
Introduction to Cryptography
TEK 4500 (Fall 2022)

Problem Set 3

Problem 1.
Read Chapter 5 in [BR] (Sections 5.6 and 5.8 can be skipped. The proofs in Section 5.7 can
be skipped on first reading, but it is recommended to have a look at it).

Problem 2.
An encryption scheme secure according to the IND-CPA definition is not required to hide
the length of the plaintext. This is captured in the formal IND-CPA security experiment
(Fig. 1) by having the encryption oracle E encrypt a random string of equal length to the
input message M in the case b = 0 (see Line 1 of the E(·) oracle).
a) Suppose the IND-CPA experiment was modified tonot selectR at random from {0, 1}|M |,

but instead select it at random from the entire message spaceM. Show how you can
break any encryption scheme Σ = (KeyGen,Enc,Dec) that doesn’t hide the plaintext
length in this variant of IND-CPA. For simplicity, you can assume that the message
space consists of all bit strings up to some length, say 1000 bits, i.e.,M =

⋃1000
i=1 {0, 1}i.

b) How can you make an IND-CPA secure encryption scheme secure even against the
modified definition above? Again, for simplicity you can assume thatM =

⋃1000
i=1 {0, 1}i.

Problem 3.
The defining equations for CBC encryption are

C0
$← {0, 1}n (1)

Ci ← EK(Mi ⊕ Ci−1) i = 1, . . . , ` (2)

where E is a block cipher with n bit blocks.
a) Write the corresponding equations for CBC decryption.
b) Suppose you have a CBC-encrypted ciphertext C = C0‖C1‖C2‖ . . . ‖Cm and you flip

one bit in block Cj . What happens to the decrypted message M?

1

Expind-cpa
Σ (A)

1: b
$← {0, 1}

2: K
$← Σ.KeyGen

3: b′ ← AE(·)

4: return b′
?
= b

E(M):
1: R

$← {0, 1}|M|
2: C0 ← Σ.Enc(K,R)
3: C1 ← Σ.Enc(K,M)
4: return Cb // real ciphertext or encryption of random string

Advind-cpa
Σ (A) =

∣∣∣2 · Pr[Expind-cpa
Σ (A)⇒ true]− 1

∣∣∣
Figure 1: IND-CPA security experiment.

c) Suppose you have a CBC-encrypted ciphertext C = C0‖C1‖C2‖ . . . ‖Cm and you drop
one of the blocks Cj . What happens to the decrypted message M?

d) Answer b) and c) again, but this time assuming the encryption scheme is CTR$.

Problem 4. [Problem 5.5 in [BR]]
There’s a variant of CBC mode called CBC-Implicit where the IV for the first message is
chosen at random (like normal CBC), but the IV for each subsequent message is taken
from the last block of the previous ciphertext (see Fig. 2). The scheme is probabilistic and
stateful. Show that CBC-Implicit is insecure by giving a simple and efficient adversary that
breaks it in the IND-CPA sense.

Note: Curiously, CBC-Implicit was how CBC was implemented in TLS 1.0. This was
patched in TLS 1.1 and higher.

Problem 5. [Problem 3.21 in [KL07]]
Let Σ1 = (KeyGen1,Enc1,Dec1) and Σ2 = (KeyGen2,Enc2,Dec2) be two encryption schemes
for which it is known that at least one is IND-CPA secure. The problem is that you don’t
know which one is IND-CPA secure and which one may not be. Show how to construct an
encryption scheme Σ that is guaranteed to be IND-CPA secure as long as at least one of Σ1

or Σ2 is IND-CPA secure. Give a high-level justification for why your scheme is secure.

2

EK

P1

C1

EK

P2

C2

EK

P3

C3

IV

C0

EK

P ′1

C ′1

EK

P ′2

C ′2

EK

P ′1

C ′1

EK

P ′2

C ′2

Figure 2: CBC-Implicit mode-of-operation illustrated for two messages M1 = P1‖P2‖P3

and M2 = P ′1‖P ′2. The IV used for the second message is the last block of the previous
ciphertext, i.e., C3.

Problem 6.
Show that the CBC and CTR modes-of-operation are not IND-CCA secure by describing
concrete attacks and calculating their IND-CCA advantages. The IND-CCA security ex-
periment is given in Fig. 3.

Expind-cca
Σ (A)

1: b
$← {0, 1}

2: Ciphertexts← []

3: K
$← Σ.KeyGen

4: b′ ← AE(·),D(·)

5: return b′
?
= b

E(M):
1: R

$← {0, 1}|M |
2: C0 ← Σ.Enc(K,R)
3: C1 ← Σ.Enc(K,M)
4: Ciphertexts.add(Cb)
5: return Cb

D(C):
// querying a C output from
// E oracle not allowed
1: if C ∈ Ciphertexts then
2: return ⊥
3: return Σ.Dec(K,D)

Figure 3: IND-CCA security experiment.

3

Problem 7. [Problem 7.9 in [Ros]]
Suppose E is a secure block cipher with block length n. Let Σ = (KeyGen,Enc,Dec) be the
encryption scheme defined as follows:

Σ.KeyGen:
1: K

$← {0, 1}n
2: return K

Σ.Enc(K,M1‖M2):
1: R

$← {0, 1}n
2: S ← EK(R⊕M1)
3: T ← EK(R⊕M1 ⊕ EK(M1)⊕M2)
4: return R,S, T

a) What is the key space, message space, and ciphertext space of Σ?
b) Describe the decryption algorithm of Σ.
c) Show that Σ is not IND-CPA secure.

Problem 8. [Problem 8.8 in [Ros]]
Below are two block cipher modes of operation using a block cipher E with block length n
and where the IV is chosen randomly from {0, 1}n. For each of the modes:

• Describe the corresponding decryption procedure.

• Is the mode IND-CPA secure? If yes, give a high-level justification, if no, give an
attack and describe its IND-CPA advantage.

EK

M1

C1

EK

M2

C2

EK

M3

C3

IV

C0

(a)

EK

M1

C1

EK

M2

C2

EK

M3

C3

IV

C0

(b)

Figure 4: Ciphers for Problem 8.

4

Problem 9.
Bellare and Rogaway [BR] are using a definition of IND-CPA security which is slightly
different from the one we used in class. In BR’s security experiment the adversary is again
tasked with distinguishing between two worlds, but this time the adversary always sub-
mits two (equal length) messages (M0,M1) to the encryption oracle. In the “Left” world
the adversary always gets back an encryption of the left input M0, while in the “Right”
world it always gets back an encryption of the right input M1. This is shown in Fig. 5. For
the purposes of this exercise let’s call BR’s definition Left-or-Right (LoR) security, and the
one we used in class (defined in Fig. 1) Real-or-Random (RoR) security.

Explor-ind-cpa
Σ (A)

1: b← {0, 1}
2: K

$← Σ.KeyGen
3: b′ ← AELoR(·,·)

4: return b′
?
= b

ELoR(M0,M1):
1: if |M0| 6= |M1| then // Adversary’s cheating! Suppress output
2: return ⊥
3: return Σ.Enc(K,Mb) // Either encryption of M0 or M1

Advlor-ind-cpa
Σ (A) =

∣∣∣2 · Pr[Explor-ind-cpa
Σ (A)⇒ true]− 1

∣∣∣
Figure 5: The Left-or-Right IND-CPA security experiment defined in [BR].

You will now show that these two definitions are in fact equivalent. That is, an encryp-
tion scheme having LoR security also has RoR security, and vice versa.
a) Show that LoR security implies RoR security.

Hint: Show instead the equivalent contrapositive statement: RoR insecurity implies
LoR insecurity. That is, suppose there was some algorithm A that could break an en-
cryption scheme Σ according to the RoR definition given in Fig. 1, then use this A to
construct another adversary B that breaks Σ according to the LoR definition in Fig. 5.

Hint: Think of yourself as being the adversaryB: you’re playing in the LoR experiment
and have access to an encryption oracle ELoR(·, ·) that takes in two inputs and returns an
encryption of either the left or the right input. Additionally, you also (by hypothesis)
have access to some algorithmAwhich thinks it plays in the RoR experiment. HowA
is represented is not important; you can simply think of it as some piece of code that

5

you can run on your own machine. Once you start running A it will begin outputting
one and one message, and expect back a response which is either a real encryption
or a “fake” encryption of some random data. That is, A expects to have access to an
encryption oracle ERoR(·). Eventually,Awill output some bit bRoR as its guess of which
world it thinks it’s in. How can you answer A’s queries so that it believes that it’s
interacting with the ERoR(·) oracle of the actual RoR experiment (Fig. 1)?

Hint: Use your access to the ELoR(·, ·) oracle: when A makes a query M , submit this
as the “left” input to ELoR(·, ·). What should you use as the “right” input? Return the
response from the ELoR(·, ·) oracle back to A.

Hint: Let your output in the LoR experiment simply equalA’s output, i.e., bLoR = bRoR.
IfA has RoR advantageAdvror-ind-cpa

Σ (A), what’s your LoR advantageAdvlor-ind-cpa
Σ (B)?

b) Show that RoR security implies LoR security.

Hint: Prove the contrapositive: LoR insecurity implies RoR insecurity.

Hint: Suppose some algorithm A is able to break Σ according to the LoR definition of
Fig. 5. Create an RoR adversary B, having access to an encryption oracle ERoR(·), that
uses A to break Σ according to the RoR definition of Fig. 1.

Hint: Once you start running A, it will begin submitting pairs of messages (M0,M1),
expecting to get back an encryption of one of them. How can you answer these queries,
given that you only have at your disposal an encryption oracle ERoR(·) which takes a
single input?

Hint: Define an internal bit bsim that you flip yourself (once).When A makes a query
(M0,M1), forward Mbsim to your encryption oracle ERoR(·) and return the result back
toA. WhenA eventually outputs a bit bLoR, what should you output to your own RoR
experiment?

Hint: Make a comparison between bLoR and the internal bit bsim that you created your-
self. From A’s point-of-view, what does the cases of bsim correspond to?

Hint: If A has LoR advantage Advlor-ind-cpa
Σ (A), then your RoR advantage should be:

Advror-ind-cpa
Σ (B) ≥

Advlor-ind-cpa
Σ (A)

2

6

References

[BR] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. https:

//web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction toModern Cryptography. Chapman
and Hall/CRC Press, 2007.

[Ros] Mike Rosulek. The Joy of Cryptography, (draft Feb 6, 2020). https://web.engr.

oregonstate.edu/~rosulekm/crypto/crypto.pdf.

7

https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://web.engr.oregonstate.edu/~rosulekm/crypto/crypto.pdf
https://web.engr.oregonstate.edu/~rosulekm/crypto/crypto.pdf

