
TEK4500: Authenticated encryption

Håkon Jacobsen

Fall 2022

1 Introduction
So far in the course we’ve been treating the goals of confidentiality and in-
tegrity1 separately. But in practice we usually want to have both confidentiality
and integrity at the same time. This leads to the notion of authenticated encryp-
tion which combines both properties into a single primitive.

2 Syntax
As usual we begin with the syntax. An authenticated encryption scheme is
syntactically almost identical to a regular encryption scheme, with the only dif-
ference being that an authenticated encryption scheme allows for the possibility
of failure during decryption. That is, the decryption algorithm can potentially
output⊥ to indicate that something went wrong during the decryption process.
More formally, the syntax of an authenticated encryption is defined as follows.
Definition 1. An authenticated encryption scheme is a tuple Σ = (KeyGen,Enc,Dec)
of algorithms, where:

• KeyGen is a probabilistic key generation algorithm that outputs a key in a
key space K.

• Enc : K ×M → C is a probabilistic encryption algorithm which takes as
input a key in K and a message from a message space M and outputs a
ciphertext in a ciphertext space C.

• Dec : K × C → M ∪ {⊥} is a deterministic decryption algorithm which
takes as input a key inK and a ciphertext in C and outputs either a message
inM or a distinct error symbol ⊥.

Σ is required to satisfy the following correctness requirement: for all K ∈ K and
all M ∈Mwe have

Dec(K,Enc(K,M)) = M. (1)
Comments. Typically we haveK = {0, 1}128 orK = {0, 1}256, i.e., the key space
is the set of all 128 bit strings or the set of all 256 bit strings. Moreover, the key
generation algorithm is usually defined to simply draw the key uniformly at
random from the key space K. Thus, we’ll mostly ignore the key generation
algorithm from now on. The message and ciphertext spaces will usually be
{0, 1}∗, i.e., plaintexts and ciphertexts are bit strings of arbitrary length.

1The terms authentication and integrity will be used interchangeably in this note.

1

3 Security definition
To define the security of an authenticated encryption scheme, perhaps the most
natural approach is simply to model confidentiality and integrity as two sepa-
rate security requirements and then demand that the scheme satisfies both of
these definitions separately. We give this description in Section 3.1.

Alternatively, it’s also possible to define authenticated encryption in a single
security experiment that covers both confidentiality and integrity at the same
time. We give this description Section 3.2.

So given that there are two different ways to define authenticated encryp-
tion, which one should we use? Is one better than the other? May one notion
be stronger than the other? Fortunately, it turns out they are both equivalent!
We prove this in Section 3.3. Thus, it doesn’t matter which definition we take
as our “real” definition of authenticated encryption.

3.1 Separate confidentiality and integrity definitions
Here we define authenticated encryption as the collection of two separate se-
curity definitions, one for confidentiality and one for integrity. For an authen-
ticated encryption scheme to be considered secure it needs to satisfy both of
these definitions separately. Please note that while we define two different se-
curity notions, there is still only one scheme. That is, there is a single scheme Σ
and it simultaneously needs to satisfy both the confidentiality definition and the
integrity definition in order to be considered a secure authenticated encryption
scheme. Contrast this with the distinct schemes we have looked at so for obtain-
ing confidentiality and integrity, namely encryption schemes and MACs. These
are nothing alike neither syntactically nor operationally, while for authenticated
encryption there is only a single primitive with two associated security defini-
tions. We begin with confidentiality.

Confidentiality. This one’s easy because we simply re-use the IND-CPA se-
curity definition for (non-authenticated) encryption schemes. The IND-CPA
security experiment is repeated in Fig. 1a. As usual we define the IND-CPA
advantage of an adversary A as:

Advind-cpa
Σ (A) =

∣∣∣2 · Pr[Expind-cpa
Σ (A)⇒ true]− 1

∣∣∣ . (2)

Integrity. For the integrity definition we mimic the UF-CMA notion that we
used for MACs. Recall that the essence of the UF-CMA definition was that it
should be hard for an adversary to come up with a message and a tag that
will be accepted by the verification algorithm of the MAC. In other words, it
should be hard to forge valid tags. Analogously, for authenticated encryption
we demand that it should be hard for the adversary to forge valid ciphertexts.
That is, it should be hard for the adversary to come up with a ciphertext C∗
such that it decrypts to something other than ⊥. We call this notion integrity of
ciphertexts (INT-CTXT) and the formal security experiment is shown in Fig. 1b.
Having INT-CTXT security means that only the honest users (who know the
secret key) will be able to create ciphertexts that decrypt correctly. Even a single
bit flip done by the adversary will be detected.

2

Expind-cpa
Σ (A)

1: b
$← {0, 1}

2: K
$← Σ.KeyGen

3: b′ ← AE(·)

4: return b′ = b

E(M):
1: R← {0, 1}|M|

2: C0
$← Σ.Enc(K,R)

3: C1 ← Σ.Enc(K,M)
4: return Cb

(a) IND-CPA (confidentiality)

Expint-ctxt
Σ (A)

1: won← false
2: K

$← Σ.KeyGen
3: Ciphertexts← []
4: AE(·),D(·)

5: return won

E(M):
1: C ← Σ.Enc(K,M)
2: Ciphertexts.add(C)
3: return C

D(C):
1: if C ∈ Ciphertexts : // cheating
2: return ⊥
3: M ← Σ.Dec(K,C)
4: if M 6= ⊥ :
5: won← true
6: return M

(b) INT-CTXT (integrity)

Figure 1: Separate confidentiality and integrity security experiments for an au-
thenticated encryption scheme Σ.

For an adversary Awe define its INT-CTXT advantage as:

Advint-ctxt
Σ (A) = Pr[Expint-ctxt

Σ (A)⇒ true] (3)

Notice that, up to a change of notation, the INT-CTXT experiment is more
or less identical to the UF-CMA experiment. That is, the E oracle in the INT-
CTXT corresponds to the Tag oracle in the UF-CMA experiment, while the D
oracle corresponds to the Vrfy oracle. Specifically, the purpose of the E oracle
in the INT-CTXT game is to allow the adversary to see validly created cipher-
texts for messages of its own choice. Allowing this is necessary since in real
life the adversary is very likely to at least be able to see the ciphertexts sent by
the honest users. The purpose of the D oracle is for the adversary to test its
attempts at ciphertext forgeries (just like the Vrfy oracle in the UF-CMA game).
Note that we need to do a bit of bookkeeping in order to avoid trivial wins for
the adversary. Specifically, the adversary shouldn’t be rewarded if it first asks
the E oracle for the encryption of a message and then submits the resulting ci-
phertext to theD oracle. By correctness of the authenticated encryption scheme
(Definition 1) this will of course yield a valid decryption. Thus we record all
the valid ciphertexts the adversary have received from the E oracle in the list
Ciphertexts. In order to win the adversary needs to come up with a ciphertext
not in Ciphertexts.

Definition 2 (AE security (informal)). An authenticated encryption scheme
Σ is AE-secure if both Advind-cpa

Σ (A) and Advint-ctxt
Σ (A) are “small” for all “re-

source bounded” A.

3

Expae
Σ (A)

1: b
$← {0, 1}

2: K
$← Σ.KeyGen

3: Ciphertexts← []
4: b′ ← AE(·),D(·)

5: return b′ = b

E(M):
1: R← {0, 1}|M|

2: C0
$← Σ.Enc(K,R)

3: C1 ← Σ.Enc(K,M)
4: Ciphertexts.add(Cb)
5: return Cb

D(C):
1: if C ∈ Ciphertexts :
2: return ⊥
3: M0 ← ⊥
4: M1 ← Σ.Dec(K,C)
5: return Mb

Figure 2: Authenticated encryption (AE) security experiment (all-in-one vari-
ant).

3.2 All-in-one definition
Here’s a different way of defining authenticated encryption which combines
both confidentiality and integrity into a single security experiment. This vari-
ant, defined formally in Fig. 2, considers two different “worlds”: if b = 1 then
the adversary is given access to a real encryption oracle and a real decryption
oracle, while if b = 0 the adversary is given access to an encryption oracle that
only returns encryptions of random messages and a decryption oracle that al-
ways returns⊥. The adversary is now asked: can it tell which world it’s in? If it
cannot then we say that the scheme is AE secure. More formally, we define an
adversary A’s AE advantage as:

Advae
Σ (A) = |2 · Pr[Expae

Σ (A)⇒ true]− 1| , (4)

and (informally) say that a scheme is AE secure if all “resource bounded” ad-
versaries have “tiny” AE advantages. As usual, we leave it unspecified exactly
what “resources bounded” and “tiny” are.

Definition 3 (AE security (informal)). An authenticated encryption scheme Σ
is AE-secure if Advae

Σ (A) is “small” for all “resource bounded” A.

Why does the all-in-one AE experiment capture both confidentiality and in-
tegrity? For confidentiality notice that if you ignore the D oracle in Fig. 2, then
you are basically left with the IND-CPA experiment. For integrity the connec-
tion is a bit more subtle. The idea is that if the adversary can forge ciphertexts,
then this will allow it to trivially distinguish the two worlds. To see how this
works, suppose an adversary is able to forge a valid ciphertext C∗. If the ad-
versary submits C∗ to the D oracle while being in the real world (b = 1), then
it’ll get back a message M 6= ⊥. But if the adversary submits C∗ to the D ora-
cle while being in the fake world (b = 0), then by definition it will always get
back⊥. Thus, being able to forge valid ciphertexts gives the adversary a way to
distinguish between the real world and the fake world.

4

Please note that getting back ⊥ from the D oracle does not necessarily im-
ply that the adversary is in the fake world (unlike if it gets back something
other than⊥, in which case it’s guaranteed to be in the real world). Indeed, the
forgery attempt could simply have been wrong. But notice that this requires the
encryption scheme to be able to detect forgeries! In other words, if an adversary
is unable to distinguish the two worlds then this must imply that the decryp-
tion algorithm more or less always acts identical to the “always-⊥” oracle in the
fake world.

3.3 All-in-one AE is equivalent to separate definitions AE
This section is optional and can be skipped on first reading.

In this section we prove that the two ways of defining authenticated encryp-
tion from Sections 3.1 and 3.2 are equivalent.

IND-CPA + INT-CTXT =⇒ all-in-one AE. We begin by showing that the
individual confidentiality and integrity definitions from Section 3.1 together
imply the all-in-one AE security definition from Section 3.2.

Theorem 1.
Advae

Σ (A) ≤ Advind-cpa
Σ (B) + Advint-ctxt

Σ (C) (5)

Proof. To simplify notation let us use AE(·),D(·) ⇒ 1 to denote the event that
A interacts with a real encryption oracle and a real decryption in the all-in-one
experiment (thus is in the “real world”) and finally outputs 1. Similarly, we use
AE($),⊥(·) ⇒ 1 to denote that A interacts with an encryption oracle that returns
encryptions of random messages and a decryption oracle that always returns⊥
(thus is in the “fake world”) and finally outputs 1. Using this notation we can
rewrite the definition of A’s AE advantage into an equivalent form:

Advae
Σ (A)

def
= 2 · Pr[Expae

Σ (A)⇒ true]− 1 (6)

= 2 ·
(

Pr[A ⇒ 1 | b = 1] · 1

2
+ Pr[A ⇒ 0 | b = 0] · 1

2

)
− 1 (7)

= Pr[AE(·),D(·) ⇒ 1] + Pr[AE($),⊥(·) ⇒ 0]− 1 (8)
= Pr[AE(·),D(·) ⇒ 1] + 1− Pr[AE($),⊥(·) ⇒ 1]− 1 (9)
= Pr[AE(·),D(·) ⇒ 1]− Pr[AE($),⊥(·) ⇒ 1] (10)

We can now use a common trick, namely to add “0”:

Advae
Σ (A) = Pr[AE(·),D(·) ⇒ 1]− Pr[AE(·),⊥(·) ⇒ 1]

+ Pr[AE(·),⊥(·) ⇒ 1]− Pr[AE($),⊥(·) ⇒ 1]
(11)

≤ Pr[AE(·),D(·) ⇒ 1]− Pr[AE(·),⊥(·) ⇒ 1] + Advind-cpa
Σ (B) (12)

Specifically, in (11) we added and subtracted the term Pr[AE(·),⊥(·) ⇒ 1]. This
corresponds to a “hybrid” world where A interacts with a real encryption ora-
cle, but the “always-⊥” decryption oracle⊥(·). Then, in (12) we noticed that the
term Pr[AE(·),⊥(·) ⇒ 1] − Pr[AE($),⊥(·) ⇒ 1] is identical to the IND-CPA game

5

since an decryption oracle that always returns ⊥ is equivalent to not having a
decryption oracle at all.

It remains to bound the difference Pr[AE(·),D(·) ⇒ 1] − Pr[AE(·),⊥(·) ⇒ 1].
This difference can be interpreted as the advantage of A in distinguishing be-
tween the real world and the hybrid world introduced above. Also, note that the
real world and the hybrid-fake world are identical unless A forges a ciphertext.
Let F denote this event. Then we have:

Pr[AE(·),D(·) ⇒ 1]− Pr[AE(·),⊥(·) ⇒ 1]

= Pr[AE(·),D(·) ⇒ 1 ∧ F] + Pr[AE(·),D(·) ⇒ 1 ∧ F]

− Pr[AE(·),⊥(·) ⇒ 1 ∧ F]− Pr[AE(·),⊥(·) ⇒ 1 ∧ F]
(13)

= Pr[AE(·),D(·) ⇒ 1 ∧ F]− Pr[AE(·),⊥(·) ⇒ 1 ∧ F] (14)

=
(

Pr[AE(·),D(·) ⇒ 1 | F]− Pr[AE(·),⊥(·) ⇒ 1 | F]
)

Pr[F] (15)

≤ Pr[F] (16)

Explanation for each line above: (13) is just the law of total probability; (14)
is cancellation of the terms where event F doesn’t happen (because in this case
both worlds are identical); (15) is just the law of total probability again (using
the formulation based on conditional probability); finally (16) is just using the
fact that Pr[AE(·),D(·) ⇒ 1 | F]− Pr[AE(·),⊥(·) ⇒ 1 | F] is a number between −1
and 1, hence always upper bounded by 1.

Thus, we only need to bound Pr[F], namely the probability thatAmanages
to forge a ciphertext in the real world or the fake world (doesn’t matter which
since they are identical until this happens). But this is exactly what the INT-
CTXT game is all about! More concretely, let C be the following INT-CTXT ad-
versary. It starts runningA, and whenAmakes an E(·) oracle query it forwards
it to the E(·) oracle in its own INT-CTXT game. WhenAmakes a decryption or-
acle query (which either is supposed to beD(·) or⊥(·)) then C forwards it to its
own D(·) oracle. If the INT-CTXT decryption oracle returns something other
than ⊥ then C simply stops. Notice that in this case C wins in its INT-CTXT
game, hence

Pr[AE(·),D(·) ⇒ 1]− Pr[AE(·),⊥(·) ⇒ 1] ≤ Pr[F] ≤ Advint-ctxt
Σ (C) (17)

Plugging this into (12) gives

Advae
Σ (A) ≤ Advind-cpa

Σ (B) + Advint-ctxt
Σ (C) (18)

All-in-one AE =⇒ IND-CPA + INT-CTXT. We now show that the all-in-one
AE definition implies confidentiality and integrity independently.

Theorem 2.
Advind-cpa

Σ (A) ≤ Advae
Σ (A) (19)

Proof. This is true because the IND-CPA game is simply a more limited version
of the AE game where we ignore the decryption oracle D(·).

6

Theorem 3.
Advint-ctxt

Σ (A) ≤ Advae
Σ (B) (20)

Proof. Let B be the following adversary. It runs A and forwards all of its E(·)
and D(·) queries to its own E(·) and D(·) oracles. If B’s decryption oracle D(·)
ever returns something other than ⊥, then B stops and outputs b′ = 1. Else, it
outputs b′ = 0. Using the same simplifying notation as in the proof of Theo-
rem 1, we get

Advae
Σ (B) = Pr[BE(·),D(·) ⇒ 1]− Pr[BE($),⊥(·) ⇒ 1] (21)

≥ Pr[F]− 0 (22)
= Advint-ctxt

Σ (A) (23)

4 Achieving AE – generic composition
Having spent much time defining authenticated encryption, how do we actu-
ally achieve it? Seeing as authenticated encryption is a combination of confi-
dentiality and integrity, and seeing that we have previously managed to create
primitives achieving both of these goals separately, namely encryption schemes
and MACs, it’s reasonable to try to combine them in order to create an au-
thenticated encryption scheme. In particular, suppose we have an IND-CPA
secure encryption scheme Σ = (KeyGen,Enc,Dec) and an UF-CMA secure MAC
scheme MAC = (KeyGen,Tag,Vrfy), how can we combine them to create an AE
secure authenticated encryption scheme AE = (KeyGen,Enc,Dec)?

There are at least three natural ways to combine Σ and MAC.

• MAC-then-Encrypt (MtE): first MAC the message then encrypt both the
message and the tag:

C ← Enc(K1,M‖Tag(K2,M))

Upon reception ofC the receiver first decrypts the ciphertext, then verifies
the resulting message with the (decrypted) tag.
This was the way encryption worked in the TLS protocol up until version
1.2.

• Encrypt-and-MAC (E&M): encrypt and MAC the message independently:

C ← Enc(K1,M)

T ← Tag(K2,M)

Upon reception of C, T the receiver first decrypts the ciphertext, then ver-
ifies the resulting message with the tag.
This was the way encryption worked in the SSH protocol up until the most
recent version.

7

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Secure_Shell

• Encrypt-then-MAC (EtM): first encrypt the message then MAC the cipher-
text; send ciphertext and tag:

C ← Enc(K1,M)

T ← Tag(K2, C)

Upon reception of C, T the receiver first verifies the ciphertext with the
tag, and only decrypts C if the verification passes.
This is the original encryption mode used by the IPsec protocol.

Given that MtE, E&M, and EtM have all been used in real life, are they all achiev-
ing AE security? Unfortunately, no.

MtE is not (generically) secure. Suppose Σ is an IND-CPA secure encryption
scheme and MAC is a UF-CMA secure MAC. From Σ define a new encryption
scheme Σ′ that simply prepends a 0 to the front of the ciphertext. Upon decryp-
tion Σ′ simply ignores the first bit. As you showed in Homework 3, Σ′ is still an
IND-CPA secure encryption scheme. But what happens if you combine Σ′ and
MAC in the MtE mode? Is the resulting scheme AE secure? The answer is no,
as you are asked to show in the exercises.

E&M is not (generically) secure. Suppose Σ is an IND-CPA secure encryp-
tion scheme and MAC is a UF-CMA secure MAC. Since MAC is a deterministic
function, what happens if you encrypt the same message twice in E&M? You
get the same tag! But this violates the property that IND-CPA secure encryption
should hide repeated plaintexts, so E&M is not generically secure.

In fact, it is possible for E&M to violate confidentiality even worse than this.
From MAC define a new scheme MAC′ which prepends the message to the tag,
i.e., MAC′.Tag(K,M) = M‖MAC.Tag(K,M). As you showed in Homework 4,
MAC′ is still a UF-CMA secure MAC. But what happens if you combine Σ and
MAC′ in E&M mode? You leak the whole message!

EtM is generically secure. After seeing that neither MtE nor E&M are gener-
ically secure, you might suspect that EtM also fails to provide AE security. But
fortunately this is not the case! As shown in the following theorem, EtM mode
provides AE security for any choice of IND-CPA secure encryption scheme Σ
and UF-CMA secure MAC MAC.

Theorem 4.
Advae

EtM(A) ≤ Advind-cpa
Enc (B) + Advuf-cma

MAC (C) (24)

Proof. By Theorem 1 we have

Advind-cpa
EtM (A) ≤ Advind-cpa

EtM (A′) + Advint-ctxt
EtM (A′′) (25)

for some adversaries A′ and A′′, so to finish the proof we only need to bound
the two terms on the right. We do this in Lemma 1 and Lemma 2 below.

Lemma 1.
Advind-cpa

EtM (A′) ≤ Advind-cpa
Enc (B) (26)

8

https://en.wikipedia.org/wiki/IPsec

Proof. Adversary B begins by picking a random key K for the MAC scheme
MAC and then runs A′. When A′ makes an encryption query for a message
M , then B forwards it to its own encryption oracle E(M) to obtain a ciphertext
C. B then applies a MAC to C using the key it picked itself to obtain T ←
MAC.Tag(K,C). B returns C‖T back toA′. WhenA′ stops with output b′, then
B stops too and outputs b′ in its IND-CPA game.

Since B picked the key for the MAC scheme itself, B’s simulation of the MtE
scheme for A′ is perfect hence Advind-cpa

EtM (A′) ≤ Advind-cpa
Enc (B).

Lemma 2.
Advint-ctxt

EtM (A′′) ≤ Advuf-cma
MAC (C) (27)

Proof. Adversary C begins by picking a random keyK for the encryption scheme
Enc and then runs A′′. When A′′ makes an encryption query for a message M ,
then C first encrypts the message with the Enc scheme using the key it picked
itself to obtain the ciphertext C ← Enc.Enc(K,M), then makes a Tag(C) oracle
query to its own UF-CMA game to obtain a tag T . C returns C‖T back to A′′.

When A′′ makes a decryption query D(C‖T) for some ciphertext C with
corresponding tag T , then C makes a Vrfy(C, T) oracle query to its own UF-
CMA game. If the oracle returns 1 (meaning the query was a valid forgery),
then C simply stops. Else C returns⊥ toA′′ and continues answering its queries.

It’s not too hard to see that since C picked the key for the encryption scheme
itself, C’s simulation of the MtE scheme forA′′ is perfect henceAdvint-ctxt

EtM (A′′) ≤
Advuf-cma

MAC (C).

Comments 1. Although we could only prove that EtM achieves AE security
in general, it is important to keep in mind that MtE and E&M only fails to pro-
vide AE security in a generic sense. That is, while MtE and E&M are not AE
secure for all choices of IND-CPA secure encryption schemes and UF-CMA se-
cure MACs—this is what the counter-examples showed—there could neverthe-
less be specific choices of Enc and MAC for which MtE and E&M are secure (and
in fact there are).

Comments 2. The keys used for the encryption and the MAC schemes in EtM
must be independent! This is why we denoted them K1 and K2, respectively. If
you try to use the same key for both bad things can happen. You are asked to
demonstrate this in the Homework. Again, it is important to emphasize that
this requirement is in the generic sense. For specific choices of the encryption
scheme and MAC you might be able to use the same key for both if you are
careful. In fact, the AE schemes we describe in Section 7 do exactly that.

5 AEAD – authentication encryption with associated
data

Authenticated encryption provides confidentiality and integrity protection to
a message. But sometimes we also have some ancillary data which we cannot
encrypt, but for which we still want integrity protection. A common example
is the header of a network protocol packet. While we want both confidentiality

9

Figure 3: IPsec ESP packet using AEAD.

and integrity protection for the contents of the packet, the header itself by neces-
sity have to be in the clear so that the packet can be routed in the network. Nev-
ertheless, it would be good if no one could tamper with the header—for instance
changing the destination address to another recipient. In other words, we want
integrity protection for the header. The concept is illustrated in Fig. 3 which
shows an IPsec network protocol packet where the inner TCP/application data
is encrypted (and authenticated). There is also an additional ESP header (and
trailer) which is only authenticated but not encrypted.2

While integrity for the header could be achieved simply by using a MAC,
since we’re already using an authenticated encryption scheme to protect the
contents of the packet it would be nice if we could leverage it to protect the
header as well. This leads to the idea of authenticated encryption with associated
data (AEAD). Here the associated data will receive integrity protection, but no
confidentiality protection. While we could formalize the syntax and security of
an AEAD scheme here, we postpone it to the next section where we introduce
yet another twist to the authenticated encryption notion.

6 Nonce-based authenticated encryption
Recall that one of the important properties of a secure (authenticated) encryp-
tion scheme is that repeated encryptions of the same message should yield dif-
ferent ciphertexts. So far we have accommodated for this requirement by say-
ing that the encryption algorithm can be probabilistic (ref. Definition 1). We
think of the encryption algorithm as drawing random bits during the encryp-
tion process. Specifically, the drawing of random bits happens internally to the
algorithm. This is illustrated in Fig. 4a, where the “$” symbol is used to denote
that Enc generates random bits during encryption (note that the encryption al-
gorithm in Fig. 4a has gained another input: AD, which is the associated data
introduced in the previous section).

However, this is not the only way of achieving non-deterministic encryption.
An alternative viewpoint is to think of the encryption algorithm itself as being
deterministic, but taking in randomness as an external input. In fact, the input
doesn’t even have to be random; for many schemes it is sufficient that the input
simply never repeats—it doesn’t necessarily have to be unpredictable. This is
called a nonce—a number used only once—and is illustrated in Fig. 4b. Here

2IPsec also has an AH header mode which allows to authenticate (but not encrypt) the outer IP
header as well.

10

https://en.wikipedia.org/wiki/IPsec#Encapsulating_Security_Payload
https://en.wikipedia.org/wiki/IPsec#Authentication_Header

K

Enc

$

AD

M

C

(a) Internal randomness

K

EncAD

N

M

C

(b) Nonce-based

Figure 4: AEAD

Enc has gained the nonce as an additional input and is now also a deterministic
function as indicated by the missing “$”. We call this nonce-based AEAD.

Notice the shift in responsibility: when randomness is generated internally
the encryption scheme itself that takes care of randomizing the encryption, but
for nonce-based encryption it is the caller’s job to ensure that he never repeats a
nonce input. So why would we want to use a nonce-based scheme over a scheme
that generates randomness itself? One answer is that nonce-based encryption is
what real-world software APIs typically provide. Thus nonce-based encryption
simply reflects what’s “out there”. A second answer is that randomness can
be difficult and/or time consuming to generate. Some platforms have limited
access to randomness sources and thus cannot easily use an encryption scheme
that requires randomness. With a nonce-based encryption scheme there is no
need for randomness, you must only ensure that the nonce never repeats. Let
me emphasize this again: the nonce doesn’t have to be random, it just have to be
chosen fresh for every encryption call you make. For example the nonce could
just be a simple counter or some other non-repeating state.

Syntax. Let us now introduce the formal syntax of a nonce-based AEAD scheme.

Definition 4. A nonce-based authenticated encryption scheme with associated data
(AEAD) is a tuple Σ = (KeyGen,Enc,Dec) of algorithms, where:

• KeyGen is a probabilistic key generation algorithm that outputs a key in a
key space K.

• Enc : K×N ×A×M→ C is a deterministic encryption algorithm which
takes as input a key inK, a nonce in a nonce spaceN , associated data in an
associated data space A, and a message in a message spaceM, and outputs a
ciphertext in a ciphertext space C.

• Dec : K××N ×A×C →M∪{⊥} is a deterministic decryption algorithm
which takes as input a key in K, a nonce inN , associated data inA, and a
ciphertext in C and outputs either a message inM or a distinct error symbol
⊥.

Σ is required to satisfy the following correctness requirement: for all K ∈ K, all
N ∈ N , all AD ∈ A, and all M ∈Mwe have

Dec(K,N,AD,Enc(K,N,AD,M)) = M. (28)

11

Expaead
Σ (A)

1: b
$← {0, 1}

2: K
$← Σ.KeyGen

3: Nonces← []
4: Ciphertexts← []
5: b′ ← AE(·,·,·),D(·,·,·)

6: return b′ = b

E(N,AD,M):
1: if N ∈ Nonces :
2: return ⊥ // Cheating: nonce reuse!
3: Nonces.add(N)
4: R← {0, 1}|M|

5: C0
$← Σ.Enc(K,N,AD,R)

6: C1 ← Σ.Enc(K,N,AD,M)
7: Ciphertexts.add(N,AD,Cb)
8: return Cb

D(N,AD,C):
1: if (N,AD,C) ∈ Ciphertexts :
2: return ⊥ // Cheating: decrypt prev. E call
3: M0 ← ⊥
4: M1 ← Σ.Dec(K,N,AD,C)
5: return Mb

Figure 5: Nonce-based AEAD security game.

Security. How do we define the security of a nonce-based AEAD scheme?
The idea is basically the same as for plain authenticated encryption schemes:
it should provide confidentiality and integrity protection for its message, and
integrity protection for its associated data. The difference is that it now also
takes in the nonce as an additional input. Who should generate this? In reality
this would be chosen by the honest users, but in order to make the security
definition as strong as possible, in the formal security experiment we actually
let the adversary be responsible for generating the nonces. The adversary can
generate the nonces however how it wants as long as they are always different.

Similar to plain authenticated encryption it is possible to formalize security
using separate games for confidentiality and integrity or using a single game
that incorporates both. Again, it will turn out that these approaches are equiv-
alent for nonce-based AEAD too, so this time we only present the all-in-one
definition as given in Fig. 5.

Definition 5 (AEAD security (informal)). A nonce-based AEAD scheme Σ is
AEAD-secure if Advaead

Σ (A) is “small” for all “resource bounded” A, where

Advaead
Σ (A) =

∣∣∣2 · Pr[Expaead
Σ (A)⇒ true]− 1

∣∣∣ . (29)

Comments. The security game in Fig. 5 is almost the same as in Fig. 2. In
the “real world” (b = 1) the adversary gets access to a real encryption oracle
and a real decryption oracle, while in the “ideal world” (b = 0) the adversary
gets access to an encryption oracle that only encrypts random messages, and a
decryption oracle that always returns⊥. The goal is for the adversary to distin-
guish these two worlds.

The difference from Fig. 2 is that now that adversary also has to provide a
nonce and associated data to the oracle calls. In order to ensure that the adver-
sary never repeats a nonce we store all the queried nonces in the set Nonces. If

12

EK EK EK EK EK

EK EK EK EKctr+1 ctr+2 ctr+3 ctr

IV A1 M1 M2 M3

C1 C2 C3 CT

T

Figure 6: CCM mode of operation. Both IV and ctr are derived from a 104-bit
nonce N .

A every repeats a nonce in an encryption call we suppress the output. Simi-
larly, if the adversary ever tries to decrypt a ciphertext that was output from a
previous encryption call, then we suppress the output since this would allow it
to trivially win. However, note that we only suppress the output if the decryp-
tion call contains exactly the same nonce and associated data that was used to
create the ciphertext. If any of these are different the decryption call is allowed.
For example if the adversary first made the encryption call E(N,AD,M) and
received C, it could then legitimately ask for the decryption of (N ′, AD,C) or
(N,AD′, C) or (N,AD,C ′) without the output being suppressed, given that
N ′ 6= N , AD′ 6= AD, or C ′ 6= C. The point is that Σ should protect the cipher-
text if the adversary tries to decrypt with another nonce, or if it modifies the
associated data.

7 Achieving nonce-based AEAD
Having a definition of what a (nonce-based) AEAD scheme is and what secu-
rity it should provide, how do we actually achieve it? Like we did for regular
AE in Section 4 we could consider generic composition: combine an IND-CPA
secure encryption scheme and a UF-CMA secure MAC in some way to achieve
both confidentiality and integrity. Again, we could show that MtE and E&M
would not work in general, while EtM would. However, in practice, nonce-
based AEAD is usually not achieved by generic composition, but rather by us-
ing dedicated all-in-in constructions . In the sections below we give examples of
two of the most common such constructions, namely the CCM and GCM modes
of operation. Both of these depend on an underlying block cipher denoted EK .
In practice EK is often AES, in which case we get AES-CCM and AES-GCM,
respectively.

7.1 CCM
The CCM mode of operation—Counter with CBC-MAC—achieves AEAD by com-
bining CTR-mode encryption and CBC-MAC in a MAC-then-Encrypt fashion,
using only a single key. The mode is illustrated in Fig. 6 where it encrypts a
message consisting of three blocks and one block of associated data. Note that
the top row is CBC-MAC, while the bottom row is CTR-mode encryption. On
the face of it, CCM seems to be doing several things we have previously warned

13

about in the course:

• It uses CBC-MAC which is only secure when MACing messages of a fixed
length.

• It combines encryption and MAC in MtE mode which is not generically
secure.

• It uses the same key for both CTR-mode encryption and CBC-MAC.

Why is this OK? It turns out that the CCM designers took care to avoid
the above problems by introducing a few important extra steps. First, CCM
prepends the length of the message (and the associated data) in front of the
message before applying CBC-MAC. The length is encoded in the IV block
shown in Fig. 6. Recall from the lectures that length-prepended CBC-MAC is
secure for all messages lengths. Moreover, CCM also encrypts the final CBC-
MAC tag, which is another way of solving the same issue. Second, through
careful encoding, CCM ensures that the IV and ctr values are always distinct,
which prevents bad interactions between CTR-mode and CBC-MAC using the
same key. Finally, there is a security proof! Jonsson [Jonsson(2002)] showed
that as long as E is a good block cipher, then CCM is a secure AEAD.

7.2 GCM
The GCM mode of operation—Galois/Counter mode—achieves AEAD encryp-
tion by combining CTR-mode encryption with a MAC in Encrypt-then-MAC
fashion, using only a single key. The mode is illustrated in Fig. 7 where it en-
crypts three messages blocks and two blocks of associated data. Note that the
top row is CTR-mode encryption, while the bottom row superficially appears
to be some kind of CBC-MAC. But this is not CBC-MAC at all! Instead, it is a
completely different type of MAC altogether (which we did not cover in class)
called GMAC.

EK EK EK

A1 A2

M1 M2 M3

|A|+ |C|C1 C2 C3

ctr+1 ctr+2 ctr+3

∗H ∗H ∗H ∗H ∗H ∗H

S

T

Figure 7: GCM mode of operation. The value H is derived as H ← EK(0128)
and the value S as S ← EK(N‖0 . . . 01), where N is a 96-bit nonce.

14

The way to think of GMAC is as follows. In the example given in Fig. 7
imagine interpreting every 128 bit block as a number and let H be some specific
number. You should now think of the ‘∗’ as some special kind of multiplication
operation that produces a new number. The result after the first “multiplica-
tion” is thus A1 ∗H . This then gets added to the “number” A2 which is again
multiplied with H to produce A1 ∗ H2 + A2 ∗ H , and so on. In particular, the
process of “multiply with H , add next block” yields:

A1 ∗H + A2

A1 ∗H2 + A2 ∗H + C1

A1 ∗H3 + A2 ∗H2 + C1 ∗H + C2

...
T = A1 ∗H6 + A2 ∗H5 + C1 ∗H4 + · · ·+ (|A|+ |C|) ∗H + S

In other words, the tag T is a polynomial in the “unknown” H with the blocks
of the associated data and ciphertext as its coefficients!

GMAC is a very different MAC construction than what we’ve looked at so
far. It is not based on a block cipher, and it’s also an example of a nonce-based
MAC. In particular, it is absolutely essential for the security of GMAC that the
final value that gets XORed to the tag at the end (i.e., the S value) is new for
every single message.3 As noted in Fig. 7, this is achieved by deriving S from
a nonce N using a block cipher call (although S could also just be picked at
random).

Comments.

• Since GCM is based on CTR mode, encryption can be parallelized. In fact,
even the GMAC construction can be parallelized with some tricks.

• It is standardized by NIST and is basically used everywhere.

• It is very fast if dedicated hardware instructions are used for the under-
lying AES calls. Indeed, GCM is so commonly used that Intel also added
dedicated hardware instructions to perform the H multiplication inside
GMAC

• GCM has been proven to be a secure AEAD scheme provided the un-
derlying block cipher is good. The first proof was provided by the GCM
designers [McGrew and Viega(2004)], but many other proofs have been
provided since, improving upon the original result.

References
[Jonsson(2002)] Jakob Jonsson. On the security of CTR + CBC-MAC. In

Kaisa Nyberg and Howard M. Heys, editors, Selected Areas in Cryptog-
raphy, 9th Annual International Workshop, SAC 2002, St. John’s, Newfound-
land, Canada, August 15-16, 2002. Revised Papers, volume 2595 of Lecture

3See Problem set 5 for what can go wrong if this is not the case.

15

https://crypto.stackexchange.com/a/27468/1772
https://en.wikipedia.org/wiki/CLMUL_instruction_set

Notes in Computer Science, pages 76–93. Springer, 2002. doi: 10.1007/
3-540-36492-7\ 7. URL https://link.springer.com/content/pdf/10.

1007%2F3-540-36492-7_7.pdf.

[McGrew and Viega(2004)] David A. McGrew and John Viega. The se-
curity and performance of the galois/counter mode (GCM) of opera-
tion. In Anne Canteaut and Kapalee Viswanathan, editors, Progress in
Cryptology - INDOCRYPT 2004, 5th International Conference on Cryptol-
ogy in India, Chennai, India, December 20-22, 2004, Proceedings, volume
3348 of Lecture Notes in Computer Science, pages 343–355. Springer, 2004.
doi: 10.1007/978-3-540-30556-9\ 27. URL https://doi.org/10.1007/

978-3-540-30556-9_27.

16

https://link.springer.com/content/pdf/10.1007%2F3-540-36492-7_7.pdf
https://link.springer.com/content/pdf/10.1007%2F3-540-36492-7_7.pdf
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27

	Introduction
	Syntax
	Security definition
	Separate confidentiality and integrity definitions
	All-in-one definition
	All-in-one AE is equivalent to separate definitions AE

	Achieving AE – generic composition
	AEAD – authentication encryption with associated data
	Nonce-based authenticated encryption
	Achieving nonce-based AEAD
	CCM
	GCM

