
Proof that |K| ≥ |M| is necessary for perfect
privacy

Let us first remind ourselves of the definition of perfect privacy.
Definition 1. An encryption scheme Π = (E ,D) has perfect privacy, if for any
two messages M0,M1 ∈M, and any ciphertext C ∈ C, we have:

Pr[EK(M0) = C] = Pr[EK(M1) = C],

where the probability is over the key K ∈ K, chosen uniformly at random, and
any randomness used internally by E .
Theorem 1. No symmetric encryption scheme has perfect privacy if |K| < |M|.
Proof. Let Π = (E ,D) be a symmetric encryption scheme, and assume |K| <
|M|. We want to show that Π cannot have perfect privacy.

By the definition of perfect privacy, it is sufficient to find two messages
M0,M1 ∈M, and a ciphertextC ∈ C, such that Pr[EK(M0) = C] 6= Pr[EK(M1) =
C] in order to prove the theorem.

To this end, let C ∈ C be an arbitrary ciphertext, and letM(C) denote the
set of all messages which are possible decryptions of C; that is:

M(C) = {M |M = DK(C) for some K ∈ K}.

In other words: M ∈ M(C) if there exists some key K ∈ K, such that M =
DK(C).

First, let M0 be an arbitrary message in the setM(C). Hopefully, it should
be clear that |M(C)| ≤ |K|, because for each distinct message M ∈M(C) there
corresponds one or more distinct1 keys in K. However, by the assumption of
the theorem, we also have

|M(C)| ≤ |K| < |M|.

This means that there must exist some M1 ∈Mwhich is not inM(C). In other
words, M1 6= M0 ∈M(C).

Now let us calculate the probabilities Pr[EK(M0) = C] and Pr[EK(M1) = C].
For the first one we have Pr[EK(M0) = C] = p for some probability p > 0 (we
don’t actually care about what this probability is, as long as it is non-zero).
However, for the second one we have Pr[EK(M1) = C] = 0, since we explicitly
chose M1 not to be in the setM(C)! Hence, we have

Pr[EK(M0) = C] 6= Pr[EK(M1) = C],

which proves the theorem.

1If two different messages M ′ and M ′′ in M(C) both corresponded to the same key K, then
decryption would be ambiguous: should DK(C) decrypt to M ′ or M ′′?
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