
Introduction to Cryptography
TEK4500 (Fall 2021)

Problem Set 9

Problem 1.
Read Chapter 9 (Section 9.4 can be skipped) and Chapter 10.1–10.2 in [BR] and Chapter 8
(Section 8.5 can be skipped) and Chapter 9 in [PP].

Problem 2.

a) In a programming language of your choice implement the Square-and-Multiply algo-
rithm for exponentiations in the group (Z∗p, ·).

b) Let p = 7123242874534573495798990100159. Convince yourself that p is prime.

Hint: Use your implementation from a) to run the Fermat primality test for some dif-
ferent values a ∈ {2, 3, . . . , p− 1}.

c) Suppose Alice and Bob run the Diffie-Hellman protocol using the group (Z∗p, ·), where
p is the prime above. They use 2 as the generator for (Z∗p, ·). Let Alice’s secret value be
a = 2081934828612837167732093031150, and let b = 897710169350499321443689869714
be the secret value of Bob. Compute their shared Diffie-Hellman secret.

Computing with elliptic curves

The remaining exercises gives some introduction to computing with elliptic curves. Let
p ≥ 5 be a prime number and let

E : y2 = x3 + ax+ b (mod p) (1)

be an elliptic curve where a, b ∈ Fp
1 satisfy 4a3 + 27b2 6= 0 (mod p)2. As explained in

class, the collection E(Fp) of all the points P = (x, y) that satisfy (1), together with a
1Recall that Fp simply denotes the amalgamation of the additive group (Zp,+) and the multiplicative

group (Z∗
p, ·). That is, we allow ourselves both the option to add elements from {0, 1, . . . , p− 1}modulo p, as

well as multiplying elements from {1, . . . , p− 1}modulo p. This combination is called a finite field.
2This requirement is just to avoid some complications. You can safely ignore it.
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special point O, is actually an abelian group (E(Fp),+). Here, the addition operation
“+” is not simply the component-wise addition of two points. That is, for two points
P = (x1, y1), Q = (x2, y2) ∈ E(Fp), it is not the case that P + Q = (x1 + x2, y1 + y2)
where both coordinates are taken modulo p. Instead, P + Q is motived by the geomet-
ric “chord-and-tangent” procedure defined for an elliptic curve over the real numbers R
(ref. Lecture 8 and 9). Now, for a finite field Fp, the curve defined by (1) does not give a
nice graph like in R. However, the algebraic equations that define the chord-and-tangent
procedure in R carry over to Fp.

These equations are not unique and there are many different, equivalent, ways of for-
mulating them. One common way of expressing the addition operation in (E(Fp),+) is
as a number of cases, each dealing with whether the coordinates of P and Q are equal or
not (or the identity). Specifically, the following set of equations specify how to add two
points P = (x1, y1), Q = (x2, y2) ∈ E(Fp).

E.1) If Q = O then P +Q = P // by definition, the identity doesn’t change the other point

E.2) If P = O then P +Q = Q // same as above

E.3) If x1 = x2 and y1 = −y2 then P +Q = O // P and Q lie on opposite sides of the x-axis hence are
inverses (ref slide 40, Lecture 8)

E.4) If P = Q and y1 = 0 then P + P = O // special case of slide 40, Lecture 8

E.5) If P = Q and y1 6= 0 then P + P = (x3, y3) where // “point-doubling”, slide 41, Lecture 8

x3 = (m2 − 2x1) (mod p) y3 = (m · (x1 − x3)− y1) (mod p)

and
m =

3x21 + a

2y1
(mod p)

E.6) If P 6= Q and x1 6= x2 then P +Q = (x3, y3) where // “general case”, slides 35–39, Lecture 8

x3 = (m2 − x1 − x2) (mod p) y3 = (m · (x1 − x3)− y1) (mod p)

and
m =

y2 − y1
x2 − x1

(mod p)

For all the remaining problems, elliptic curve addition refer to the equations defined
above.

When using E.5) and E.6) you need to be able to compute inverses modulo p when calcu-
lating m. In class I mentioned that the common way of doing this is using the Extended
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Expdlog
G,g (A):

1: x
$← {0, 1, . . . , |G| − 1}

2: X ← gx

3: x′ ← A(X)

4: return x′
?
= x

Advdlog
G,g (A) = Pr[Expdlog

G,g (A)⇒ true]

Advdh
G,g(A) = Pr[Expdh

G,g(A)⇒ true]

Expdh
G,g(A):

1: x, y
$← {0, 1, . . . , |G| − 1}

2: X ← gx

3: Y ← gy

4: z ← A(X,Y )

5: return gz
?
= gxy

Figure 1: Formal security experiments for the discrete logarithm (DLOG) problem and
the Diffie-Hellman problem in a cyclic group G = 〈g〉.

Euclidean algorithm (EEA). However, there is a neat trick that avoids the need to use the
EEA in order to calculate inverses. The trick uses Fermat’s Theorem, which recall says that:
for any a 6= 0 (mod p) we have

ap−1 = 1 (mod p).

However, note that we can also write this as

ap−2 · a = 1 (mod p)

In other words: the inverse of a is simply ap−2 (mod p)!

Problem 3.
Specialize the DLOG experiment Expdlog

G,g (A) in Fig. 1 to the case of G = (E(Fp),+). That
is, define which set x is drawn from at Line 1 and how X is created at Line 2 for the specific
case of G = (E(Fp),+). Suppose the generator is P . Do the same with the DH experiment
Expdh

G,g(A).

Problem 4.
Let E be the elliptic curve y2 = x3 + 3x+ 7 defined over the finite field F11.

a) Show that P = (8, 9) is a point on the curve E.

b) What is the inverse ofP ? That is, what are the coordinates of−P in the group (E(F11),+)?
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Expdlog
(E(Fp),+),P (A):

1: x
$← {0, 1, . . . , |E(Fp)| − 1}

2: Q← xP
3: x′ ← A(Q)

4: return x′
?
= x

Advdlog
(E(Fp),+),P (A) = Pr[Expdlog

(E(Fp),+),P (A)⇒ true]

Advdh
(E(Fp),+),P (A) = Pr[Expdh

(E(Fp),+),P (A)⇒ true]

Expdh
(E(Fp),+),P (A):

1: x, y
$← {0, 1, . . . , |E(Fp)| − 1}

2: X ← xP
3: Y ← yP
4: z ← A(X,Y )

5: return zP
?
= xyP

Figure 2: Formal security experiments for the discrete logarithm (DLOG) problem and the
Diffie-Hellman problem specialized to an elliptic curve group (E(Fp),+) with generator
P .

c) Compute 2P = P + P .

Hint: this is case E.5).

d) Compute 3P = P + P + P = 2P + P .

e) Compute 4P .

f) Compute Q = 5P .

g) Compute 2Q.

h) Based on f) and g) what’s the order of the cyclic subgroup 〈P 〉 < (E(F11),+)? What’s
the order of the cyclic subgroup 〈Q〉 < (E(F11),+)?

Problem 5.
Let E be the elliptic curve y2 = x3 + 5x − 1 defined over the finite field F23. It turns out
that (E(F23),+) has order 17, i.e., it has 17 elements. Since 17 is a prime number we know
that any point P 6= O is a generator for (E(F23),+).

a) Show that P = (3, 8) is a point on E.

b) Show that 17P = O.

Hint: Compute 2P 7→ 4P 7→ 8P 7→ 16P 7→ 17P
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