
Lecture 8 – Group theory,

Diffie-Hellman key exchange

TEK4500

12.10.2022

Håkon Jacobsen

hakon.jacobsen@its.uio.no

mailto:hakon.jacobsen@its.uio.no

Creating secure channels: encryption schemes

2

Internet
Alice

Bob

Adversary

𝓔 : encryption algorithm (public)

𝓓 : decryption algorithm (public)

K K

C
𝒟M

M / ⊥

K : encryption / decryption key (secret)

ℰ

𝒟

Creating secure channels: encryption schemes

3

Internet
Alice

Bob

Adversary

Ke Kd

ℰ
C

M

M / ⊥

𝓔 : encryption algorithm (public)

𝓓 : decryption algorithm (public)

Ke : encryption key (public)

Kd : decryption key (secret)

Basic goals of cryptography

4

Message privacy
Message integrity /

authentication

Symmetric keys Symmetric encryption
Message authentication

codes (MAC)

Asymmetric keys

Asymmetric encryption

(a.k.a. public-key

encryption)

Digital signatures

Symmetric key distribution problem

• One user needs to store 𝑁 symmetric keys

when communicating with 𝑁 other users

• 𝑁(𝑁 − 1) = 𝒪 𝑁2 keys stored in total

• Difficult to store and manage so many

keys securely

• Partial solution: key distribution centers

• One central authority hands out temporary keys

• 𝒪(𝑁) (long-term) keys needed (to the KDC)

• Might be a feasible solution in a single organization

• Single point of failure

• What about the internet?

5

The public-key revolution

6

Diffie-Hellman key exchange – idea

7

𝐾

𝐾

Public-key encryption

8

Diffie-Hellman key exchange

• Discovered in the 1970's

• Allows two parties to establish a shared secret

without ever having met

• Diffie & Hellman paper also introduced:

• Public-key encryption

• Digital signatures

9

Whitfield Diffie

Martin Hellman

Ralph Merkle

• Symmetric crypto boils down to a few primitives

• Block ciphers/PRFs, hash functions

• Why are these considered secure?

• Lots and lots of cryptanalysis (well-studied!)

• Artificial and man-made

• Want asymmetric crypto to be based on a few well-studied primitives too

• Candidates come from a different place:

• Hard mathematical problems

• Good candidates: discrete logarithm problem, factoring

• Much more algebraic structure

A different kind of primitives

10

𝒁𝑛
∗ ≃ 𝒁𝑝1

∗ × 𝒁𝑝2
∗ × ⋯× 𝒁𝑝𝑡

∗

AES

SHA2-256

𝑦2 = 𝑥3 − 5𝑥 + 2

Group theory + number theory

11

𝒁10

𝒁5 𝒁2

𝟎

Preliminaries

12

𝒁 = … ,−2, −1, 0, 1, 2, 3, …(integers)

𝑹 = the real numbers

𝒁𝑛 = 0, 1, 2, … , 𝑛 − 1

𝒁𝑝 = 0, 1, 2, … , 𝑝 − 1

𝑹∗ = 𝑹 ∖ {0}

𝒁𝑝
∗ = 𝒁𝑝 ∖ 0

(reals)

(integers “mod 𝑛”)

(integers “mod 𝑝”)

Examples:

𝒁11 = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

𝒁11
∗ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

An integer 𝑝 > 1 is prime if it's only divisible by 1 and 𝑝

𝑹∗, .⋅𝑹,+𝒁,+

Groups – motivation

13

𝒁

6 + 0 = 6

6 + (−6) = 0

𝑹

3 2 + 0 = 3 2

3 2 + −3 2 = 0

𝑹∗

3 2 ⋅ 1 = 3 2

3 2 ⋅
1

3 2
= 1

1 + 2 + 3 = 1 + 2 + 3 2 + 𝑒 + 𝜋 = 2 + 𝑒 + 𝜋
2 ⋅ 𝑒 ⋅ 𝜋 = 2 ⋅ 𝑒 ⋅ 𝜋

0

−6

0

−3 2

1

1

3 2

Groups

Groups – definition

14

Definition: A group 𝐺,∘ is a set 𝐺 together with a binary operation ∘ satisfying the following axioms

G1: 𝑎 ∘ 𝑏 ∘ 𝑐 = 𝑎 ∘ 𝑏 ∘ 𝑐 for all 𝑎, 𝑏, 𝑐, ∈ 𝐺 (associativity)

G2: ∃𝑒 ∈ 𝐺 such that 𝑒 ∘ 𝑎 = 𝑎 ∘ 𝑒 = 𝑎 for all 𝑎 ∈ 𝐺 (identity)

G3: ∀𝑎 ∈ 𝐺 there exists 𝑎−1 ∈ 𝐺 such that 𝑎 ∘ 𝑎−1 = 𝑎−1 ∘ 𝑎 = 𝑒 (inverse)

A group is abelian/commutative if: 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎 for all 𝑎, 𝑏 ∈ 𝐺

The order of a group is the number of elements in 𝐺, denoted 𝐺

Groups – examples

15

𝒁,+

𝑹,+

𝒁6, +6

𝑹∗,⋅

𝒁𝑝
∗ , ⋅𝑝

𝒁,−𝒁,⋅

𝑹,⋅

𝒁𝑛, ⋅𝑛

Groups Not groups

⋆ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

∘ e a b

e e a b

a a b e

b b e a

+3 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

𝒁3, +3 ∘ e a b c

e e a b c

a a b c e

b b c e a

c c e a b

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

𝒁4, +4

𝑮, .∘
𝑮, .∘ 𝑮, .⋆

1 − 2 − 3 ≠ 1 − (2 − 3)2−1 = ?

0 ⋅ 𝑥 = 1?

2𝑥 = 1 mod6 ?

𝒁𝑝, ⋅𝑝

Definition: A group 𝐺,∘ …

G1: 𝑎 ∘ 𝑏 ∘ 𝑐 = 𝑎 ∘ 𝑏 ∘ 𝑐 (associativity)

G2: ∃𝑒 ∈ 𝐺: 𝑒 ∘ 𝑎 = 𝑎 ∘ 𝑒 = 𝑎 (identity)

G3: ∃𝑎−1 ∈ 𝐺: 𝑎 ∘ 𝑎−1 = 𝑎−1 ∘ 𝑎 = 𝑒 (inverse)

𝑒 = 0 "2−1" = −2

𝑒 = 0 "𝜋−1" = −𝜋 𝑒 = 1 𝜋−1 = 1/𝜋

𝑒 = 0 "2−1" = 4 ∶ 2 + 4 = 6 ≡ 0 mod6

𝑒 = 1

"3−1" = 𝑥: 3 ⋅ 𝑥 ≡ 1 mod𝑝

More groups

16

1

2 3

1

2 3

2

3 1

3

1 2

1

3 2

3

2 1

2

1 3

𝜎0

𝜎3

𝜎1 𝜎2

𝜎4 𝜎5

𝜎1 + 𝜎4 = 𝜎3

𝜎3 + 𝜎3 = 𝜎0

𝜎𝑖 + 𝜎0 = 𝜎𝑖

= 𝑔 ∘ ⋯∘ 𝑔 ∘ 𝑔 ∘ ⋯∘ 𝑔

Group exponentation

17

𝑔0 =
def

𝑒

𝑔𝑛 =
def

𝑔 ∘ 𝑔 ∘ ⋯ ∘ 𝑔

𝑛

𝑔−𝑛 =
def

𝑔−1 𝑛

𝑔𝑛 ∘ 𝑔𝑚

𝑛 𝑚

𝑛 + 𝑚

= 𝑔𝑛+𝑚Fact:

𝒁,+ : "315" = 3 + 3 + 3 + ⋯+ 3 = 15 ⋅ 3

15

Fact: 𝑔𝑛 𝑚 = 𝑔𝑛𝑚 = 𝑔𝑚 𝑛

Multiplicative notation

𝐺,⋆ ∶ 𝑎 ⋆ 𝑏 = 𝑎𝑏
𝑎 ⋆ 𝑎 ⋆ ⋯𝑎 = 𝑎𝑛

Additive notation

𝐺,⋆ ∶ 𝑎 ⋆ 𝑏 = 𝑎 + 𝑏
𝑎 ⋆ 𝑎 ⋆ ⋯𝑎 = 𝑛 ⋅ 𝑎

just notation!

Cyclic groups

18

Definition: A group 𝐺,∘ is cyclic if there exists 𝑔 ∈ 𝐺 such that

𝐺 = … , 𝑔−2, 𝑔−1, 𝑔0, 𝑔1, 𝑔2, 𝑔3, …

𝑔 is called a generator for 𝐺 and we write 𝐺,∘ = 𝑔

𝒁,+ = 1

𝒁𝑛, +𝑛 = 1

Examples: Not cyclic groups:

𝑹,+ 𝑹∗,⋅

⋆ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

𝑮,⋆

𝒁𝑝
∗ ,⋅ cyclic for all primes 𝑝

𝒁7
∗ ,⋅ = 3 = 30, 31, 32, 33, 34, 35 = 1, 3, 2, 6, 4, 5

= 50, 51, 52, 53, 54, 55 = 1, 5, 4, 6, 2, 3= 5

≠ 2 = 20, 21, 22, 23, 24, 25 = 1, 2, 4, 1, 2, 4 = 1, 2, 4

= −1

Subgroups

19

Definition: A set 𝐻 ⊆ 𝐺 is a subgroup, written 𝐻 < 𝐺, if 𝐻 is a group

under the binary operation inherited from 𝐺

Examples:

𝑒 < 𝐺 (for all groups)

𝐺 < 𝐺 (for all groups)

2𝒁 = … ,−2, 0, 2, 4, 6, … < 𝒁,+

3𝒁 = … ,−3, 0, 3, 6, 9, … < 𝒁,+

1,−1 ,⋅ < 𝑹∗,⋅

𝑹>0,⋅ < 𝑹∗,⋅

𝒁40, +

5 = 0, 5, 10,… , 35

positive real numbers

𝐺

𝐻

𝑒
𝑥

𝑥−1

𝑦

𝑥 ∘ 𝑦

10 = 0, 10, 20, 30

20 = 0, 20

20 < 10 < 5 <

Cyclic groups

20

𝑔1𝑒 𝑔2 𝑔3 𝑔𝑛⋯ ⋯

𝑔𝑛 = 𝑔3 ⟹ 𝑔𝑛−3= 𝑒 ⟹ 𝑔𝑗= 𝑒 𝑗 < 𝑛

Proof (finite cyclic groups):

𝐺 = 𝑔 = 𝑛

𝑔𝑛−1

contradiction!

𝐺

Theorem: if 𝐺,∘ is a finite group, then for all 𝑔 ∈ 𝐺:

𝑔 𝐺 = 𝑒

𝑔𝑛+1 𝑔𝑛+2

Theorem: 𝑔𝑖 = 𝑔𝑖 mod 𝑛 = 𝑔𝑖 mod 𝐺

Theorem (Lagrange’s theorem): if 𝐻 < 𝐺 then 𝐻 divides 𝐺

Groups of prime order

Fact: any non-trivial element (≠ 𝑒) in a prime-order group is a generator

Fact: any prime-order group is cyclic

Warning: 𝒁𝑝
∗ ,⋅ is not a prime-order group! 𝒁𝑝

∗ = 𝑝 − 1

Suppose 𝑝 = 2𝑞 + 1, with 𝑞 being prime; what are the possible sub-groups of 𝒁𝑝
∗ ,⋅ ?

21

Theorem (Lagrange's theorem): if 𝐻 < 𝐺 then 𝐻 divides 𝐺

𝒁𝑝
∗ =

{1},
{1, −1},

𝐻, 𝐻 = 𝑞
𝒁𝑝

∗

𝒁𝑝
∗ = 𝑝 − 1 = 2𝑞

𝒁11
∗ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

11 = 2 ⋅ 5 + 1

1 < 𝒁11
∗

1,−1 = {1,10} < 𝒁11
∗

𝒁11
∗ < 𝒁11

∗

𝐻 = 3 = 4 = 5 = 9 = {1, 3, 4, 5, 9} < 𝒁11
∗

Example:

Why is 𝒁𝑝
∗ ,⋅ a group?

• 𝒁𝑝
∗ = 1, 2, … , 𝑝 − 1

• Associativity 𝑎 ⋅ 𝑏 ⋅ 𝑐 = 𝑎 ⋅ 𝑏 ⋅ 𝑐 mod𝑝

• Identity 1 ⋅ 𝑎 = 𝑎 ⋅ 1 = 𝑎 mod𝑝

• Inverses ?

Given 𝑎 ∈ 𝒁𝑝
∗ can we always find 𝑎−1 ∈ 𝒁𝑝

∗ ?

Need to solve: 𝑥 ⋅ 𝑎 = 1mod𝑝

22

Claim: ∃𝑚, 𝑛 ∈ 𝒁 such that 𝑚𝑎 + 𝑛𝑝 = 1

Proof: 𝐼 = 𝑠𝑎 + 𝑡𝑝 | 𝑠, 𝑡 ∈ 𝒁

1) 𝐼 contains a positive integer (e.g. 𝑎 and 𝑝)

2) 𝐼 contains a smallest positive integer 𝑑 = 𝑚𝑎 + 𝑛𝑝
3) 𝑝 = 𝑞𝑑 + 𝑟 0 ≤ 𝑟 < 𝑑
4) 𝑟 = 𝑝 − 𝑞𝑑
5) 𝑟 = 0 (since 𝑑 is the smallest positive integer in 𝐼)

6) 𝑝 = 𝑞𝑑 ⟹ 𝑑 = 1 (since 𝑝 is prime and 𝑑 ≤ 𝑎 < 𝑝)

7) 1 = 𝑚𝑎 + 𝑛𝑝

⟹ 𝑚𝑎 = 1 − 𝑛𝑝

How do we actually find 𝑎−1?

Extended Euclidian Algorithm

mod𝑝 ∈ 𝒁𝑝
∗

= 𝑝 − 𝑞 𝑚𝑎 + 𝑛𝑝 = −𝑞𝑚𝑎 + 1 − 𝑞𝑛 𝑝 ∈ 𝐼

Q.E.D

= 1 mod𝑝 ⟹ 𝑎−1 = 𝑚

Definition: A group 𝐺,∘ …

G1: 𝑎 ∘ 𝑏 ∘ 𝑐 = 𝑎 ∘ 𝑏 ∘ 𝑐 (associativity)

G2: ∃𝑒 ∈ 𝐺: 𝑒 ∘ 𝑎 = 𝑎 ∘ 𝑒 = 𝑎 (identity)

G3: ∃𝑎−1 ∈ 𝐺: 𝑎 ∘ 𝑎−1 = 𝑎−1 ∘ 𝑎 = 𝑒 (inverse)

Diffie-Hellman

24

𝐴 = 𝑔𝑎

𝐵 = 𝑔𝑏

𝑎
$

1,… , 𝐺
𝑏

$
1,… , 𝐺

𝑍 𝐵𝑎 𝑍′ 𝐴𝑏= (𝑔𝑏)𝑎 = 𝑔𝑎𝑏 = 𝑔𝑎 𝑏= 𝑔𝑎𝑏

𝐺 = 〈𝑔〉
public

Claim: 𝑍 = 𝑍′

Diffie-Hellman – example

25

570 2493 mod1019 72 2901 mod 1019

493
$

1,… , 1018 901
$

1,… , 1018

𝑍 72493 mod1019 𝑍′ 570901 mod1019 ≡ 𝟓𝟑𝟏

𝒁1019
∗ = 〈2〉

≡ 𝟓𝟑𝟏

570

72

Diffie-Hellman

Security:

• Must be hard to compute 𝑍 𝑔𝑎𝑏 given 𝑔, 𝐴, 𝐵 (DH assumption)

• Must be hard to find 𝑎 (or 𝑏) given 𝑔, 𝐴, 𝐵 (DLOG assumption)

26

𝐴 = 𝑔𝑎

𝐵 = 𝑔𝑏

𝑎
$

1,… , 𝐺
𝑏

$
1,… , 𝐺

𝑍 𝐵𝑎 𝑍′ 𝐴𝑏= (𝑔𝑏)𝑎 = 𝑔𝑎𝑏 = 𝑔𝑎 𝑏= 𝑔𝑎𝑏

Doesn't work: 𝐴 ∘ 𝐵 = 𝑔𝑎 ∘ 𝑔𝑏 = 𝑔𝑎+𝑏 ≠ 𝑔𝑎𝑏

𝐺 = 〈𝑔〉
public

Discrete logarithm (DLOG) problem

27

𝐄𝐱𝐩𝐺,𝑔
dlo𝐠

𝐴

1. 𝑥
$

1,2,… , 𝐺

2. 𝑋 𝑔𝑥

3. 𝑥′ 𝐴 𝑋

4. return 𝑥′ =
?

𝑥

Challenger

𝑥
$

1,2, … , 𝐺

𝑋 𝑔𝑥

𝑋

𝑥′

Adversary wins if 𝑥′ = 𝑥

𝐺 = 𝑔

Definition: The DLOG-advantage of an adversary 𝐴 is

𝐀𝐝𝐯𝐺,𝑔
dlog

𝐴 = Pr 𝐄𝐱𝐩𝐺,𝑔
dlog

𝐴 ⇒ true

In other words: 𝑥′ = log𝑔 𝑋

public

Diffie-Hellman (DH) problem

28

Challenger

𝑥, 𝑦
$

1,2, … , 𝐺

𝑋 𝑔𝑥

𝑋, 𝑌

𝑍

Adversary wins if 𝑍 = 𝑔𝑥𝑦

𝐺 = 𝑔

public

𝑌 𝑔𝑦

𝐄𝐱𝐩𝐺,𝑔
dh 𝐴

1. 𝑥, 𝑦
$

1,2,… , 𝐺

2. 𝑋 𝑔𝑥

3. 𝑌 𝑔𝑦

4. 𝑍 𝐴 𝑋, 𝑌

5. return 𝑍 =
?

𝑔𝑥𝑦

Definition: The DH-advantage of an adversary 𝐴 is

𝐀𝐝𝐯𝐺,𝑔
dh 𝐴 = Pr 𝐄𝐱𝐩𝐺,𝑔

dh 𝐴 ⇒ true

DLOG vs. DH

29

𝐄𝐱𝐩𝐺,𝑔
dlog

𝐴

1. 𝑥
$

1,2,… , 𝐺

2. 𝑋 𝑔𝑥

3. 𝑥′ 𝐴 𝑋

4. return 𝑥 =
?

𝑥

𝐄𝐱𝐩𝐺,𝑔
dh 𝐴

1. 𝑥, 𝑦
$

1,2,… , 𝐺

2. 𝑋 𝑔𝑥

3. 𝑌 𝑔𝑦

4. 𝑍 𝐴 𝑋, 𝑌

5. return 𝑍 =
?

𝑔𝑥𝑦

DLOG security ⟸ DH security

DLOG security ⟹
?

DH security

DLOG insecurity ⟹ DH insecurity

⇕

Algorithms for solving DLOG

• Generic algorithms: works for all (cyclic) groups

• Brute-force

1. Given 𝑔 and 𝑋 ∈ 𝐺

2. for 𝑖 = 1, 2,… , 𝐺 check if 𝑔𝑖 = 𝑋

• Are there better algorithms?

• Group-specific algorithms: exploits algebraic features of given group

30

running time: 𝒪 𝐺 = 2𝑛 , given 𝐺 ≈ 2𝑛

Solving DLOG: the baby-step giant-step algorithm

31

𝑋 𝑔𝑥 𝑌 𝑔𝑛𝑛 𝐺Given:

Find: 𝑥

𝑌0

𝑌1

𝑌2

𝑌𝑗

𝑌𝑛

𝑌3

𝑋
𝑋𝑔1

𝑋𝑔2

𝑋𝑔3

𝑋𝑔𝑖

𝑋𝑔𝑛

𝑋𝑔𝑖 = 𝑌𝑗

𝑋 = 𝑌𝑗𝑔−𝑖

𝑋 = 𝑔𝑛𝑗𝑔−𝑖

𝑔𝑥 = 𝑔𝑛𝑗𝑔−𝑖

𝑥 = 𝑛𝑗 − 𝑖

𝑌 0 , 𝑌 1 , … , 𝑌 𝑛

𝑋 𝑔 0 , 𝑋 𝑔 1 , … , 𝑋 𝑔 𝑛

𝒪 𝐺

 𝒪 𝐺

Time + memory: 𝒪 𝐺

𝑔𝑛

𝑔2𝑛

𝑔3𝑛

Look for 𝑖, 𝑗 such that:

𝑔𝑥 = 𝑔𝑛𝑗−𝑖

𝑔1
𝑔2

𝑔3
𝑔4

𝑔0

Generic algorithms for solving DLOG

• Baby-step, giant-step: time 𝒪 𝐺 memory 𝒪 𝐺

• Pollard's rho: time 𝒪 𝐺 memory 𝒪 1

• Pohlig-Hellman: time max
𝑝

𝒪 𝑝 memory 𝒪 1 𝐺 = 𝑝1
𝑒1𝑝2

𝑒2 ⋯𝑝𝑡
𝑒𝑡

• Consequence: for DLOG to be hard 𝐺 must be large enough!

• 𝐺 ≈ 2128 only gives 2128 = 264 security

• 𝐺 ≈ 2256 only gives 2256 = 2128 security

• 𝐺 ≈ 2512 only gives 2512 = 2256 security

• etc...

• Nechaev'94 & Shoup'97: Solving DLOG requires Ω 𝐺 time in generic groups

32

Non-generic algorithms for DLOG

• Unfortunately, 𝒁𝑝
∗ ,⋅ is not a generic group!

• Much faster specific algorithms exist for solving DLOG in 𝒁𝑝
∗

• Index-calculus

• Elliptic-curve method

• Special number-field sieve (SNFS)

• General number-field sieve (GNFS)

• Current DLOG-solving record: 𝒁𝑝
∗ ≈ 2795 using GNFS (Heninger et al. '19)

• Previous records: https://en.wikipedia.org/wiki/Discrete_logarithm_records

• 𝒁𝑝
∗ ≥ 22048 typically required as a minimum today

33

exceptionally complicated algorithms, requiring very

advanced mathematics!

https://en.wikipedia.org/wiki/Discrete_logarithm_records

Next week: better alternatives to 𝒁𝒑
∗ ?

34

