Introduction to Cryptography TEK4500 (Fall 2021) Problem Set 9 #### Problem 1. Read Chapter 9 (Section 9.4 can be skipped) and Chapter 10.1–10.2 in [BR] and Chapter 8 (Section 8.5 can be skipped) and Chapter 9 in [PP]. #### Problem 2. - a) In a programming language of your choice implement the Square-and-Multiply algorithm for exponentiations in the group (\mathbf{Z}_p^*,\cdot) . - **b**) Let p = 7123242874534573495798990100159. Convince yourself that p is prime. **Hint:** Use your implementation from a) to run the Fermat primality test for some different values $a \in \{2, 3, ..., p-1\}$. c) Suppose Alice and Bob run the Diffie-Hellman protocol using the group (\mathbf{Z}_p^*,\cdot) , where p is the prime above. They use 2 as the generator for (\mathbf{Z}_p^*,\cdot) . Let Alice's secret value be a=2081934828612837167732093031150, and let b=897710169350499321443689869714 be the secret value of Bob. Compute their shared Diffie-Hellman secret. ## Computing with elliptic curves The remaining exercises gives some introduction to computing with elliptic curves. Let $p \ge 5$ be a prime number and let $$E: y^2 = x^3 + ax + b \pmod{p} \tag{1}$$ be an elliptic curve where $a,b \in \mathbf{F}_p^1$ satisfy $4a^3 + 27b^2 \neq 0 \pmod{p}^2$. As explained in class, the collection $E(\mathbf{F}_p)$ of all the points P = (x,y) that satisfy (1), together with a ¹Recall that \mathbf{F}_p simply denotes the amalgamation of the additive group $(\mathbf{Z}_p, +)$ and the multiplicative group (\mathbf{Z}_p^*, \cdot) . That is, we allow ourselves both the option to *add* elements from $\{0, 1, \dots, p-1\}$ modulo p, as well as *multiplying* elements from $\{1, \dots, p-1\}$ modulo p. This combination is called a *finite field*. ²This requirement is just to avoid some complications. You can safely ignore it. special point \mathcal{O} , is actually an abelian group $(E(\mathbf{F}_p),+)$. Here, the addition operation "+" is *not* simply the component-wise addition of two points. That is, for two points $P=(x_1,y_1), Q=(x_2,y_2)\in E(\mathbf{F}_p)$, it is *not* the case that $P+Q=(x_1+x_2,y_1+y_2)$ where both coordinates are taken modulo p. Instead, P+Q is motived by the geometric "chord-and-tangent" procedure defined for an elliptic curve over the real numbers \mathbf{R} (ref. Lecture 8 and 9). Now, for a finite field \mathbf{F}_p , the curve defined by (1) does not give a nice graph like in \mathbf{R} . However, the algebraic equations that define the chord-and-tangent procedure in \mathbf{R} carry over to \mathbf{F}_p . These equations are not unique and there are many different, equivalent, ways of formulating them. One common way of expressing the addition operation in $(E(\mathbf{F}_p), +)$ is as a number of cases, each dealing with whether the coordinates of P and Q are equal or not (or the identity). Specifically, the following set of equations specify how to add two points $P = (x_1, y_1), Q = (x_2, y_2) \in E(\mathbf{F}_p)$. E.1) If $$Q = \mathcal{O}$$ then $P + Q = P$ // by definition, the identity doesn't change the other point E.2) If $$P = \mathcal{O}$$ then $P + Q = Q$ // same as above E.3) If $x_1 = x_2$ and $y_1 = -y_2$ then $P + Q = \mathcal{O}$ // P and Q lie on opposite sides of the x-axis hence are inverses (ref slide 40, Lecture 8) E.4) If $$P=Q$$ and $y_1=0$ then $P+P=\mathcal{O}$ // special case of slide 40, Lecture 8 E.5) If $$P=Q$$ and $y_1 \neq 0$ then $P+P=(x_3,y_3)$ where // "point-doubling", slide 41, Lecture 8 $$x_3 = (m^2 - 2x_1) \pmod{p}$$ $y_3 = (m \cdot (x_1 - x_3) - y_1) \pmod{p}$ and $$m = \frac{3x_1^2 + a}{2y_1} \pmod{p}$$ E.6) If $P \neq Q$ and $x_1 \neq x_2$ then $P + Q = (x_3, y_3)$ where // "general case", slides 35–39, Lecture 8 $$x_3 = (m^2 - x_1 - x_2) \pmod{p}$$ $y_3 = (m \cdot (x_1 - x_3) - y_1) \pmod{p}$ and $$m = \frac{y_2 - y_1}{x_2 - x_1} \pmod{p}$$ For all the remaining problems, elliptic curve addition refer to the equations defined above. When using E.5) and E.6) you need to be able to compute inverses modulo p when calculating m. In class I mentioned that the common way of doing this is using the Extended $$\begin{array}{|c|c|} \hline \mathbf{Exp}^{\mathsf{dlog}}_{G,g}(\mathcal{A}) \colon & & \mathbf{Exp}^{\mathsf{dh}}_{G,g}(\mathcal{A}) \colon \\ \hline 1: \ x \overset{\$}{\leftarrow} \{0,1,\ldots,|G|-1\} & & 1: \ x,y \overset{\$}{\leftarrow} \{0,1,\ldots,|G|-1\} \\ 2: \ X \leftarrow g^x & & 2: \ X \leftarrow g^x \\ 3: \ x' \leftarrow A(X) & & 3: \ Y \leftarrow g^y \\ 4: \ \mathbf{return} \ x' \overset{?}{=} x & & 4: \ z \leftarrow A(X,Y) \\ \hline \mathbf{Adv}^{\mathsf{dlog}}_{G,g}(\mathcal{A}) = \Pr[\mathbf{Exp}^{\mathsf{dlog}}_{G,g}(\mathcal{A}) \Rightarrow \mathsf{true}] \\ \mathbf{Adv}^{\mathsf{dh}}_{G,g}(\mathcal{A}) = \Pr[\mathbf{Exp}^{\mathsf{dh}}_{G,g}(\mathcal{A}) \Rightarrow \mathsf{true}] \\ \hline \end{array}$$ **Figure 1:** Formal security experiments for the discrete logarithm (DLOG) problem and the Diffie-Hellman problem in a cyclic group $G = \langle g \rangle$. Euclidean algorithm (EEA). However, there is a neat trick that avoids the need to use the EEA in order to calculate inverses. The trick uses Fermat's Theorem, which recall says that: for any $a \neq 0 \pmod{p}$ we have $$a^{p-1} = 1 \pmod{p}.$$ However, note that we can also write this as $$a^{p-2} \cdot a = 1 \pmod{p}$$ In other words: the inverse of a is simply $a^{p-2} \pmod{p}$! ### Problem 3. Specialize the DLOG experiment $\mathbf{Exp}^{\mathsf{dlog}}_{G,g}(\mathcal{A})$ in Fig. 1 to the case of $G = (E(\mathbf{F}_p), +)$. That is, define which set x is drawn from at Line 1 and how X is created at Line 2 for the specific case of $G = (E(\mathbf{F}_p), +)$. Suppose the generator is P. Do the same with the DH experiment $\mathbf{Exp}^{\mathsf{dh}}_{G,g}(\mathcal{A})$. #### Problem 4. Let E be the elliptic curve $y^2 = x^3 + 3x + 7$ defined over the finite field \mathbf{F}_{11} . - a) Show that P = (8,9) is a point on the curve E. - **b**) What is the inverse of P? That is, what are the coordinates of -P in the group $(E(\mathbf{F}_{11}), +)$? $$\begin{array}{|c|c|} \hline \mathbf{Exp}^{\mathsf{dlog}}_{(E(\mathbf{F}_p),+),P}(\mathcal{A}) \colon & \mathbf{Exp}^{\mathsf{dh}}_{(E(\mathbf{F}_p),+),P}(\mathcal{A}) \colon \\ \hline 1: \ x \overset{\$}{\leftarrow} \{0,1,\ldots,|E(\mathbf{F}_p)|-1\} & 1: \ x,y \overset{\$}{\leftarrow} \{0,1,\ldots,|E(\mathbf{F}_p)|-1\} \\ 2: \ Q \leftarrow xP & 2: \ X \leftarrow xP \\ 3: \ x' \leftarrow A(Q) & 3: \ Y \leftarrow yP \\ 4: \ \mathbf{return} \ x' \overset{?}{=} x & 4: \ z \leftarrow A(X,Y) \\ 5: \ \mathbf{return} \ zP \overset{?}{=} xyP \\ \hline \\ \mathbf{Adv}^{\mathsf{dlog}}_{(E(\mathbf{F}_p),+),P}(\mathcal{A}) = \Pr[\mathbf{Exp}^{\mathsf{dlog}}_{(E(\mathbf{F}_p),+),P}(\mathcal{A}) \Rightarrow \mathsf{true}] \\ \mathbf{Adv}^{\mathsf{dh}}_{(E(\mathbf{F}_p),+),P}(\mathcal{A}) = \Pr[\mathbf{Exp}^{\mathsf{dh}}_{(E(\mathbf{F}_p),+),P}(\mathcal{A}) \Rightarrow \mathsf{true}] \\ \hline \end{array}$$ **Figure 2:** Formal security experiments for the discrete logarithm (DLOG) problem and the Diffie-Hellman problem specialized to an elliptic curve group $(E(\mathbf{F}_p), +)$ with generator P. c) Compute 2P = P + P. **Hint:** this is case E.5). - **d**) Compute 3P = P + P + P = 2P + P. - e) Compute 4P. - f) Compute Q = 5P. - **g**) Compute 2Q. - **h)** Based on f) and g) what's the order of the cyclic subgroup $\langle P \rangle < (E(\mathbf{F}_{11}), +)$? What's the order of the cyclic subgroup $\langle Q \rangle < (E(\mathbf{F}_{11}), +)$? ### Problem 5. Let E be the elliptic curve $y^2 = x^3 + 5x - 1$ defined over the finite field \mathbf{F}_{23} . It turns out that $(E(\mathbf{F}_{23}), +)$ has order 17, i.e., it has 17 elements. Since 17 is a prime number we know that any point $P \neq \mathcal{O}$ is a generator for $(E(\mathbf{F}_{23}), +)$. - a) Show that P = (3, 8) is a point on E. - **b**) Show that $17P = \mathcal{O}$. **Hint:** Compute $2P\mapsto 4P\mapsto 8P\mapsto 16P\mapsto 17P$ # References - [BR] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf. - [PP] Christof Paar and Jan Pelzl. *Understanding Cryptography A Textbook for Students and Practitioners*. Springer, 2010.