Introduction to Cryptography

TEK 4500 (Fall 2022) Problem Set 6

Problem 1.

Read Chapter 11 in [PP] and Chapter 6 in [BR] + Appendix A in [BR] (Birthday problem).

Problem 2.

Suppose we have three different hash functions producing output of lengths 64, 128 and 160 bits. How many random computations do you approximately need in order to find a collision with probability p = 0.5? How many different random hash values do you approximately need to find a collision with probability p = 0.1?

Hint: Use whatever formulation of the birthday paradox you want.

Problem 3.

Suppose $H_1, H_2 : \mathcal{M} \to \mathcal{Y}$ are two hash functions for which we know that at least one is collision-resistant. Unfortunately, we don't know which. Consider now the following derived hash functions.

- **a**) $H : \mathcal{M} \to \mathcal{Y} \times \mathcal{Y}$, defined by $H(X) = H_1(X) || H_2(X)$. Is *H* collision-resistant? Justify your answer.
- **b**) $H : \mathcal{M} \to \mathcal{Y}$ defined by $H(X) = H_2(H_1(X))$ (here we assume that $\mathcal{Y} \subset \mathcal{M}$). Is H collision-resistant? What about $H(X) = H_1(H_2(X))$? Justify your answer.

Problem 4. [2nd-preimage-resistance]

The two main security properties for hash functions are *collision-resistance* and *one-wayness*. However, there is also a third security property commonly defined for hash functions called 2nd preimage-resistance. In a 2nd-preimage attack the adversary is given $X \in \mathcal{M}$ and $Y \leftarrow H(X)$, and then asked to find a *different* $X' \in \mathcal{M}$ that hash to the same value as X. That is: given X and Y, find $X' \neq X$ such that H(X') = H(X) = Y. In other words, the adversary is asked to find a *second* pre-image for Y, hence the name. See Fig.1 for the formal definitions. Note that 2nd preimage-resistance is a *weaker* security requirement than collision-resistance, i.e., we're asking for *more* from the adversary. Indeed, for finite \mathcal{M} and \mathcal{Y} , and assuming $|\mathcal{M}| >> |\mathcal{Y}|$, we have

collision-resistance \implies 2nd preimage-resistance \implies one-wayness.

Figure 1: Security definitions for *collision-resistance*, 2nd preimage-resistance, and *one-wayness* for a hash function $H : \mathcal{M} \to \mathcal{Y}$.

- **a**) Explain why the first implication above holds, i.e., why collision-resistance implies 2nd preimage-resistance.
- **b**) Suppose $\{0,1\}^{200} \subset \mathcal{M}$ and that $H : \mathcal{M} \to \mathcal{Y}$ is a collision-resistant hash function. Now define $H' : \mathcal{M} \to \mathcal{Y}$ as follows:

$$H'(X) = \begin{cases} 0^{200} & \text{if } X = 0^{200} \text{ or } X = 1^{200} \\ H(X) & \text{otherwise} \end{cases}$$

Show that H' is 2nd preimage-resistant, but not collision-resistant.

Problem 5.

Suppose that $F : \{0,1\}^m \to \{0,1\}^m$ is a one-way secure *permutation*. Define $H : \{0,1\}^{2m} \to \{0,1\}^m$ as follows. Given $X \in \{0,1\}^{2m}$, write

$$X = X'||X'',$$

where $X', X'' \in \{0, 1\}^m$. Then define

$$H(X) = F(X' \oplus X'').$$

Is *H* one-way? Is it 2nd preimage-resistant? Justify your answers.

Problem 6.

Suppose $H_1: \{0,1\}^{2m} \to \{0,1\}^m$ is a collision resistant hash function.

a) Define $H_2: \{0, 1\}^{4m} \to \{0, 1\}^m$ as follows:

- Write $X \in \{0,1\}^{4m}$ as $X = X_1 || X_2$, where $X_1, X_2 \in \{0,1\}^{2m}$
- Define $H_2(X) = H_1(H_1(X_1)||H_1(X_2))$.

Prove that H_2 is collision resistant.

b) For an integer $i \ge 2$, define a hash function $H_i : \{0,1\}^{2^i m} \to \{0,1\}^m$ as follows:

- Write $X \in \{0,1\}^{2^{i_m}}$ as $X = X_1 || X_2$, where $X_1, X_2 \in \{0,1\}^{2^{i-1}m}$
- Define $H_i(x) = H_1(H_{i-1}(X_1)||H_{i-1}(X_2)).$

Prove that H_i is collision resistant.

Problem 7. [Problem 11.3 in [Ros]]

I've designed a hash function $H : \{0,1\}^* \to \{0,1\}^n$. One of my ideas is to make H(X) = X if X is an n-bit string (assume the behavior of H is much more complicated on inputs of other lengths). That way, we know with certainty that there are no collisions among n-bit strings. Have I made a good design decision?

Problem 8. [Davies-Meyer alternatives]

Recall that the Davies-Meyer construction is a way of turning a block cipher $E : \{0, 1\}^b \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ into a collision-resistant compression function $h : \{0, 1\}^{n+b} \rightarrow \{0, 1\}^n$ as:

$$h(V||M) = E(M, V) \oplus V.$$

Here we look at some alternative constructions to Davies-Meyer that all turn out to be insecure. Show that none of the compression functions below are collision-resistant. For b and c we assume that b = n.

a)
$$h_1(V || M) = E(M, V)$$

b)
$$h_2(V || M) = E(M, V) \oplus M$$

c) $h_3(V \parallel M) = E(V, V \oplus M) \oplus V$

References

- [BR] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. https: //web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf.
- [PP] Christof Paar and Jan Pelzl. Understanding Cryptography A Textbook for Students and Practitioners. Springer, 2010.
- [Ros] Mike Rosulek. The Joy of Cryptography, (draft Feb 6, 2020). https://web.engr. oregonstate.edu/~rosulekm/crypto/crypto.pdf.