) = (2^n)$, given $|G| \approx 2^n$
 - Are there better algorithms?

• Group-specific algorithms: exploits algebraic features of given group

Solving DLOG: the baby-step giant-step algorithm



Generic algorithms for solving DLOG

- Baby-step, giant-step: time $\mathcal{O}\left(\sqrt{|G|}\right)$ memory $\mathcal{O}\left(\sqrt{|G|}\right)$
- Pollard's rho: time $O\left(\sqrt{|G|}\right)$ memory O(1)
- Pohlig-Hellman:

time $\max_{p} \mathcal{O}(\sqrt{p})$ memory $\mathcal{O}(1)$

 $(|G| = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t})$

- **Consequence:** for DLOG to be hard $\sqrt{|G|}$ must be large enough!
 - $|G| \approx 2^{128}$ only gives $\sqrt{2^{128}} = 2^{64}$ security
 - $|G| \approx 2^{256}$ only gives $\sqrt{2^{256}} = 2^{128}$ security
 - $|G| \approx 2^{512}$ only gives $\sqrt{2^{512}} = 2^{256}$ security
 - etc...

• Nechaev'94 & Shoup'97: Solving DLOG requires $\Omega\left(\sqrt{|G|}\right)$ time in *generic* groups

Non-generic algorithms for DLOG

• Unfortunately, (\mathbf{Z}_p^*, \cdot) is *not* a generic group!

- Much faster specific algorithms exist for solving DLOG in Z_p^*
 - Index-calculus
 - Elliptic-curve method
 - Special number-field sieve (SNFS)
 - General number-field sieve (GNFS)

exceptionally complicated algorithms, requiring very advanced mathematics!

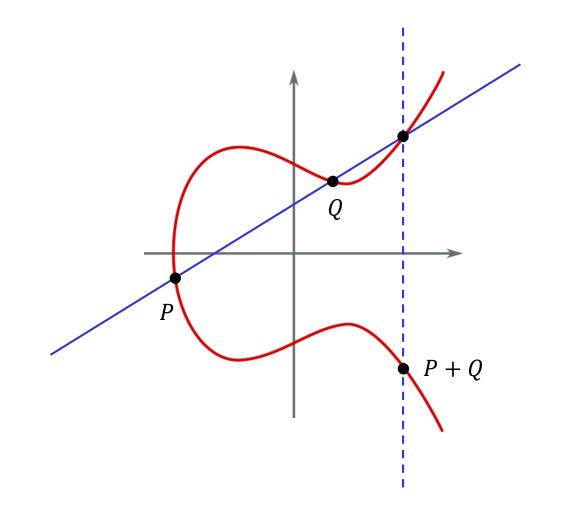
- Current DLOG-solving record: $|\mathbf{Z}_p^*| \approx 2^{795}$ using GNFS (Heninger et al. '19)
 - Previous records: https://en.wikipedia.org/wiki/Discrete_logarithm_records

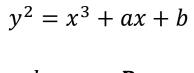
• $|\mathbf{Z}_p^*| \ge 2^{2048}$ typically required as a minimum today

Z_p^*

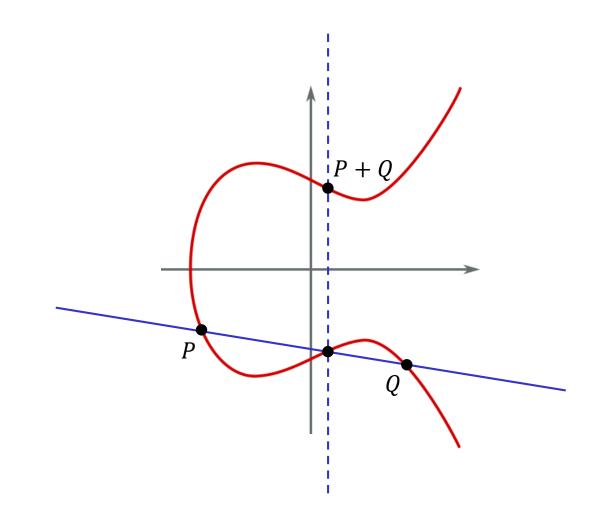
Group where GNFS doesn't work

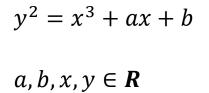
Better alternatives to Z_p^* ?

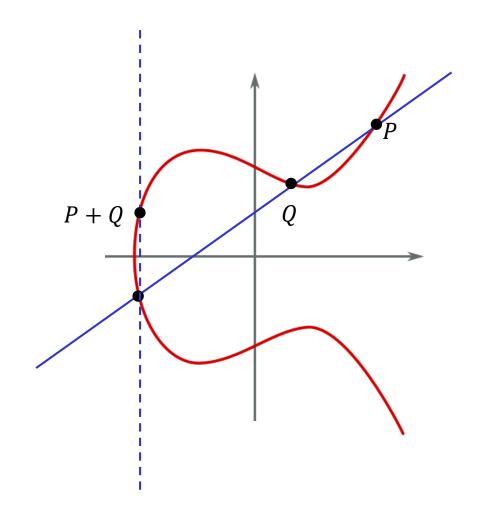




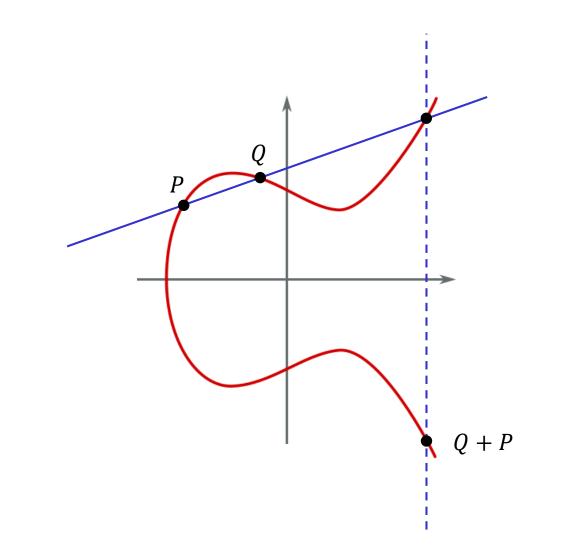
 $a, b, x, y \in \mathbf{R}$

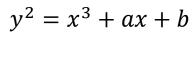




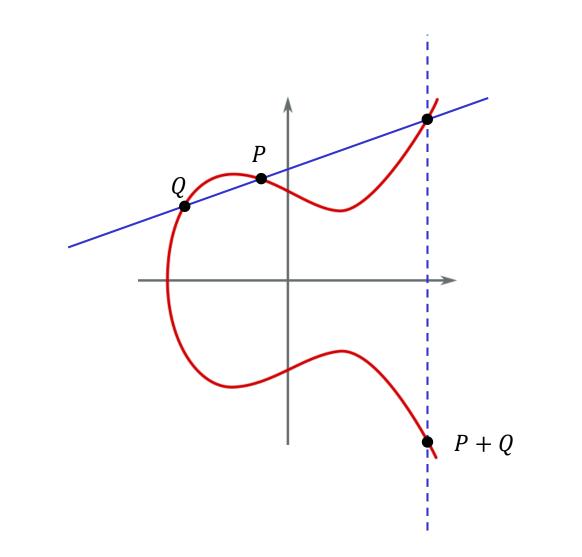


 $y^2 = x^3 + ax + b$ $a, b, x, y \in \mathbf{R}$



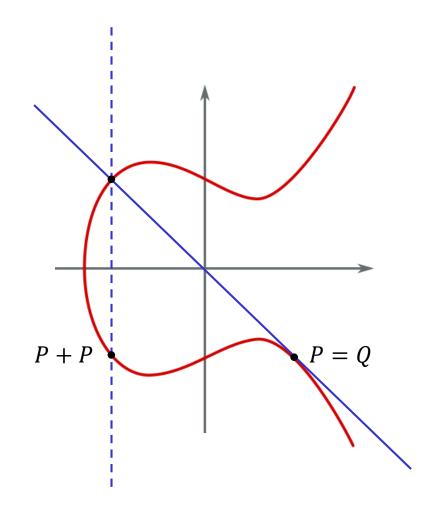


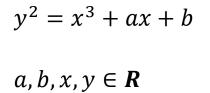
 $a, b, x, y \in \mathbf{R}$

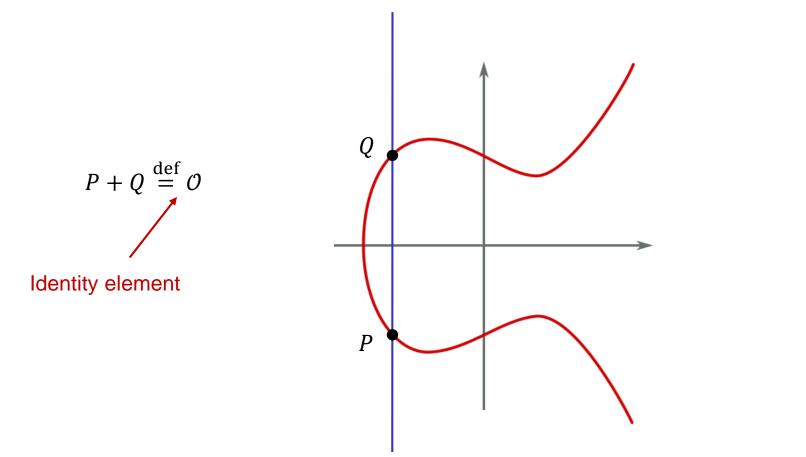


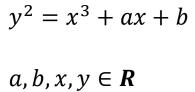
 $y^2 = x^3 + ax + b$

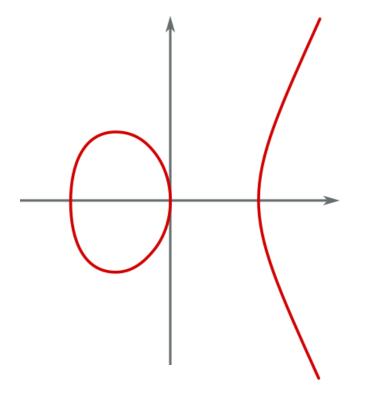
 $a, b, x, y \in \mathbf{R}$

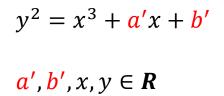


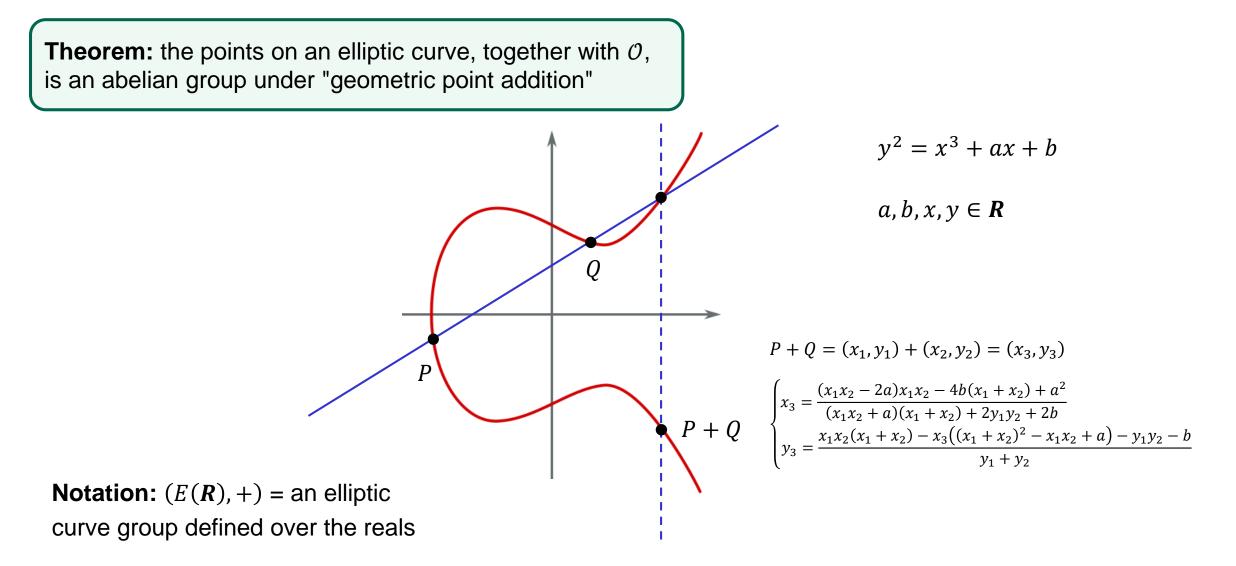


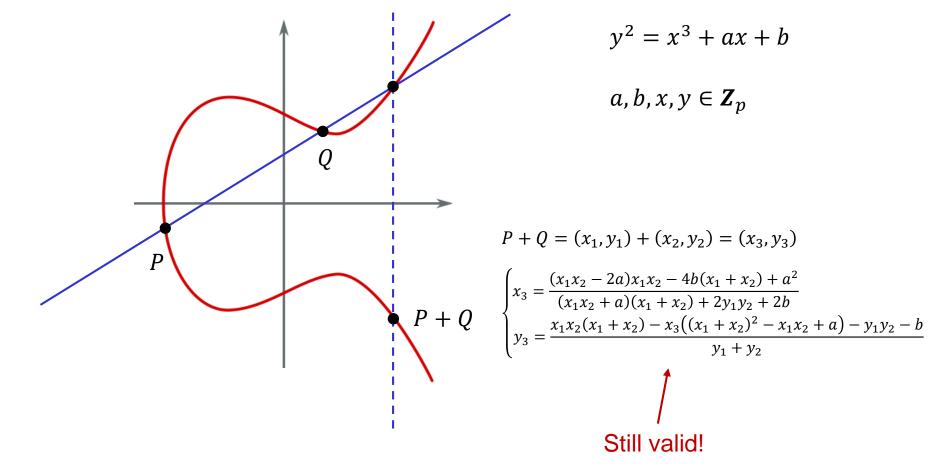




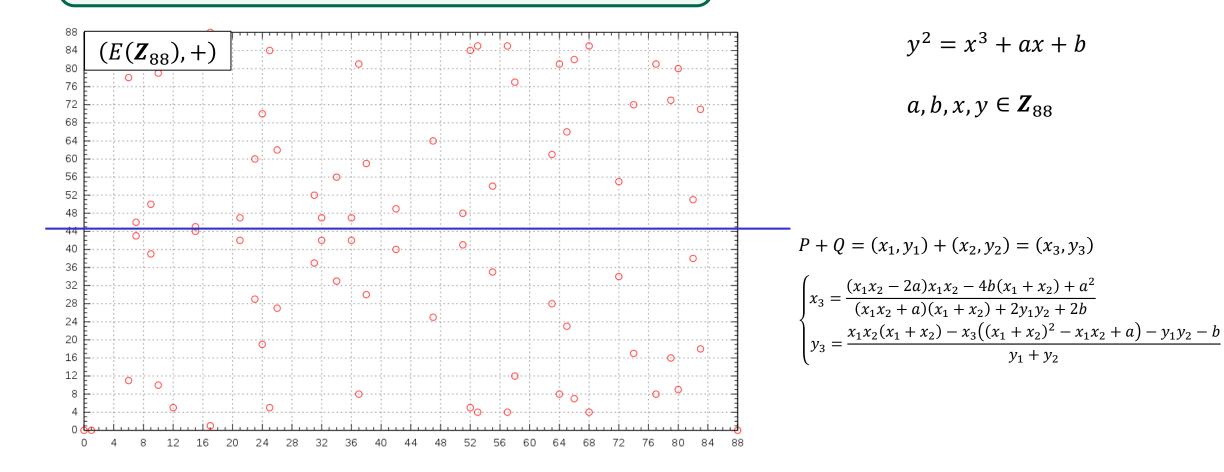








Theorem: the points on an elliptic curve, together with O, is an abelian group under "geometric point addition"



Notation: $(E(\mathbf{Z}_p), +) =$ an elliptic curve

group defined over Z_p

$E(Z_p)$ – properties

- Recall: $(\mathbf{Z}_{p}^{*}, \cdot)$ is *not* a generic group
 - Specialized attacks (GNFS) exploit algebraic structure ⇒ parameters must be bigger to compensate
 - $|\mathbf{Z}_p^*| \ge 2^{2048}$ required for security today
 - Bigger parameters \Rightarrow slower systems
- Currently no attacks that manage to exploit the algebraic structure of $(E(\mathbf{Z}_p^*), +)$
 - Best-know attacks are generic attacks:
 - Baby-step giant-step
 - Pollard-rho
 - etc...
 - Nechaev '94 & Shoup '97: Generic algorithms for solving DLog requires time $\Omega\left(\sqrt{|G|}\right)$
 - Consequently: elliptic curve crypto can use *much* smaller parameters
 - $|E(\mathbf{Z}_p)| = 2^{256}, 2^{384}, 2^{512}$ common in practice
 - Much faster than Z_p^* -based crypto

Cryptographic groups in practice

- $(\mathbf{Z}_{p}^{*},\cdot)$ groups:
 - TLS 1.3: five specific groups allowed
 - size $\approx 2^{2048}$, 2^{3072} , 2^{4096} , 2^{6144} , 2^{8192}
 - IKEv2 (IPsec key exchange protocol): MODP groups
 - size $\approx 2^{768}, 2^{1024}, 2^{1536}, 2^{2048}, 2^{3072}, 2^{4096}, 2^{6144}, 2^{8192}$
 - all *p*'s are **safe primes** (i.e., of the form p = 2q + 1 where *q* is prime)

(RFC	791	9)
------	-----	----

(RFC 7296 and RFC 3526)

• $(E(\mathbf{Z}_p^*), +)$ groups

- NIST groups: P-224, P-256, P-384, P-521
- Curve25519 ($E: y^2 = x^3 + 486662x^2 + x$ and $p = 2^{255} 19$)
- Curve448 (E : $y^2 + x^2 = 1 39081x^2y^2$ and $p = 2^{448} 2^{224} 1$)

(Daniel J. Bernstein) (Mike Hamburg)

Summary

- Group theory
 - Group definition (associativity, identity, inverses)
 - Subgroups
 - Cyclic (subgroups)
- Diffie-Hellman key exchange protocol described in a generic group
 - Discrete logarithm (DLOG) problem and Diffie-Hellman (DH) problem must be hard in the concrete group used
- Two main groups used in cryptography (where DLOG and DH problems are believed to be hard):
 - (\mathbf{Z}_p^*, \cdot) the group of non-zero integers modulo a prime p
 - Best algorithm to solve DLOG is the General Number Field Sieve (GNFS) which exploits the algebraic structure of Z_p
 - $(E(\mathbf{Z}_p), +)$ elliptic curve groups
 - Elements are points satisfying $y^2 = x^3 + ax + b$ where $a, b, x, y \in \mathbb{Z}_p$ (additionally, we need an identity element, which we artificially define to be the element \mathcal{O} . Note that \mathcal{O} is *not* a point on the curve!)
 - Group operation is "addition of points on curve" where the operation is motivated by the geometric idea
 - GNFS does not apply; best-known DLOG algorithms are generic: baby-step, giant-step, Pollard-rho, Pohlig-Hellman
 - Can use much smaller parameters \Rightarrow much faster than $(\mathbf{Z}_{p}^{*}, \cdot)$ -based DH