Introduction to Cryptography
 TEK4500 (Fall 2021)
 Problem Set 9

Problem 1.

Read Chapter 9 (Section 9.4 can be skipped) and Chapter 10.1-10.2 in [BR] and Chapter 8 (Section 8.5 can be skipped) and Chapter 9 in [PP].

Problem 2.

a) In a programming language of your choice implement the Square-and-Multiply algorithm for exponentiations in the group $\left(\mathbf{Z}_{p}^{*}, \cdot\right)$.
b) Let $p=7123242874534573495798990100159$. Convince yourself that p is prime.

Hint: Use your implementation from a) to run the Fermat primality test for some different values $a \in\{2,3, \ldots, p-1\}$.
c) Suppose Alice and Bob run the Diffie-Hellman protocol using the group $\left(\mathbf{Z}_{p}^{*}, \cdot\right)$, where p is the prime above. They use 2 as the generator for $\left(\mathbf{Z}_{p}^{*}, \cdot\right)$. Let Alice's secret value be $a=2081934828612837167732093031150$, and let $b=897710169350499321443689869714$ be the secret value of Bob. Compute their shared Diffie-Hellman secret.

Computing with elliptic curves

The remaining exercises gives some introduction to computing with elliptic curves. Let $p \geq 5$ be a prime number and let

$$
\begin{equation*}
E: y^{2}=x^{3}+a x+b \quad(\bmod p) \tag{1}
\end{equation*}
$$

be an elliptic curve where $a, b \in \mathbf{F}_{p}{ }^{1}$ satisfy $4 a^{3}+27 b^{2} \neq 0(\bmod p)^{2}$. As explained in class, the collection $E\left(\mathbf{F}_{p}\right)$ of all the points $P=(x, y)$ that satisfy (1), together with a

[^0]special point \mathcal{O}, is actually an abelian group $\left(E\left(\mathbf{F}_{p}\right),+\right)$. Here, the addition operation " + " is not simply the component-wise addition of two points. That is, for two points $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right) \in E\left(\mathbf{F}_{p}\right)$, it is not the case that $P+Q=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$ where both coordinates are taken modulo p. Instead, $P+Q$ is motived by the geometric "chord-and-tangent" procedure defined for an elliptic curve over the real numbers \mathbf{R} (ref. Lecture 8 and 9). Now, for a finite field \mathbf{F}_{p}, the curve defined by (1) does not give a nice graph like in \mathbf{R}. However, the algebraic equations that define the chord-and-tangent procedure in \mathbf{R} carry over to \mathbf{F}_{p}.

These equations are not unique and there are many different, equivalent, ways of formulating them. One common way of expressing the addition operation in $\left(E\left(\mathbf{F}_{p}\right),+\right)$ is as a number of cases, each dealing with whether the coordinates of P and Q are equal or not (or the identity). Specifically, the following set of equations specify how to add two points $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right) \in E\left(\mathbf{F}_{p}\right)$.
E.1) If $Q=\mathcal{O}$ then $P+Q=P \quad / /$ by definition, the identity doesn't change the other point
E.2) If $P=\mathcal{O}$ then $P+Q=Q \quad$ // same as above
E.3) If $x_{1}=x_{2}$ and $y_{1}=-y_{2}$ then $P+Q=\mathcal{O} \quad / / P$ and Q lie on opposite sides of the x-axis hence are inverses (ref slide 40, Lecture 8)
E.4) If $P=Q$ and $y_{1}=0$ then $P+P=\mathcal{O}$
/ / special case of slide 40, Lecture 8
E.5) If $P=Q$ and $y_{1} \neq 0$ then $P+P=\left(x_{3}, y_{3}\right)$ where $\quad / /$ "point-doubling", slide 41 , Lecture 8

$$
x_{3}=\left(m^{2}-2 x_{1}\right) \quad(\bmod p) \quad y_{3}=\left(m \cdot\left(x_{1}-x_{3}\right)-y_{1}\right) \quad(\bmod p)
$$

and

$$
m=\frac{3 x_{1}^{2}+a}{2 y_{1}} \quad(\bmod p)
$$

E.6) If $P \neq Q$ and $x_{1} \neq x_{2}$ then $P+Q=\left(x_{3}, y_{3}\right)$ where $/ /$ "general case", slides 35-39, Lecture 8

$$
x_{3}=\left(m^{2}-x_{1}-x_{2}\right) \quad(\bmod p) \quad y_{3}=\left(m \cdot\left(x_{1}-x_{3}\right)-y_{1}\right) \quad(\bmod p)
$$

and

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad(\bmod p)
$$

For all the remaining problems, elliptic curve addition refer to the equations defined above.

When using E.5) and E.6) you need to be able to compute inverses modulo p when calculating m. In class I mentioned that the common way of doing this is using the Extended

$$
\begin{array}{ll}
\operatorname{Exp}_{G, g}^{\mathrm{dog}}(\mathcal{A}): & \frac{\operatorname{Exp}_{G, g}^{\mathrm{dh}}(\mathcal{A}):}{} \\
\begin{array}{ll}
1: x \stackrel{\$}{\leftarrow}\{0,1, \ldots,|G|-1\} & \text { 1: } x, y \leftarrow\{\$\{0,1, \ldots,|G|-1\} \\
\text { 2: } X \leftarrow g^{x} & \text { 2: } X \leftarrow g^{x} \\
\text { 3: } x^{\prime} \leftarrow A(X) & \text { 3: } Y \leftarrow g^{y} \\
\text { 4: return } x^{\prime} \stackrel{?}{=} x & \text { 4: } z \leftarrow A(X, Y) \\
& \text { 5: return } g^{z} \stackrel{?}{=} g^{x y} \\
& \\
\operatorname{Adv}_{G, g}^{\mathrm{dlog}}(\mathcal{A})=\operatorname{Pr}\left[\operatorname{Exp}_{G, g}^{\mathrm{dlog}}(\mathcal{A}) \Rightarrow \text { true }\right] \\
\operatorname{Adv}_{G, g}^{\mathrm{d}}(\mathcal{A})=\operatorname{Pr}\left[\operatorname{Exp}_{G, g}^{\mathrm{d}}(\mathcal{A}) \Rightarrow \text { true }\right] &
\end{array} .
\end{array}
$$

Figure 1: Formal security experiments for the discrete logarithm (DLOG) problem and the Diffie-Hellman problem in a cyclic group $G=\langle g\rangle$.

Euclidean algorithm (EEA). However, there is a neat trick that avoids the need to use the EEA in order to calculate inverses. The trick uses Fermat's Theorem, which recall says that: for any $a \neq 0(\bmod p)$ we have

$$
a^{p-1}=1 \quad(\bmod p)
$$

However, note that we can also write this as

$$
a^{p-2} \cdot a=1 \quad(\bmod p)
$$

In other words: the inverse of a is simply $a^{p-2}(\bmod p)$!

Problem 3.

Specialize the DLOG experiment $\operatorname{Exp}_{G, g}^{\mathrm{dlog}}(\mathcal{A})$ in Fig. 1 to the case of $G=\left(E\left(\mathbf{F}_{p}\right),+\right)$. That is, define which set x is drawn from at Line 1 and how X is created at Line 2 for the specific case of $G=\left(E\left(\mathbf{F}_{p}\right),+\right)$. Suppose the generator is P. Do the same with the DH experiment $\operatorname{Exp}_{G, g}^{\mathrm{dh}}(\mathcal{A})$.

Problem 4.

Let E be the elliptic curve $y^{2}=x^{3}+3 x+7$ defined over the finite field \mathbf{F}_{11}.
a) Show that $P=(8,9)$ is a point on the curve E.
b) What is the inverse of P ? That is, what are the coordinates of $-P$ in the group $\left(E\left(\mathbf{F}_{11}\right),+\right)$?

$$
\begin{aligned}
& \begin{array}{ll}
\operatorname{Exp}_{\left(E\left(\mathbf{F}_{p}\right),+\right), P}^{\mathrm{dlog}}(\mathcal{A}): & \operatorname{Exp}_{\left(E\left(\mathbf{F}_{p}\right),+\right), P}^{\mathrm{dh}}(\mathcal{A}): \\
\text { 1: } x \stackrel{\$}{\leftarrow}\left\{0,1, \ldots,\left|E\left(\mathbf{F}_{p}\right)\right|-1\right\} & \text { 1: } x, y \stackrel{\$}{\leftarrow}\left\{0,1, \ldots,\left|E\left(\mathbf{F}_{p}\right)\right|-1\right\} \\
\text { 2: } Q \leftarrow x P & \text { 2: } X \leftarrow x P \\
\text { 3: } x^{\prime} \leftarrow A(Q) & \text { 3: } Y \leftarrow y P \\
\text { 4: return } x^{\prime} \stackrel{?}{=} x & \text { 4: } z \leftarrow A(X, Y) \\
& \text { 5: return } z P \stackrel{?}{=} x y P
\end{array} \\
& \operatorname{Adv}_{\left(E\left(\mathbf{F}_{p}\right),+\right), P}^{\mathrm{dlog}}(\mathcal{A})=\operatorname{Pr}\left[\operatorname{Exp}_{\left(E\left(\mathbf{F}_{p}\right),+\right), P}^{\mathrm{dlog}}(\mathcal{A}) \Rightarrow \text { true }\right] \\
& \operatorname{Adv}_{\left(E\left(\mathbf{F}_{p}\right),+\right), P}^{\mathrm{dh}}(\mathcal{A})=\operatorname{Pr}\left[\operatorname{Exp}_{\left(E\left(\mathbf{F}_{p}\right),+\right), P}^{\mathrm{dh}}(\mathcal{A}) \Rightarrow \text { true }\right]
\end{aligned}
$$

Figure 2: Formal security experiments for the discrete logarithm (DLOG) problem and the Diffie-Hellman problem specialized to an elliptic curve group $\left(E\left(\mathbf{F}_{p}\right),+\right)$ with generator P.
c) Compute $2 P=P+P$.

Hint: this is case E.5).
d) Compute $3 P=P+P+P=2 P+P$.
e) Compute $4 P$.
f) Compute $Q=5 P$.
g) Compute $2 Q$.
h) Based on f) and g) what's the order of the cyclic subgroup $\langle P\rangle<\left(E\left(\mathbf{F}_{11}\right),+\right)$? What's the order of the cyclic subgroup $\langle Q\rangle<\left(E\left(\mathbf{F}_{11}\right),+\right)$?

Problem 5.

Let E be the elliptic curve $y^{2}=x^{3}+5 x-1$ defined over the finite field \mathbf{F}_{23}. It turns out that $\left(E\left(\mathbf{F}_{23}\right),+\right)$ has order 17 , i.e., it has 17 elements. Since 17 is a prime number we know that any point $P \neq \mathcal{O}$ is a generator for $\left(E\left(\mathbf{F}_{23}\right),+\right)$.
a) Show that $P=(3,8)$ is a point on E.
b) Show that $17 P=\mathcal{O}$.

Hint: Compute $2 P \mapsto 4 P \mapsto 8 P \mapsto 16 P \mapsto 17 P$

References

[BR] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. https: //web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf.
[PP] Christof Paar and Jan Pelzl. Understanding Cryptography - A Textbook for Students and Practitioners. Springer, 2010.

[^0]: ${ }^{1}$ Recall that \mathbf{F}_{p} simply denotes the amalgamation of the additive group $\left(\mathbf{Z}_{p},+\right)$ and the multiplicative group $\left(\mathbf{Z}_{p}^{*}, \cdot\right)$. That is, we allow ourselves both the option to add elements from $\{0,1, \ldots, p-1\}$ modulo p, as well as multiplying elements from $\{1, \ldots, p-1\}$ modulo p. This combination is called a finite field.
 ${ }^{2}$ This requirement is just to avoid some complications. You can safely ignore it.

