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Basic goals of cryptography

Message privacy

Message integrity /
authentication

Symmetric keys

Symmetric encryption

Message authentication
codes (MAC)

Asymmetric keys

Asymmetric encryption
(a.k.a. public-key
encryption)

Digital signatures



Public-key encryption




Public-key encryption — sy

ntax

A public-key encryption scheme is a tuple £ = (KeyGen, Enc, Dec) of algorithms

KeyGen : { } » SK X PK

Enc: PK XM - C

Dec: SK XC —» M U{L}

$
(sk,pk) < KeyGen Enc(pk, M) = Enc,, (M) = C Dec(sk,C) = Decy, (C) =M/ 1
4 s )
$ Correctness: for all (sk,pk) « KeyGen and all M € M:
« SK — private key space KeyGen
« PXK — public key space Dec(sk, Enc(pk,M)) = M
« M — message space U ,
« C - ciphertext space sk
(sk,pk)
M —»l Enc |\ :' Dec M /{1}
Adversary



Public-key encryption — security: IND-CPA

EXpian_Cpa (A)

$
1 b <{0,1}
$
2. (sk,pk) < Z.KeyGen
3. b e« ASO(pk)
?
4 return b’ = b

1 R {0,1}Ml

2. Co < X.Enc(pk, M)
3. C, < 2. Enc(pk R)
4 return C,

World 0

Input M:
return X. Enc(pk, M)

I’'m in World b’

World 1
b
. Input M:
lgi return 2. Enc(pk, $)

Definition: The IND-CPA advantage of A4 is

ind-cpa
Advy

A Z' 2. Pr[b’ = b] - 1]




Public-key encryption — security: IND-CCA

Expiznd—cca (A)
$
1. b« {0,1}
2. Ciphertexts « [ ] // bookkeeping
$
3. (sk,pk) < Z.KeyGen
4, b' « ASODO)(pk)
5. return b’ = b
EM)
$
1.  R«<{0,1}™
2. Co < X.Enc(pk, M)
3. C,; < Z.Enc(pk R)
4, Ciphertexts.add(C;)
5. return €,
D(C)
1. if C € Ciphertexts:
2. return L
3. return X. Dec(sk, C)

World 0
b
Input M: 5
return X. Enc(pk, M) 'g&
Input C:
return X. Dec(sk, C)

I’'m in World b’

World 1

Input M:
return X. Enc(pk, $)

Input C:
return X. Dec(sk, C)

Restriction: not allowed to forward output
from Enc query directly to Dec query

Definition: The IND-CCA advantage of A is

ind- def
Adv%nd cca(A) =e

12 - Pr[b’ = b] — 1]




Diffie-Hellman key exchange

Discovered in the 1970's

Diffie & Hellman paper also introduced the idea of:

Public-key encryption
» 1984: EIGamal encryption scheme

Digital signatures

Ralph Merkle

Whitfield Diffie

Martin Hellman

New Directions in Cryptography

Invited Paper

Whitfield Diffie and Martin E. Hellman
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Abstract  Two kinds of contemporary dev in cryp-
tography are examined. Widening applications of teleproce
ing have given rise to a need for new types of cryptographic
systems, which minimize the need for secure key distribution
channels and supply the equivalent of a written signature. This
paper suggests ways to solve these currently open problems.
Italso discusses how the theories of communication and compu-
tation are beginning to provide the tools to solve cryptographic
problems of long standing.

1 INTRODUCTION

We stand today on the brink of a revolution in cryptography.
The development of cheap digital hardware has freed it from
the design limitations of mechanical computing and brought
the cost of high grade cryptographic devices down to where
they can be used in such commercial applications as remote
cash dispensers and computer terminals. In turn, such applica-
tions create a need for new types of cryptographic systems
which minimize the necessity of secure key distribution chan-
nels and supply the equivalent of a written signature. At the
same time, theoretical developments in information theory and
computer science show promise of providing provably secure
cryptosystems, changing this ancient art into a science.

The development of computer controlled communication net-

C ications over an insecure channel order to use cryptog-
raphy to insure privacy, however, it currently necessary for the
communicating parties to share a key which is known to no
one else. This is done by sending the key in advance over some
secure channel such a private courier or registered mail. A
private conversation between two people with no prior acquain-
tance is a common occurrence in business, however, and it is
unrealistic to expect initial business contacts to be postponed
long enough for keys to be transmitted by some physical means.
The cost and delay imposed by this key distribution problem
is a major barrier to the transfer of business communications
to large teleprocessing networks.

Section IIT proposes two approaches to transmitting keying
information over public (i.e., insecure) channel without compro-
mising the security of the system. In public key cryptosystem
enciphering and deciphering are governed by distinct keys, E
and D, such that computing D from £ is computationally infeasi-
ble (e.g.. requiring 10'® instructions). The enciphering key
E can thus be publicly disclosed without compromising the
deciphering key D. Each user of the network can, therefore,
place his enciphering key in a public directory. This enables
any user of the system to send a message to any other user
enciphered in such a way that only the intended receiver is
able to decipher it. As such, a public key cryptosystem is
multiple access cipher. A private conversation can therefore be




Public-key encryption: ElIGamal

M
&
‘ ’ A Sl
e > -
B
<<
$ $
ae<{1,..,|G|} b<{1,..,|G[}
Aeg” C B« gP
Z < B® > Z « AP
C « 2.Enc(Z,M) M « X.Dec(Z,C)

\

Symmetric encryption scheme



Public-key encryption: ElIGamal

H:G - {01}

Enc(pk, M)

L adf,..6D

2. Aeg©

3. Z« B¢

4. C « X.Enc(Z,M)
5. return (4,0C)

ElGamal IND-%PA security:

YEnc: G XM - C

Actually want £.Enc : {0,1}f x M - C

e DLOG + DH must be hard
Y must be IND-CPA secure
* Is this enough?

KeyGen

$
1. sk=be<{1,..,|G}
2. pk=B « gP

3. return Zgk, pk)

Dec(sk, C)

1. Z < AP
2. M« X.Dec(Z,C)

3. return M

 No: Z only guarantees security if the key Z is
independent and uniformly distributed in the group G

...but Z = g% isn't uniformly distributed in G!




Public-key encryption: Hashed-ElGamal

KeyGen
H:G - {01} B 5
1. sk=be{l,..,|G}
M 2. pk=B < g"
(.., 3. return .’ ,pk)
[ Y 4 L
,’ > ‘
E k,M g - - A
nc(pk, M) | Theorem: Hashed-ElGamal is IND-CPA secure if:
" ai{l’ ) 1. DH-problem is hard in G
2. X is IND-CPA secure )
2. A< g° _ :
3. H is “perfect” (i.e., arandom oracle)
3. ZeHA_ _NAr)
4. C « X.Enc(Z,M) 2. M« X.Dec(Z,C)
5. return (4,0C) 3. return M

10



C = M¢ (modn)

RSA encryption
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https://www.redblobgames.com/x/1847-mathologer-modulo-circle/#N=85&M=22&color=angle
https://www.redblobgames.com/x/1847-mathologer-modulo-circle/#N=85&M=22&color=angle

RSA

« Designed by Rivest, Shamir and Adleman in 1977

« Used both for public-key encryption and
digital signatures

A Method for Obtaining Digital Adi Shamir Ron Rivest Leonard Adleman

Signatures and Public-Key Cryptosystems

R.L. Rivest, A. Shamir, and L. Adleman®

Abstract

An eneryption method is presented with the novel property that publicly re
vealing an encryption key does not thereby reveal the corresponding decryption
key. This has two important consequences:

1. Couriers or other sccure means are not needed to transmit keys, since a
message can be enciphered using an encryption key publicly revealed by
the intended recipient. Only he can decipher the message, since only he
knows the corresponding deeryption key.

2. A message can be “signed” using a privately held decryption key. Anyone
can verify this signature using the corresponding publicly revealed en-
cryption key. Signatures cannot be forged, and a signer cannot. later deny
the validity of his signature. "This has obvious applications in “clectronic




RSA encryption

M€ mod33=133mod33 =19

C?mod33 =197 mod 33 = 13
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The group (Z7,,°)

Zp ={0,1, ... D — 1} (Zp,-) is not a group! Not invertible | Invertible
2,4,5,6,8 1,3,7,9
Z,={1,..,p— 1} (z;,7) is a group!
Z{,={1,2,3,4,5,6,7,8,9}
2-1=2mod10
Z,={0,1,..,n—1} (Z,,,") is not a group! 2-2=4mod10
5.3 = 6 mod10 1-1=1 mod10
Zy +#{1,..,n—1} (Z},) is also not a group! 2:4=8mod10 3.7=21=1 mod10
2-5=0mod10
zi 2.6 =2 mod10 9:-9=81=1 mod10
2-7=4mod10
. . . theorem —
Z,, = invertible elements in Z, — {a€Z,|gcd(an) =1} 2.8 =6 mod10 2=2
_ 2-9 =8 mod10 4=2-2
(Z;,,") is a group! c_c
10=2-5 6—7.3
Proof: let d = gcd(a,n) 8=2-2-2

 ainvertible = 3b € Z,, suchthatab = 1modn = 3k:ab=1+kn = ab—kn=1=d(@'b—kn')=1 = d=1

* d=1 = Claim:3s,te Zsuchthat sa+tn=d=1 = sa=1—-—tn = sa=1modn = a s invertible ”



Euler's ¢(n) function

def . q
d(n) = |2 = [{a€Z,|gcd(a,n) =1}
1-p 2-p 3:p q-p
p(r)=p—1 l-q 2-q 3-q - p-q
p
dp(p-q9)=(@-1)-(g—1) ®(pq) = Pq — #numbers with gcd(a,pq) # 1

=pg —q-p+1

p-q =(p-D-@-1
Note: ¢p(n) *rn—2yn=n
« almost all integers are invertible for large p, g

n |2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23

¢(n)|1|2|2|4|2|6|4|6|4|10|4|12|6|8|8|16|6|18|8|12|10|22

15



Textbook RSA

RSA.Enc:  Z* X Zjy X Z - Zi,

RSA.Dec:  Z' X Zyy X Z3, > Z,

Enc(pk = (n,e),M € Z3)

1. €« M° modn

2. return C

Common choices of e:

3

11,

17

10001,

KeyGen

65537

1 0000 0000 0000 0001,

A 4

1. pq i two random prime numbers
2. mep-q

¢(m)=@-D@-1

choose e such that ged(e, p(n)) = 1

compute d such that ed = 1 mod ¢(n)
sk < (n,d)  pk < (n,e)

N oS 1o

return (sk, pk)

Dec(sk = (n,d),C € Z3)

1. M« C% modn

2. return M

16



RSA example

Z33
n=33=3-11
¢(n) =B -1)(11-1) =20
e =3 /l need to find d = e~ mod ¢p(n)

3-7=21=1mod20

C < 133 =2197 = 19 mod 33

C” =197 = 893871739 = 13 mod 33

17



Euler’s Theorem

(. . . ..
Theorem: if (G,0) is a finite group, then for all g € G:

glol = ¢
.

:p—]_

. (Z*,-):

Zy

Fermat’s theorem: if p is prime, then for all a # 0 (mod p):

aP~! =1 (modp)

(Z3): 12| = ()

Euler’s theorem: for all positive integers n, if gcd(a,n) = 1 then

a®®™ =1 (modn)

18



Textbook RSA - correctness

RSA. Dec(sk, RSA. Enc(pk, M)) = M

Euler’s theorem: for all a € Z;,

a®®™ =1 (modn)

Cd — Med — M1 mod ¢p(n) — M1+¢>(n)-€ — M1. M(l)(n)-f — M- -1modn

Fact: RSA also works for M € Z,,

KeyGen

$ .
1. p, q < two random prime numbers
2. ne<p-q

p()=@-D(@-1

choose e such that ged(e, ¢p(n)) = 1
compute d such thated = 1 mod ¢(n)
sk « (n,d) pk « (n,e)

N o e

return (sk, pk)

Enc(pk = (n,e),M € Z},)

1. C « M°® modn

2. return C

Dec(sk = (n,d),C € Zy,)

1. M « C?% modn

2. return M

19



Textbook RSA — security

Pq
pk pk = (n,e)
(, C = M® modn , sk=d =e ! modg¢p(n)
[ g (p—1D(g-1)
pk
Security:
* Must be hard to compute M given pk, M® modn (RSA assumption)

» Must be hard to find ¢(n) given n, e

* Must be hard to find d givenn, e
equivalent!
* Must be hard to find p, g given n

(Factoring assumption)

20



How hard is factoring?

Factoring only known way to break RSA assumption in practice

Naive Factor(n): Very inefficient: n =~ 2% = n(n) = % ~ %k
» 3 divides n? return 3 - Factor(n/3)
» 5 divides n? return 5 - Factor(n/5)
» 7 divides n? return 7 - Factor(n/7)
» |v/n] divides n? return |/n| - Factor(n/|vn])
 returnn Time to factorn = 2

0(61'93 1/3(log )2/3+c)

Much faster algorithms known
* Quadratic sieve
* Rational sieve

« General number field sieve

 Current record: 829 bits

21


https://en.wikipedia.org/wiki/Integer_factorization_records

Textbook RSA — security

« Textbook RSA is not IND-CPA secure!
» Deterministic
» Malleable
* Many other attacks as well*

Enc(pk = (n,e),M € Z3,)

1. C« M°® modn

« Textbook RSA is not an encryption scheme! |: rewmc

e Sowhatis it?
« Answer: a one-way trapdoor permutation

fiZy-Zy
f:MI—)Me

* https://crypto.stackexchange.com/questions/20085/which-attacks-are-possible-against-raw-textbook-rsa

KeyGen

p,q i two random prime numbers
nep-q

¢p(m) =(@-Dg-1

choose e such that ged(e, p(1)) = 1
compute d such thated = 1 mod ¢(n)
sk « (n,d) pk < (n,e)

N o oA W N

return (sk, pk)

Dec(sk = (n,d),C € Z3,)

1. MeC% modn
2. return M

22


https://crypto.stackexchange.com/questions/20085/which-attacks-are-possible-against-raw-textbook-rsa

Shoup's RSA variant

Different each time

\
Enc(\);{k = (n,e), M)
\ 2
$ 5
1. K<z N

2. C; < K° modn b

3. C, < X.Enc(K,M) :

4, return\C;, C,

\
Symmetric encryption scheme

YEnc:Z, XM - C

Actually want: £.Enc : {0,1}* x M = C

v

H:Z; - {01}

KeyGen

1. (sk,pk) < RSA.KeyGen
2. return (sk, pk)

Dec(sk = d,C = (C,,C3))

1. K « CZ modn
2. M < X.Dec(K, C,)

3. return M

23



Shoup's RSA variant

Enc(pk = (n,e), M)

e pk
$ o D
1. R« Z; N
C; « R® modn b C1, G2 -

K « H(R)
C, < X.Enc(K,M)

L

return C;, C,

H:Z; - {01}

KeyGen

1. (sk,pk) < RSA.KeyGen
2. return (sk, pk)

Dec(sk = d,C = (C,,C3))

R « C{ modn
K <« H(R)
M < X.Dec(K, C,)

= B e e

return M

1. RSA-problem is hard in Z;
2. X is IND-CPA (IND-CCA) secure
3. H is “perfect” (i.e., a random oracle)

\_

Theorem: Shoup-RSA is IND-CPA (IND-CCA) secure if:

~

24



RSA In practice |

« Textbook RSA is deterministic = cannot be IND-CPA/IND-CCA secure

 How to achieve IND-CPA/IND-CCA?
« Pad message with random data before applying RSA function

F—— 256 bits —|
« PKCS#1vl.5 (no existing security proof; many impl. attacks) M ]
« RSA-OAEP (complicated security proof; first proof buggy) J pad
 RSA encryption not used much in practice anymore [ il M ]
» Mostly key transport of (short) symmetric key ()e d
« Lacks forward secrecy! modn
| C

]

 RSA digital signatures still very common

 Covered next week |

2048 bits

25



RSA in practice |l

To appear in Proceedings of the 21st USENIX Security Symposium, August 2012, Initial public release; July 2, 2012.
For the newest revision of this paper, partial source code, and our online key-check service, visit https:/factorable.net.

Mining Your Ps and Qs: Detection of
Widespread Weak Keys in Network Devices

Nadia Heninger ' Zakir Durumeric*

T University of California, San Diego
nadiah@cs.ucsd.cdu

Abstract

RSA and DSA can fail catastrophically when used with
malfunctioning random number generators, but the extent
to which these problems arise in practice has never been
comprehensively studied at Internet scale. We perform
the largest ever network survey of TLS and SSH servers
and present evidence that vulnerable keys are surprisingly
widespread. We find that 0.75% of TLS certificates share
keys due to insufficient entropy during key generation,
and we suspect that another 1.70% come from the same
laulty implementations and may be susceptible 1o com-
promise. Even more alarmingly. we are able (o obtain
RSA private keys lor 0.50% ol TLS hosts and 0.03% of
SSH hosts, because their public keys shared nontrivial
common factors due to entropy problems, and DSA pri-
vate keys for 1.03% of SSH hosts, because of insufficient

FEric Wustrow? 1. Alex Halderman

¥ The University of Michigan

{zakir, ewust, jhalderm } @umich.edu S harl ng a Com m On prl me

expect that today’s widely used operating systems ang

hensive Internet-wide surv;
important eryplographs@protocols, TLS and SSH (Sec-

m 10.2 million hosts. This is 67% more TLS hosts
than the latest released EFF SSL Observatory dataset [ 18].
Our techniques take less than 24 hours to scan the entire
address space for listening hosts and less than 96 hours
to retrieve keys from them. The results give us a macro-
scopic perspective of the universe of keys.

Ron was wrong, Whit is right

Arjen K. Lenstra', James P. Hughes?,
ugier', Joppe W. Bos!, Thorsten Kleinjung', and Christophe Wachter!

M u Iti ple RSA m Od u I US n 1 EPFL 1C LACAL, Station 14, CH-1015 Lausanne, Switzerland

2 Sell, Palo Allo, CA, USA

Abstract. We performed a sanity check of public keys collected on the web. Our main goal was
to test the validity of the assumption that different random choices are made each time kevs are
generated. We found that the vast majority of public keys work as intended. A more disconcerting
finding is that two out of every one thousand RSA moduli that we collected offer no security.
Our conclusion is that the validity ol Lthe assumplion is questionable and thal generating keys
in the real world for “multiple-secrets” cryptosystems such as RSA is significantly riskier than
for “single-secret” ones such as ElGamal or (EC)DSA which are based on Diffie-Hellman.
Keywords: Sanity check, RSA, 99.8% security, ElGamal, DSA, ECDSA, (batch) factoring,
discrete logarithm, Fuclidean algorithm, seeding random number generators, Ks.

1 Introduction

Various studies have been conducted to assess the state of the current public key infrastrue-
ture, with a focus on X.509 certificates (cf. [1]). Key generation standards for RSA (cf. [24])
have been analysed and found to be satisfactory in [20]. In [13] and [28| (and the references
therein) several problems have been identified that are mostly related to the way certificates

https://factorable.net/weakkeys12.extended.pdf

https://eprint.iacr.orq/2012/064
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https://eprint.iacr.org/2012/064
https://factorable.net/weakkeys12.extended.pdf

Summary

Public-key encryption security goals: IND-CPA and IND-CCA

ElGamal
* Public-key encryption from Diffie-Hellman key exchange + symmetric encryption scheme
« Hashed-ElGamal: hash DH key to obtain a symmetric key K

RSA
« Textbook-RSA: not a public-key encryption scheme directly (not IND-CPA secure!)

« Shoup's RSA: encrypt random number with Textbook-RSA and derive symmetric key from hash function
IND-CPA / IND-CCA secure (depending on symmetric scheme)
Not much used in practice
In practice: pad message before encrypting with Textbook-RSA (PKCS#1v1.5, RSA-OAEP)

* Must be hard: RSA-problem and factoring problem
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