Lecture 13 - Quantum computers, Shor's algorithm, post-quantum cryptography

TEK4500
16.11.2022

Håkon Jacobsen
hakon.jacobsen@its.uio.no

Quantum computing - the starting point

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107
Received May 7, 1981

Elements of (quantum) computing

- Three elements of all computations: data, operations, results
- Quantum computation
- Data = qubit
- Operation = quantum gate
- Results = measurements

Qubits

- Classical bit:

$$
\begin{array}{ll}
0 & 1
\end{array}
$$

- Qubit:

Can be in a superposition of two basic states $|0\rangle$ and $|1\rangle$

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

$$
\alpha, \beta \in \boldsymbol{C} \quad|\alpha|^{2}+|\beta|^{2}=1
$$

But we can never observe α and β directly!

Must measure $|\psi\rangle$ to obtain its value \Rightarrow state randomly collapses to either $|0\rangle$ or $|1\rangle$

What's the probability of observing $|0\rangle$ or $|1\rangle$?

$$
\begin{aligned}
& \operatorname{Pr}[\text { observe }|0\rangle]=|\alpha|^{2} \\
& \operatorname{Pr}[\text { observe }|1\rangle]=|\beta|^{2}
\end{aligned}
$$

Multiple qubits

- 2-qubit system

$$
|\psi\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle
$$

$$
\begin{gathered}
\alpha, \beta, \gamma, \delta \in \boldsymbol{C} \\
|\alpha|^{2}+|\beta|^{2}+|\gamma|^{2}+|\delta|^{2}=1
\end{gathered}
$$

- N-qubit system: 2^{N} basis states

$$
|\psi\rangle=\sum_{i=0}^{2^{N}-1} \alpha_{i}|i\rangle \quad\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}+\cdots+\left|\alpha_{2^{N}-1}\right|^{2}=1
$$

- Representable by a 2^{N} element vector:

$$
\begin{aligned}
& 0.8|001\rangle-0.6 i|101\rangle=\left(\begin{array}{c}
0 \\
0.8 \\
0 \\
0 \\
0 \\
-0.6 i \\
0 \\
0
\end{array}\right) .|0.8|^{2}=0.64
\end{aligned}
$$

$\operatorname{Pr}[$ observe $|001\rangle]=|0.8|^{2}=0.64$
$\operatorname{Pr}[$ observe $|101\rangle]=|-0.6 i|^{2}={\sqrt{(-0.6)^{2}}}^{2}=0.36$

$$
|\psi\rangle=\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\vdots \\
\alpha_{2^{N_{-1}}}
\end{array}\right)
$$

$|110\rangle=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right) \quad|111\rangle$

Quantum computation - quantum gates

- Classic bits are transformed using logical gates

- Qubits are transformed using quantum gates

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \stackrel{\boldsymbol{G}}{\mapsto}\left|\psi^{\prime}\right\rangle=\alpha^{\prime}|0\rangle+\beta^{\prime}|1\rangle
$$

Operator	Gate(s)		Matrix
Pauli-X (X)	X	\bigcirc	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Pauli-Z (Z)	Z		$\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
Hadamard (H)	H		$\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$
Controlled Not (CNOT, CX)			$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

(Quantum) NOT-gate (or X gate)

$|0\rangle \stackrel{X}{\mapsto}|1\rangle$

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

|1) $\stackrel{X}{\mapsto}|0\rangle$

$$
\alpha|0\rangle+\beta|1\rangle \stackrel{X}{\mapsto} \beta|0\rangle+\alpha|1\rangle
$$

X gate:

$$
\boldsymbol{X}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

$$
|\psi\rangle=\binom{\alpha}{\beta}
$$

The Hadamard gate

$|0\rangle \stackrel{H}{\mapsto} \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$
$|1\rangle \stackrel{H}{\mapsto} \frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle$

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

$$
\begin{aligned}
& \operatorname{Pr}[\text { measure }|\psi\rangle \Rightarrow|0\rangle]=|\alpha|^{2} \\
& \operatorname{Pr}[\text { measure }|\psi\rangle \Rightarrow|1\rangle]=|\beta|^{2}
\end{aligned}
$$

H gate:

$$
\boldsymbol{H}=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

$$
\begin{aligned}
& \operatorname{Pr}[\text { measure } \boldsymbol{H}|0\rangle \Rightarrow|0\rangle]=\left|\frac{1}{\sqrt{2}}\right|^{2}=0.5 \\
& \operatorname{Pr}[\text { measure } \boldsymbol{H}|1\rangle \Rightarrow|1\rangle]=\left|\frac{1}{\sqrt{2}}\right|^{2}=0.5
\end{aligned}
$$

The Hadamard gate allows us to create random bits!

$$
\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\binom{1}{0}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}
$$

$$
\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\binom{0}{1}=\binom{1 / \sqrt{2}}{-1 / \sqrt{2}}
$$

Controlled-NOT gate (CNOT)

CNOT
$|00\rangle \mapsto|00\rangle$
$|01\rangle \mapsto|01\rangle$
$|10\rangle \mapsto|11\rangle$
$|11\rangle \mapsto|10\rangle$

CNOT gate:

$$
\mathbf{C N O T}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$|10\rangle$
$\left[\begin{array}{l}|11\rangle \\ {\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]} \\ \mid\end{array}\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right) \quad\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]\left(\begin{array}{c}\alpha \\ \beta \\ \gamma \\ \delta\end{array}\right)=\left(\begin{array}{l}\alpha \\ \beta \\ \delta \\ \gamma\end{array}\right)\right.$

Many other gates...

Quantum gates

- Turns out that all quantum gates can be described by matrices
- In fact, very special matrices: unitary matrices
- ... and only unitary matrices! (fact of nature)

$$
\left.\boldsymbol{X}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \begin{array}{ll}
\end{array}\right] \quad|0\rangle \mapsto|1\rangle \left\lvert\, \begin{array}{ll}
& |1\rangle \mapsto|0\rangle
\end{array}\right.
$$

- Quantum operations are linear and can be combined

$$
\left|\psi_{0}\right\rangle \stackrel{Z}{\mapsto}\left|\psi_{1}\right\rangle \stackrel{X}{\mapsto}\left|\psi_{2}\right\rangle \stackrel{H}{\mapsto}\left|\psi_{3}\right\rangle \stackrel{Z}{\mapsto}\left|\psi_{4}\right\rangle \quad Z=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \quad \begin{aligned}
& |0\rangle \mapsto|0\rangle \\
& |1\rangle \mapsto-|1\rangle
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{Z} \boldsymbol{H X Z}\left|\psi_{0}\right\rangle & =\left|\psi_{4}\right\rangle \\
\boldsymbol{Z} \boldsymbol{H} \boldsymbol{X Z}|0\rangle & =\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{rr}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right]\binom{1}{0} \\
& =\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]\binom{1}{0}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle
\end{aligned}
$$

$$
\boldsymbol{H}=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

$$
|0\rangle \mapsto \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle
$$

$$
|1\rangle \mapsto \frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle
$$

Quantum computer

- A quantum computer consists of:
- $\quad N$ input qubits
- a sequence of quantum gates
- $\quad N$ output qubits
- result = measurement of final quantum state (output qubits)

What makes quantum computation special?

- Warning: a quantum computer does not simply "try out all solutions in parallel"
- The magic comes from allowing complex amplitudes (or even just negative reals)

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \quad \alpha, \beta \in \boldsymbol{C}
$$

- Quantum interference: can carefully choreograph computations so wrong answers "cancel out" their amplitudes, while correct answers "combine"

- increases probability of measuring correct result
- only a few special problems allow this choreography

"THE TALK"
BY SCOTT AARONSON \& ZACH WEINERSMITH

Shor's algorithm

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer*

Peter W. Shor ${ }^{\dagger}$

Abstract

A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

Keywords: algorithmic number theory, prime factorization, discrete logarithms, Church's thesis, quantum computers, foundations of quantum mechanics, spin systems, Fourier transforms

First: something completely different
$2,4,8,16,32,64,128,256,512,1024, \ldots$

Factoring to order-finding

$$
N=p q
$$

$$
\underbrace{a^{1}, a^{2}, a^{3}, \ldots, a^{r}, a^{1}, a^{2} \ldots \quad(\bmod N)}_{\text {order of } a=\text { the smallest positive } r \text { such that } a^{r}=1(\bmod N)}
$$

Fact: r must divide $(p-1)(q-1)$
Proof:

$$
\begin{aligned}
& \text { Euler's theorem: for all } a \in \mathbf{Z}_{N}^{*} \\
& \qquad a^{\phi(N)}=a^{(p-1)(q-1)}=1(\bmod N)
\end{aligned}
$$

- $(p-1)(q-1)=s r+t \quad 0 \leq t<r$
- $a^{(p-1)(q-1)}=a^{s r+t}=a^{s r} a^{t}=\left(a^{r}\right)^{s} a^{t}=1 \cdot a^{t}=a^{t}=1 \bmod N \quad \Rightarrow t=0 \quad$ (since r is the smallest)
- $(p-1)(q-1)=s r$

QED

Conclusion: learn $r \Rightarrow$ we learn a factor of $(p-1)(q-1)$
repeat with a different $a \Rightarrow$ learn another factor of $(p-1)(q-1)$
(with high prob.)
eventually we can learn full $(p-1)(q-1) \Rightarrow$ can find p and q
(Problem set 9)

Shor's algorithm

Where the quantum magic happens!

Shor's algorithm

- To factor N : find order r of a in Z_{N}^{*}
- Problem: r can be very large
- Classical solutions take exponential time
- Note: the function $f(i)=a^{i} \bmod N$ is periodic:

$$
f(i+k r)=a^{i+k r}=a^{i} \bmod N=f(i)
$$

- finding signal frequencies \Leftrightarrow finding signal period
- Key ingredient of Shor's algorithm:
quantum Fourier transform (QFT)

Shor's algorithm

Consequences of Shor's algorithm

- Cryptosystems broken by Shors' algorithm:
- RSA
- Diffie-Hellman
- Schnorr
- ElGamal

$$
\operatorname{both}_{z_{p}^{*}} \text { and } E\left(\beta_{p}\right)
$$

- ECDSA
- ...public-key crypto is dead

Shor's algorithm
Input: $N=p q$
Output: p and q
1. $\quad a \stackrel{\$}{\leftarrow} \boldsymbol{Z}_{N}$
2.
3.
use r to find $\phi(N) \quad / /$ QFT++
4.
compute p and q from N and $\phi(N)$

The quantum menace

- How far away is a quantum computer?
- Nobody knows
- Building a large-scale quantum computer is a huge engineering challenge
- very susceptible to noise (decoherence)
- requires quantum error correction (is it even possible?)
- many physical qubits needed to simulate a single logical qubit

- ≥ 1000 logical qubits needed for Shor's algorithm
- largest (known) quantum computers:
≈ 53 physical qubits (Google; 2019) (no error correction)
≈ 65 physical qubits (IBM; 2020)
≈ 127 physical qubits (IBM; 2021)
≈ 433 physical qubits (IBM; 2022)
(no error correction)
(no error correction)
(no error correction)

The quantum menace

How many qubits in a quantum computer?

The quantum menace

How many qubits in a quantum computer?

MIT

Technology

Review

Topics+

Top Stories
Maga

Computing

NSA Says It "Must Act Now"

Against the Quantum Computing
Threat
The National Security Agency is worried that quantum
computers will neutralize our best encryption - but doesn't yet know what to do about that problem.
by Tom Simonite February 3,2016

Dealing with quantum computers

- Symmetric cryptography
- Grover's algorithm: solves $\mathcal{O}\left(2^{n}\right)$ problems in $\mathcal{O}\left(2^{n / 2}\right)$ quantum steps
- Inherently serial + huge constants
- AES-128 is most likely safe
- Quantum cryptography
- Use quantum mechanics to build cryptography
- Post-quantum cryptography
- Classical algorithms believed to withstand quantum attacks

Post-quantum cryptography

Lattice-based cryptography

The NIST post-quantum competition

- Public competition to standardize post-quantum schemes
- Public-key encryption
- Digital signatures
- Started in 2017
- Round 1: 69 submissions
- Round 2: 26 candidates selected
- Round 3: 15 candidates selected

The NIST post-quantum competition

- Public competition to standardize post-quantum schemes
- Public-key encryption
- Digital signatures
- Started in 2017
- Round 1: 69 submissions
- Round 2: 26 candidates selected
- Round 3: 15 candidates selected
- Winners:
- CRYSTALS-KYBER
(PKE)
- CRYSTALS-DILITHIUM
- Falcon
- SPHINCS+
(Signature)
(Signature)
(Signature)

Algorithm (public-key encryption)	Problem
Classic McEliece	Code-based
CRYSTALS-KYBER	Lattice-based
NTRU	Lattice-based
SABER	Lattice-based
BIKE	Code-based
FrodoKEM	Lattice-based
HQC	Code-based
NTRU Prime	Lattice-based
SIKE	Isogeny-based
Algorithm (digital signatures)	Problem
CRYSTALS-DILITHIUM	Lattice-based
Falcon	Lattice-based
Rainbow	Multivariate-based
GeMSS	Multivariate-based
Picnic	ZKP
SPHINCS+	Hash-based

The NIST post-quantum competition

- Public competition to standardize post-quantum schemes
- Public-key encryption
- Digital signatures
- Started in 2017
- Round 1: 69 submissions
- Round 2: 26 candidates selected
- Round 3: 15 candidates selected
- Round 4: alternative candidates
- Winners:
- CRYSTALS-KYBER
(PKE)
- CRYSTALS-DILITHIUM
- Falcon
- SPHINCS+
(Signature)
(Signature)
(Signature)

Algorithm (public-key encryption)	Problem
Classic McEliece	Code-based
CRYSTALS-KYBER	Lattice-based
NTRU	Lattice-based
SABER	Lattice-based
BIKE	Code-based
FrodoKEM	Lattice-based
HQC	Code-based
NTRU Prime	Lattice-based
SIKE	Isogeny-based
Algorithm (digital signatures)	Problem
CRYSTALS-DILITHIUM	Lattice-based
Falcon	Lattice-based
Rainbow	Multivariate-based
GeMSS	Multivariate-based
Picnic	ZKP
SPHINCS+	Hash-based

Lattice-based cryptography

- Very versatile computational problems
- Public-key encryption
- Digital signatures
- Hash functions
- Fully homomorphic encryption
- Key exchange
- Leads to efficient and compact schemes

Closest vector problem

Lattice-based cryptography

Post-quantum cryptography

- Want to learn more about post-quantum cryptography?
- Sign up for TEK5550 - Advanced Topics in Cryptology next spring!

Next week

- Summary lecture
- If there's anything in particular you want me to repeat, let me know!
- Ask me anything session

