Lecture 8 - Group theory, Diffie-Hellman key exchange

TEK4500
12.10.2022

Håkon Jacobsen
hakon.jacobsen@its.uio.no

Creating secure channels: encryption schemes

\mathcal{E} : encryption algorithm (public)
K : encryption / decryption key (secret)
\mathcal{D} : decryption algorithm (public)

Creating secure channels: encryption schemes

ε : encryption algorithm (public)
\mathcal{D} : decryption algorithm (public)
K_{e} : encryption key (public)
K_{d} : decryption key (secret)

Basic goals of cryptography

Symmetric key distribution problem

- One user needs to store N symmetric keys when communicating with N other users
- $\quad N(N-1)=\mathcal{O}\left(N^{2}\right)$ keys stored in total
- Difficult to store and manage so many keys securely
- Partial solution: key distribution centers
- One central authority hands out temporary keys
- $\mathcal{O}(N)$ (long-term) keys needed (to the KDC)
- Might be a feasible solution in a single organization
- Single point of failure
- What about the internet?

The public-key revolution

Diffie-Hellman key exchange - idea

Public-key encryption

Diffie-Hellman key exchange

- Discovered in the 1970's
- Allows two parties to establish a shared secret without ever having met
- Diffie \& Hellman paper also introduced:
- Public-key encryption
- Digital signatures

A different kind of primitives

- Symmetric crypto boils down to a few primitives
- Block ciphers/PRFs, hash functions
- Why are these considered secure?
- Lots and lots of cryptanalysis (well-studied!)
- Artificial and man-made

SHA2-256

AES

- Want asymmetric crypto to be based on a few well-studied primitives too
- Candidates come from a different place:

$$
\boldsymbol{Z}_{n}^{*} \simeq \boldsymbol{Z}_{p_{1}}^{*} \times \boldsymbol{Z}_{p_{2}}^{*} \times \cdots \times \boldsymbol{Z}_{p_{t}}^{*}
$$

- Hard mathematical problems
- Good candidates: discrete logarithm problem, factoring
- Much more algebraic structure

Group theory + number theory

Preliminaries

(integers)

$$
\boldsymbol{Z}=\{\ldots,-2,-1,0,1,2,3, \ldots\}
$$

$\boldsymbol{R}=$ the real numbers
(integers "mod $n "$) $\quad \boldsymbol{Z}_{n}=\{0,1,2, \ldots, n-1\}$
(integers " $\bmod p$ ") $\quad \boldsymbol{Z}_{p}=\{0,1,2, \ldots, p-1\}^{{ }^{p} \text { prim }_{e}}$

$$
\boldsymbol{Z}_{p}^{*}=\boldsymbol{Z}_{p} \backslash\{0\}
$$

$$
\boldsymbol{R}^{*}=\boldsymbol{R} \backslash\{0\}
$$

Examples:

$$
\begin{aligned}
& Z_{11}=\{0,1,2,3,4,5,6,7,8,9,10\} \\
& Z_{11}^{*}=\{1,2,3,4,5,6,7,8,9,10\}
\end{aligned}
$$

An integer $p>1$ is prime if it's only divisible by 1 and p

Groups - motivation

$$
\begin{aligned}
& \text { Associativity }(1+2)+3=1+(2+3) \\
& (\sqrt{2}+e)+\pi=\sqrt{2}+(e+\pi) \\
& (\sqrt{2} \cdot e) \cdot \pi=\sqrt{2} \cdot(e \cdot \pi) \\
& \text { Identity } \\
& 6+0=6 \\
& 3 \sqrt{2}+0=3 \sqrt{2} \\
& 3 \sqrt{2} \cdot 1=3 \sqrt{2} \\
& \text { Inverses } \\
& 6+(-6)=0 \\
& 3 \sqrt{2}+(-3 \sqrt{2})=0 \\
& 3 \sqrt{2} \cdot \frac{1}{3 \sqrt{2}}=1
\end{aligned}
$$

Groups - definition

Definition: A group (G, \circ) is a set G together with a binary operation o satisfying the following axioms
g1: $(a \circ b) \circ c=a \circ(b \circ c)$ for all $a, b, c, \in G$
G2: $\exists e \in G$ such that $e \circ a=a \circ e=a$ for all $a \in G$
Q3: $\quad \forall a \in G$ there exists $a^{-1} \in G$ such that $a \circ a^{-1}=a^{-1} \circ a=e$
(identity)
(inverse)

A group is abelian/commutative if: $a \circ b=b \circ a \quad$ for all $a, b \in G$

The order of a group is the number of elements in G, denoted $|G|$

Groups - examples

Groups

$$
\begin{array}{llll}
(\boldsymbol{Z},+) & e=0 & " 2^{-1 "}=-2 & \\
(\boldsymbol{R},+) & e=0 & " \pi^{-1 "}=-\pi & \left(\boldsymbol{R}^{*}, \cdot\right) \quad e=1 \quad \pi^{-1}=1 / \pi
\end{array}
$$

$$
\left(\boldsymbol{Z}_{6},+_{6}\right) \quad e=0 \quad \text { "2-1" }=4: \quad 2+4=6 \equiv 0 \bmod 6
$$

$$
\left(\boldsymbol{Z}_{p}^{*}, \cdot p\right)_{" 3^{-1 "}=x: 3 \cdot x \equiv 1 \bmod p}^{e=1}\left(\boldsymbol{Z}_{p}, \cdot p\right)
$$

Not groups

$(\boldsymbol{Z}, \cdot) \quad 2^{-1}=$?
$(\mathbf{Z},-) \quad(1-2)-3 \neq 1-(2-3)$
$(\boldsymbol{R}, \cdot) \quad 0 \cdot x=1$?
$\left(\boldsymbol{Z}_{n}, \cdot n\right) \quad 2 x=1(\bmod 6) ?$

(\boldsymbol{G}, \circ)			
\circ	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

$\left(\boldsymbol{Z}_{3}, \boldsymbol{+}_{3}\right)$			
$++_{3}$	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

(\boldsymbol{G}, \circ)				
\circ	e	a	b	c
e	e	a	b	c
a	a	b	c	e
b	b	c	e	a
c	c	e	a	b

$\left(\boldsymbol{Z}_{4},+_{4}\right)$				
$++_{4}$	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

(\boldsymbol{G}, \star)				
\star	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

More groups

$$
\begin{aligned}
& \sigma_{1}+\sigma_{4}=\sigma_{3} \\
& \sigma_{3}+\sigma_{3}=\sigma_{0}
\end{aligned}
$$

$\sigma_{i}+\sigma_{0}=\sigma_{i}$

Group exponentation

$g^{0} \stackrel{\text { def }}{=} e$
$g^{n} \stackrel{\text { def }}{=} \overbrace{g \circ g \circ \cdots \circ g}^{n}$
$g^{-n} \stackrel{\text { def }}{=}\left(g^{-1}\right)^{n}$
Fact: $g^{n} \circ g^{m}=\overbrace{g \circ \cdots \circ g \circ}^{n} \circ \overbrace{g \circ \cdots \circ g}^{m}=g^{n+m}$
$n+m$

Fact: $\quad\left(g^{n}\right)^{m}=g^{n m}=\left(g^{m}\right)^{n}$

$$
(Z,+): " 3^{15} "=\overbrace{3+3+3+\cdots+3}^{15}=15 \cdot 3
$$

Multiplicative notation

Additive notation
$(G, \star): \quad a \star b=a+b=n$

Cyclic groups

Definition: A group (G, \circ) is cyclic if there exists $g \in G$ such that

$$
G=\left\{\ldots, g^{-2}, g^{-1}, g^{0}, g^{1}, g^{2}, g^{3}, \ldots\right\}
$$

g is called a generator for G and we write $(G, \circ)=\langle g\rangle$

Examples:

$$
\begin{aligned}
& (\boldsymbol{Z},+)=\langle 1\rangle=\langle-1\rangle \\
& \left(\boldsymbol{Z}_{n},+{ }_{n}\right)=\langle 1\rangle \\
& \begin{aligned}
\left(\boldsymbol{Z}_{7}^{*}, \cdot\right) & =\langle 3\rangle=\left\{3^{0}, 3^{1}, 3^{2}, 3^{3}, 3^{4}, 3^{5}\right\}=\{1,3,2,6,4,5\} \\
& =\langle 5\rangle=\left\{5^{0}, 5^{1}, 5^{2}, 5^{3}, 5^{4}, 5^{5}\right\}=\{1,5,4,6,2,3\} \\
& \neq\langle 2\rangle=\left\{2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}\right\}=\{1,2,4,1,2,4\}=\{1,2,4\}
\end{aligned}
\end{aligned}
$$

$\left(\boldsymbol{Z}_{p}^{*}, \cdot\right)$ cyclic for all primes p

Not cyclic groups:

$$
(\boldsymbol{R},+) \quad\left(\boldsymbol{R}^{*}, \cdot\right)
$$

(\boldsymbol{G}, \star)				
\star	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

Subgroups

Definition: A set $H \subseteq G$ is a subgroup, written $H<G$, if H is a group under the binary operation inherited from G

$$
\begin{aligned}
\{e\} & <G \text { (for all groups) } \\
G & <G \text { (for all groups) } \\
2 Z & =\{\ldots,-2,0,2,4,6, \ldots\}<(\boldsymbol{Z},+) \\
3 Z & =\{\ldots,-3,0,3,6,9, \ldots\}<(\boldsymbol{Z},+)
\end{aligned}
$$

positive real numbers
$\left(\boldsymbol{R}_{>0}, \cdot\right)<\left(\boldsymbol{R}^{*}, \cdot\right)$
$(\{1,-1\}, \cdot)<\left(\boldsymbol{R}^{*}, \cdot\right)$
$\langle 5\rangle=\{0,5,10, \ldots, 35\}$
$\langle 20\rangle<\langle 10\rangle<\langle 5\rangle<\left(\boldsymbol{Z}_{40},+\right)$
$\langle 10\rangle=\{0,10,20,30\}$
$\langle 20\rangle=\{0,20\}$

Cyclic groups

Theorem: if (G, \circ) is a finite group, then for all $g \in G$:

$$
g^{|G|}=e
$$

Proof (finite cyclic groups):
$|G|=|\langle g\rangle|=n$

$$
\begin{array}{lllllllll}
e & g^{1} & g^{2} & g^{3} & \cdots & g^{n-1} & g^{n} & g^{n+1} & g^{n+2}
\end{array}
$$

$$
g^{n}=g^{3} \quad \Rightarrow \quad g^{n-3}=e \quad \Rightarrow \quad g^{j}=e \quad j<n \quad \text { contradiction! }
$$

Theorem: $g^{i}=g^{i(\bmod n)}=g^{i(\bmod |G|)}$

Theorem (Lagrange's theorem): if $H<G$ then $|H|$ divides $|G|$

Groups of prime order

Theorem (Lagrange's theorem): if $H<G$ then $|H|$ divides $|G|$

Fact: any non-trivial element $(\neq e)$ in a prime-order group is a generator

Fact: any prime-order group is cyclic

Warning: $\left(\mathbf{Z}_{p}^{*},\right)$ is not a prime-order group! $\left|\mathbf{Z}_{p}^{*}\right|=p-1$

Suppose $p=2 q+1$, with q being prime; what are the possible sub-groups of $\left(\boldsymbol{Z}_{p}^{*},\right)$?

$$
\begin{aligned}
& \left|\boldsymbol{Z}_{p}^{*}\right|=p-1=2 q \\
& \text { Example: } \quad Z_{11}^{*}=\{1,2,3,4,5,6,7,8,9,10\} \\
& \{1\}<\boldsymbol{Z}_{11}^{*} \\
& \boldsymbol{Z}_{p}^{*}=\left\{\begin{array}{c}
\{1\}, \\
\{1,-1\}, \\
H, \\
\boldsymbol{Z}_{p}^{*}
\end{array} \quad|H|=q\right. \\
& 11=2 \cdot 5+1 \\
& \{1,-1\}=\{1,10\}<Z_{11}^{*} \\
& H=\langle 3\rangle=\langle 4\rangle=\langle 5\rangle=\langle 9\rangle=\{1,3,4,5,9\}<\mathbf{Z}_{11}^{*} \\
& Z_{11}^{*}<Z_{11}^{*}
\end{aligned}
$$

Why is $\left(Z_{p}^{*}, \cdot\right)$ a group?

- $\boldsymbol{Z}_{p}^{*}=\{1,2, \ldots, p-1\}$
- Associativity $\checkmark(a \cdot b) \cdot c=a \cdot(b \cdot c) \bmod p$
- Identity $\checkmark 1 \cdot a=a \cdot 1=a \bmod p$

Definition: A group (G, \circ) ...

```
\mathcal{G1:}(a\circb)\circc=a\circ(b\circc)
G2: \existse\inG: e\circa=a\circe=a
G3: }\exists\mp@subsup{a}{}{-1}\inG:a\circ\mp@subsup{a}{}{-1}=\mp@subsup{a}{}{-1}\circa=
- Inverses ?

How do we actually find \(a^{-1}\) ?
Extended Euclidian Algorithm

Claim: \(\exists m, n \in \boldsymbol{Z}\) such that \(m a+n p=1 \Rightarrow m a=1-n p=1 \bmod p \Rightarrow a^{-1}=m \bmod p \in \mathbf{Z}_{p}^{*}\)
Proof:
\[
I=\{s a+t p \mid s, t \in \mathbf{Z}\}
\]
1) I contains a positive integer
2) I contains a smallest positive integer \(d=m a+n p\)
3) \(p=q d+r \quad 0 \leq r<d\)
4) \(r=p-q d=p-q(m a+n p)=-q m a+(1-q n) p \in I\)
5) \(r=0\)
6) \(p=q d \Rightarrow d=1\)
(since \(d\) is the smallest positive integer in \(I\) )
7) \(1=m a+n p\)

\section*{Diffie-Hellman}


Claim: \(Z=Z^{\prime}\)

\section*{Diffie-Hellman - example}
\[
Z_{1019}^{*}=\langle 2\rangle
\]


\section*{Diffie-Hellman}


\section*{Security:}
- Must be hard to compute \(Z \leftarrow g^{a b}\) given \(g, A, B\)
- Must be hard to find \(a\) (or \(b\) ) given \(g, A, B\)
(DH assumption)
(DLOG assumption)

Doesn't work: \(A \circ B=g^{a} \circ g^{b}=g^{a+b} \neq g^{a b}\)

\section*{Discrete logarithm (DLOG) problem}
\begin{tabular}{|ll|}
\hline \(\operatorname{Exp}_{G, g}^{\mathrm{dlog}}(A)\) \\
\hline 1. & \(x \stackrel{\$}{\leftarrow}\{1,2, \ldots,|G|\}\) \\
2. & \(X \leftarrow g^{x}\) \\
3. & \(x^{\prime} \leftarrow A(X)\) \\
4. & return \(x^{\prime} \stackrel{?}{=} x\) \\
\hline
\end{tabular}
public
\[
G=\langle g\rangle
\]

\section*{Challenger}
\[
x \stackrel{\$}{\leftarrow}\{1,2, \ldots,|G|\}
\]
\[
X \leftarrow g^{x}
\]

Adversary wins if \(x^{\prime}=x\)
In other words: \(x^{\prime}=\log _{g} X\)

Definition: The DLOG-advantage of an adversary \(A\) is
\[
\operatorname{Adv}_{G, g}^{\mathrm{dlog}}(A)=\operatorname{Pr}\left[\operatorname{Exp}_{G, g}^{\mathrm{dlog}}(A) \Rightarrow \operatorname{true}\right]
\]

\section*{Diffie-Hellman (DH) problem}
\begin{tabular}{|ll|}
\hline \(\operatorname{Exp}_{G, g}^{\mathrm{dh}}(A)\) \\
\hline 1. & \(x, y \leftarrow\{1,2, \ldots,|G|\}\) \\
2. & \(X \leftarrow g^{x}\) \\
3. & \(Y \leftarrow g^{y}\) \\
4. & \(Z \leftarrow A(X, Y)\) \\
5. & return \(Z \stackrel{?}{=} g^{x y}\) \\
\hline
\end{tabular}
public
\[
G=\langle g\rangle
\]

\section*{Challenger}
\[
\begin{aligned}
& x, y \leftarrow\{1,2, \ldots,|G|\} \\
& X \leftarrow g^{x} \\
& Y \leftarrow g^{y}
\end{aligned}
\]

Adversary wins if \(Z=g^{x y}\)

Definition: The DH-advantage of an adversary \(A\) is
\[
\operatorname{Adv}_{G, g}^{\mathrm{dh}}(A)=\operatorname{Pr}\left[\operatorname{Exp}_{G, g}^{\mathrm{dh}}(A) \Rightarrow \operatorname{true}\right]
\]

\section*{DLOG vs. DH}
\begin{tabular}{|ll|}
\hline \(\operatorname{Exp}_{G, g}^{\mathrm{dlog}}(A)\) \\
\hline 1. & \(x \stackrel{\$}{\leftarrow}\{1,2, \ldots,|G|\}\) \\
2. & \(X \leftarrow g^{x}\) \\
3. & \(x^{\prime} \leftarrow A(X)\) \\
4. & \(\operatorname{return} x \stackrel{?}{=} x\) \\
& \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline \(\operatorname{Exp}_{G, g}^{\mathrm{dh}}(A)\) \\
\hline 1. & \(x, y \leftarrow\{1,2, \ldots,|G|\}\) \\
2. & \(X \leftarrow g^{x}\) \\
3. & \(Y \leftarrow g^{y}\) \\
4. & \(Z \leftarrow A(X, Y)\) \\
5. & return \(Z \stackrel{?}{=} g^{x y}\) \\
\hline
\end{tabular}

DLOG security \(\stackrel{?}{\Rightarrow}\) DH security
DLOG security \(\Leftarrow\) DH security ॥

DLOG insecurity \(\Rightarrow\) DH insecurity

\section*{Algorithms for solving DLOG}
- Generic algorithms: works for all (cyclic) groups
- Brute-force
1. Given \(g\) and \(X \in G\)
2. for \(i=1,2, \ldots,|G|\) check if \(g^{i}=X \quad\) running time: \(\mathcal{O}(|G|)=\left(2^{n}\right), \quad\) given \(|G| \approx 2^{n}\)
- Are there better algorithms?
- Group-specific algorithms: exploits algebraic features of given group

\section*{Solving DLOG: the baby-step giant-step algorithm}

Given: \(X \leftarrow g^{x}\)
Find: \(x\)

Look for \(i, j\) such that:
\[
\begin{aligned}
X g^{i} & =Y^{j} \\
X & =Y^{j} g^{-i} \\
X & =g^{n j} g^{-i} \\
g^{x} & =g^{n j} g^{-i} \\
g^{x} & =g^{n j-i}
\end{aligned}
\]
\[
x=n j-i
\]
\[
n \leftarrow[\sqrt{|G|}] \quad Y \leftarrow g^{n}
\]

\[
\overbrace{Y^{0}, Y^{1}, \ldots, Y^{n}}^{0(\sqrt{|G|})}
\]
\[
\underbrace{X g^{0}, X g^{1}, \ldots, X g^{n}}_{\tilde{\mathcal{O}}(\sqrt{|G|})}
\]
\[
\text { Time + memory: } \tilde{\mathcal{O}}(\sqrt{|G|})
\]

\section*{Generic algorithms for solving DLOG}
- Baby-step, giant-step: time \(\mathcal{O}(\sqrt{|G|})\) memory \(\mathcal{O}(\sqrt{|G|})\)
- Pollard's rho: time \(\mathcal{O}(\sqrt{|G|})\) memory \(\mathcal{O}(1)\)
- Pohlig-Hellman: time \(\max _{p} \mathcal{O}(\sqrt{p})\) memory \(\mathcal{O}(1) \quad\left(|G|=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{t}}\right)\)
- Consequence: for DLOG to be hard \(\sqrt{|G|}\) must be large enough!
- \(|G| \approx 2^{128}\) only gives \(\sqrt{2^{128}}=2^{64}\) security
- \(|G| \approx 2^{256}\) only gives \(\sqrt{2^{256}}=2^{128}\) security
- \(|G| \approx 2^{512}\) only gives \(\sqrt{2^{512}}=2^{256}\) security
- etc...
- Nechaev'94 \& Shoup'97: Solving DLOG requires \(\Omega(\sqrt{|G|})\) time in generic groups

\section*{Non-generic algorithms for DLOG}
- Unfortunately, \(\left(Z_{p}^{*}, \cdot\right)\) is not a generic group!
- Much faster specific algorithms exist for solving DLOG in \(\mathbf{Z}_{p}^{*}\)
- Index-calculus
- Elliptic-curve method
- Special number-field sieve (SNFS)
- General number-field sieve (GNFS)
exceptionally complicated algorithms, requiring very advanced mathematics!
- Current DLOG-solving record: \(\left|\boldsymbol{Z}_{p}^{*}\right| \approx 2^{795}\) using GNFS
(Heninger et al. '19)
- Previous records: https://en.wikipedia.org/wiki/Discrete logarithm records
- \(\left|Z_{p}^{*}\right| \geq 2^{2048}\) typically required as a minimum today


\section*{\(\mathbf{Z}_{p}^{*}\)}

Group
where GNFS
doesn't work

Next week: better alternatives to \(Z_{p}^{*}\) ?```

