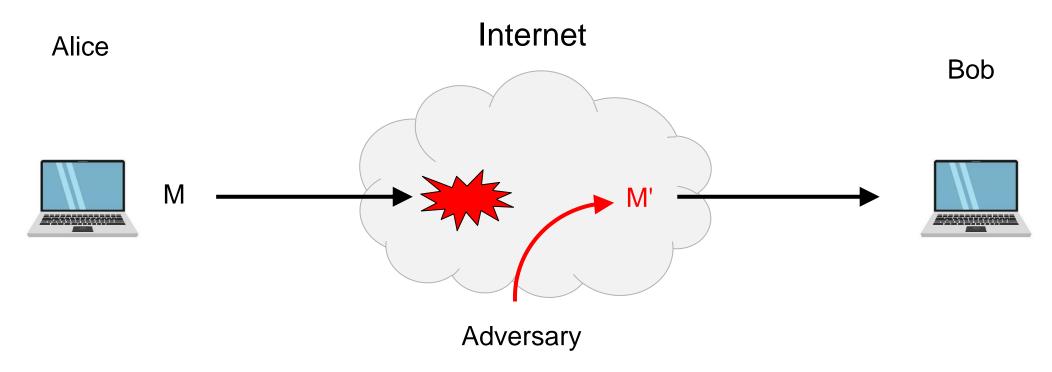
Lecture 12 – Digital signatures, UF-CMA, RSA, PKI

TEK4500

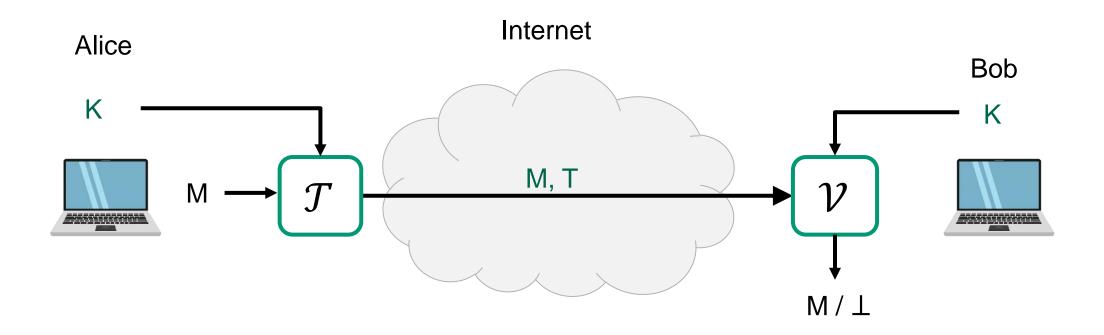
15.11.2023 Håkon Jacobsen hakon.jacobsen@its.uio.no

Administrative info

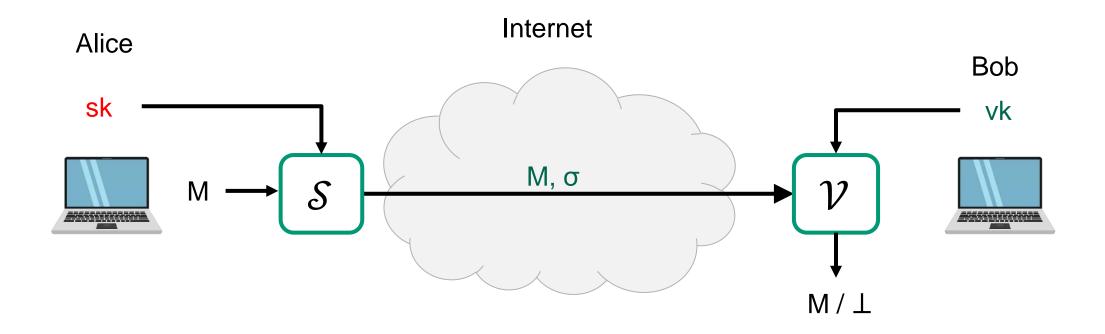

- If you did not pass the midterm or have not yet submitted two homework problem sets, but still
 want to take the exam: come see me (or send me an email) and we'll figure it out!
- I'll make old exams available on Canvas soon.

• Remaining lectures:

- November 22: regular lecture (quantum computers)
- November 29: guest lecture!
 - Martin Strand (researcher at FFI) will come and talk about post-quantum algorithms
- December 6: course recap lecture + ask-me-anything session
 - If you have any specific topic you want me to repeat/treat in more detail, please let me know in advance


	Message privacy	Message integrity / authentication	_
Symmetric keys	Symmetric encryption	Message authentication codes (MAC)	
Asymmetric keys	Asymmetric encryption (a.k.a. public-key encryption)	Digital signatures	(Key exchange)

What is cryptography?

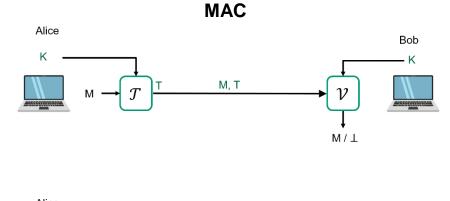

Security goals:

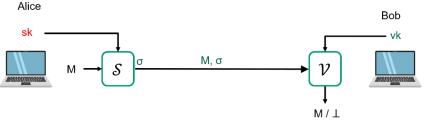
- Data privacy: adversary should not be able to read message M
- Data integrity: adversary should not be able to modify message M
- Data authenticity: message M really originated from Alice

- $\boldsymbol{\mathcal{T}}$: tagging algorithm (public)
- \mathcal{V} : verification algorithm (public)

K: tagging / verification key (secret)

- T: tagging algorithm (public)
- \mathcal{V} : verification algorithm (public)


- sk : signing key (secret)
- vk : verification key (public)


MACs vs. digital signatures

• MACs can only be verified by party sharing the same key

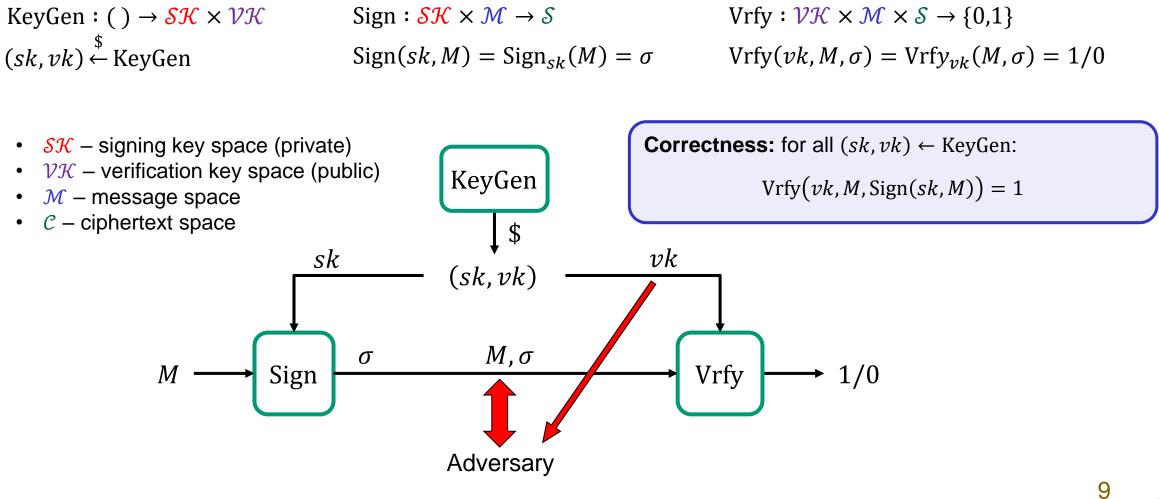
• Digital signatures can be verified by anyone

- Non-repudiation: Alice cannot deny having created σ
 - But she can deny having created T (since Bob could have done it)

Digital signature

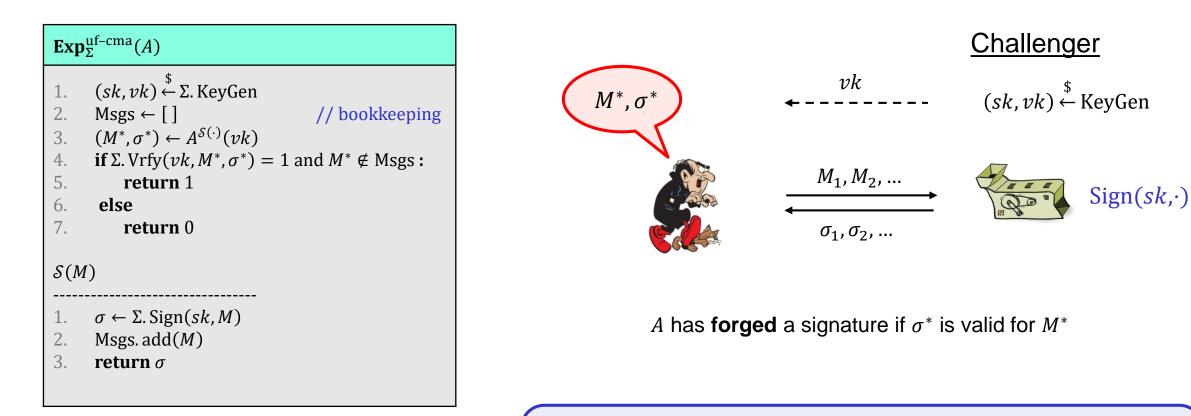
Applications of digital signatures

- Electronic document signing
- HTTPS / TLS certificates
- Software installation
- Email sender authentication
- Bitcoin

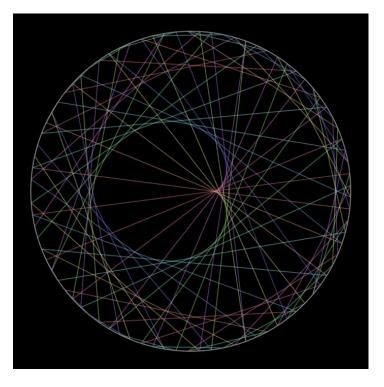

User Account Control	Certification Path
Do you want to allow this app to make changes to your device?	Certificate Information This certificate is intended for the following purpose(s):
irefox Installer	Ensures software came from software publisher Protects software from alteration after publication
Verified publisher: Mozilla Corporation File origin: Hard drive on this computer Program location: "C:\Users\alice \AppData\Local\Temp	Issued to: Mozilla Corporation
\7 <u>z</u> S8497DF02\setup-stub.exe" /UAC:C02A0 /NCRC Show information about the publisher's certificate Change when these notifications appear	Issued by: DigiCert SHA2 Assured ID Code Signing CA
Hide details	Valid from 5/7/2020 to 5/12/2021
Yes No	Issuer <u>S</u> tatement
	ОК
	OK .

Mozilla Corporation

 \times


Digital signatures – syntax

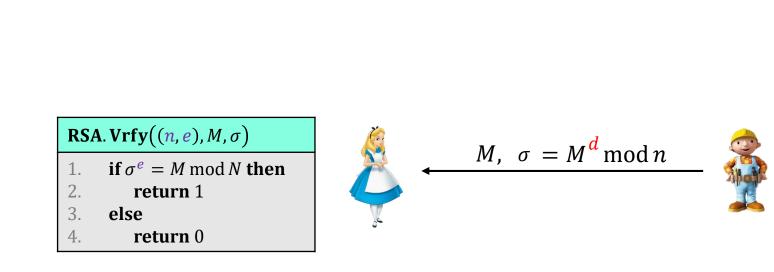
A digital signature scheme is a tuple of algorithms $\Sigma = (KeyGen, Sign, Vrfy)$


9

Digital signatures – security: UF-CMA

Definition: The **UF-CMA-advantage** of an adversary *A* is

 $\mathbf{Adv}_{\Sigma}^{\mathrm{uf-cma}}(A) = \Pr[\mathbf{Exp}_{\Sigma}^{\mathrm{uf-cma}}(A) \Rightarrow 1]$


RSA signatures

 $C = M^e \mod n$

 $C^e = M^{de} \mod n$

 $\sigma^{e_{\underline{d}}} = M^{\underline{d}} \mod n$

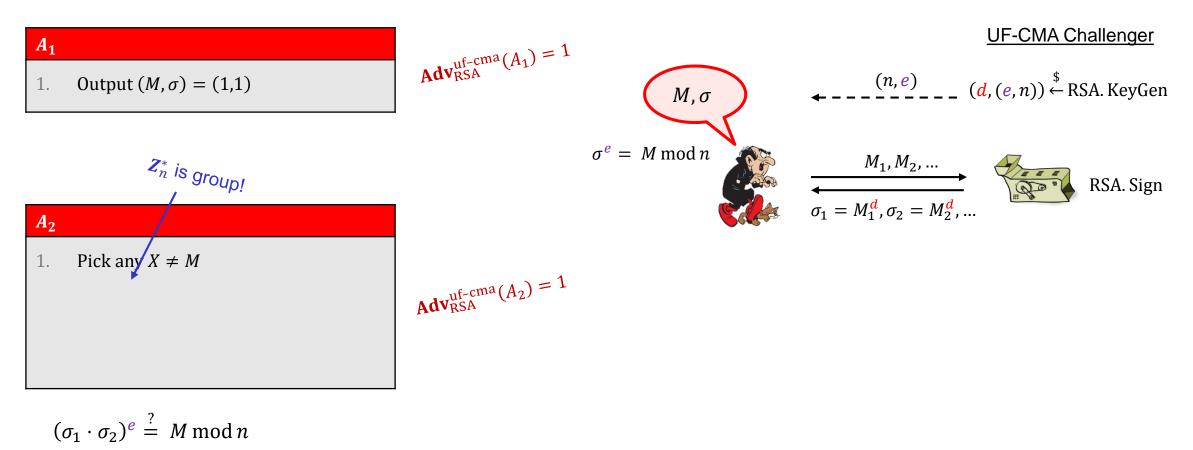
Textbook RSA signatures

RSA. KeyGen

.
$$p, q \leftarrow^{\$}$$
 two random prime numbers

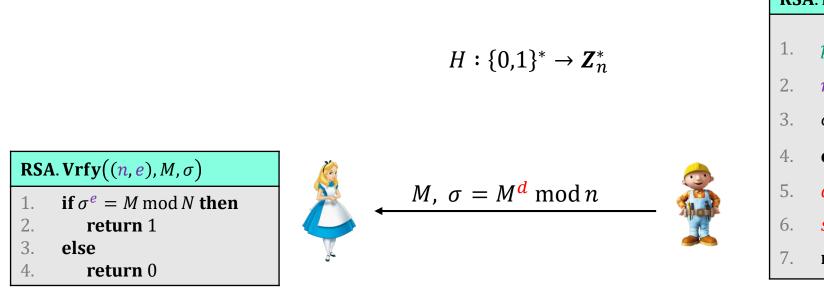
2.
$$n \leftarrow p \cdot q$$

3.
$$\phi(n) = (p-1)(q-1)$$


4. **choose** *e* such that
$$gcd(e, \phi(n)) = 1$$

5.
$$d \leftarrow e^{-1} \mod \phi(n)$$

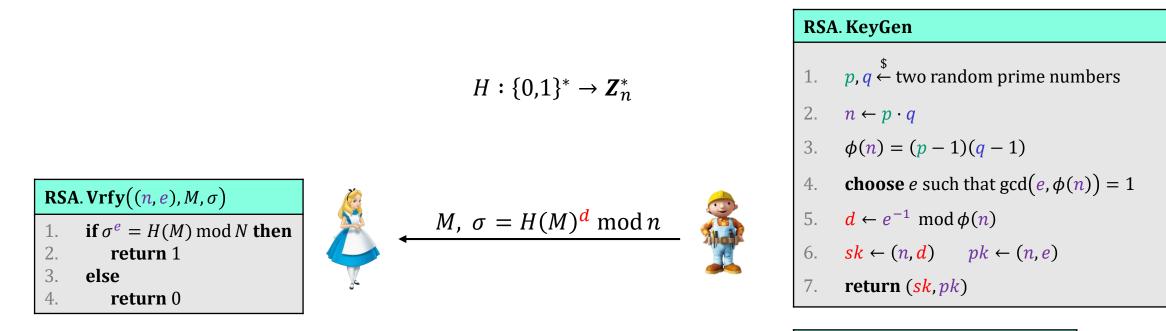
6.
$$sk \leftarrow (n, d)$$
 $pk \leftarrow (n, e)$


RSA . Sign $((n, d), M)$			
1.	$\sigma \leftarrow M^d \mod N$		
2.	return σ		

Textbook RSA signatures – (in)security

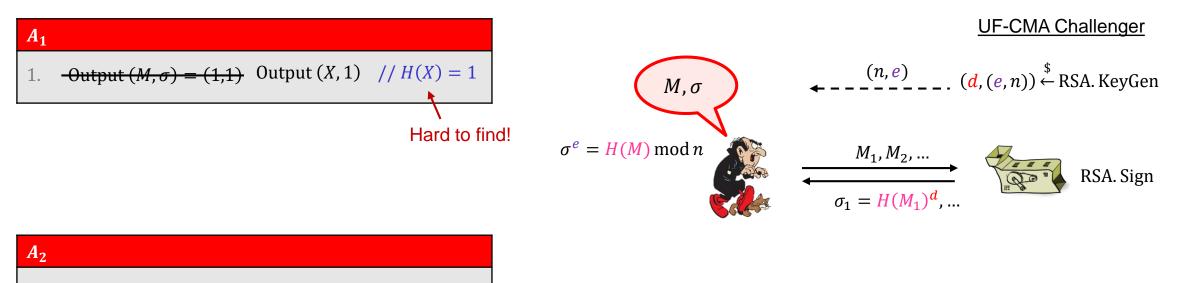
$$= (X^{d} \cdot Y^{d})^{e} = X^{ed} \cdot Y^{ed} = X \cdot Y = X \cdot X^{-1} \cdot M = M \mod n$$

Textbook RSA signatures



RSA message space:

$$\mathcal{M} = \mathbf{Z}_n^*$$
$$\mathcal{M} = \{0,1\}^*$$
Actually want


RSA. KeyGen1. $p, q \leftarrow^{\$}$ two random prime numbers2. $n \leftarrow p \cdot q$ 3. $\phi(n) = (p-1)(q-1)$ 4. choose e such that $gcd(e, \phi(n)) = 1$ 5. $d \leftarrow e^{-1} \mod \phi(n)$ 6. $sk \leftarrow (n, d) \quad pk \leftarrow (n, e)$ 7. return (sk, pk)

RS	RSA . Sign $((n, d), M)$			
1.	$\sigma \leftarrow M^d \mod N$			
Ζ.	return σ			

RSA . Sign $((n, d), M)$		
1. $\sigma \leftarrow H(M)^d \mod N$		
2. return σ		

Hashed-RSA – security

1. Output $(M, \sigma) = (M, \sigma_1 \cdot \sigma_2)$

$$(\sigma_1 \cdot \sigma_2)^e \stackrel{?}{=} H(M) \mod n$$

$$(H(X)^d \cdot H(Y)^d)^e = H(X) \cdot H(Y) = H(M) \mod n$$
Hard to find!

Hashed-RSA – security

- Factoring + RSA-problem must be hard
- What are the requirements of *H*?
 - Must be collision-resistant:

 $H(X) = H(Y) \implies H(X)^d = H(Y)^d = \sigma$

- Is this enough?
 - Unknown
 - However, if *H* is a *<u>random oracle</u> then*

RSA. KeyGen

- 1. $p, q \stackrel{\$}{\leftarrow}$ two random prime numbers
- 2. $n \leftarrow p \cdot q$

3.
$$\phi(n) = (p-1)(q-1)$$

- 4. **choose** *e* such that $gcd(e, \phi(n)) = 1$
- 5. $d \leftarrow e^{-1} \mod \phi(n)$

$$5. \quad sk \leftarrow (n, d) \qquad pk \leftarrow (n, e)$$

7. **return** (*sk*, *pk*)

Theorem: if the RSA problem is hard and *H* is a random oracle, then Hashed-RSA is UF-CMA secure

RSA. Vrfy $((n, e), M, \sigma)$

1. if
$$\sigma^e = H(M) \mod N$$
 then
2. return 1

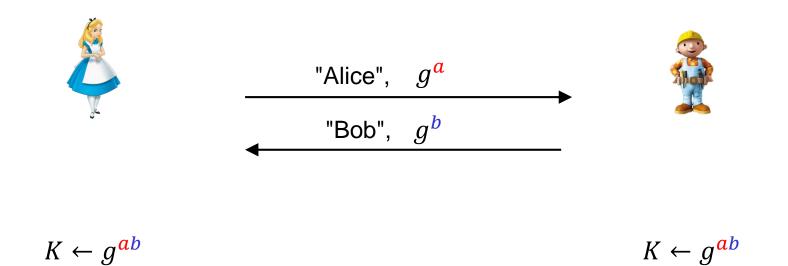
- 3. else
- 4. return 0

Discrete log based signatures

- Schnorr (see Homework 10 for details)
 - Elegant design
 - Has formal security proof (based on DLOG problem and *H* assumed perfect)
 - Was patented
 - One sharp edge: requires randomness during signing \Rightarrow reuse of randomness leaks private key
- (EC)DSA
 - Non-patented alternative
 - More complicated design than Schnorr
 - No security proof
 - Standardized by NIST (designed by NSA)
 - Very widely used
 - Same sharp edge as Schnorr
 - Broke all PlayStation 3's produced by Sony

 \equiv markets business investing tech politics CNBC TV watchlist

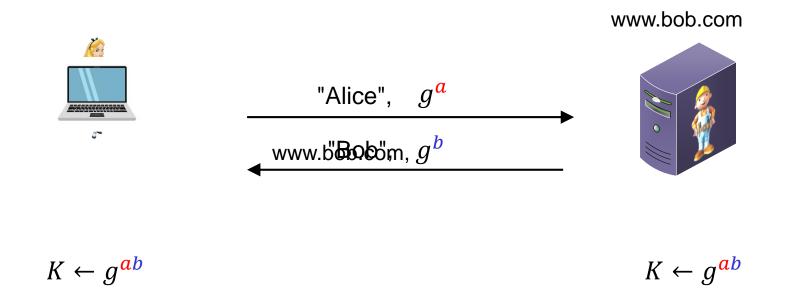
VIDEO GAMES


Sony: PlayStation Breach Involves 70 Million Subscribers

Chris Morris | @MorrisatLarge Published 4:30 PM ET Tue, 26 April 2011 | Updated 5:26 PM ET Tue, 26 April 2011

Public-key infrastructure (PKI)

What are identities?

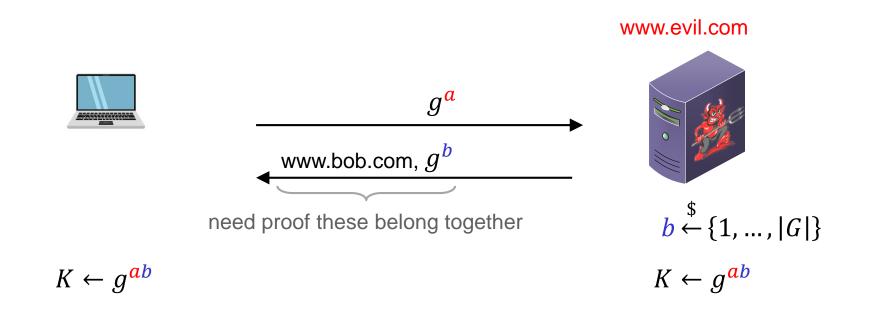


There are many Alice's and many Bob's

How do we know that g^{a} belongs to *this* particular Alice, and g^{b} to this particular Bob?

Need to **bind** public keys to entities

Identities on the internet

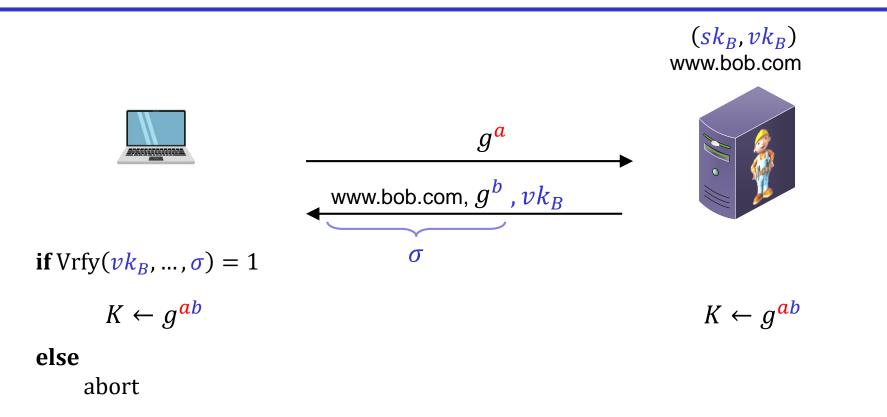


There are many Alice's and many Bob's

How do we know that g^{a} belongs to *this* particular Alice, and g^{b} to this particular Bob?

Need to bind public keys to entities - internet: bind public keys to domain names

Identities on the internet



There are many Alice's and many Bob's

How do we know that g^{a} belongs to *this* particular Alice, and g^{b} to this particular Bob?

Need to bind public keys to entities - internet: bind public keys to domain names

Authenticated key exchange

But why should we trust this vk_B ? Could have been created by the adversary itself

Digital certificates

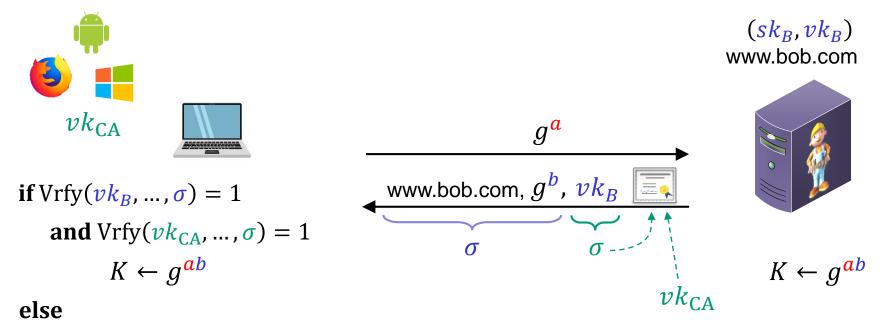
- **Digital certificate:** a way of binding a public key to an entity
- A certificate consists of:
 - The public key of the entity
 - A bunch of information identifying the entity
 - Name
 - Address
 - Occupation
 - URL
 - Email-address
 - Phone number
 - ...
 - A digital signature on all the above by a certificate authority (CA)

			_	k
-	-	= 🧖	2	Š
Ca	m tom	m {	~~	

Certific	ate Information	
This certificat	e is intended for the followin	ig purpose(s):
 Ensures t 	our identity to a remote compute he identity of a remote compute 1.1.6449.1.2.2.79 1.2.2	
	ertification authority's statement	for details.
Issued to	: uio.no	
Issued by	GEANT OV ECC CA 4	
Valid fror	n 28.08.2020 to 29.08.2021	
		Issuer Statemen

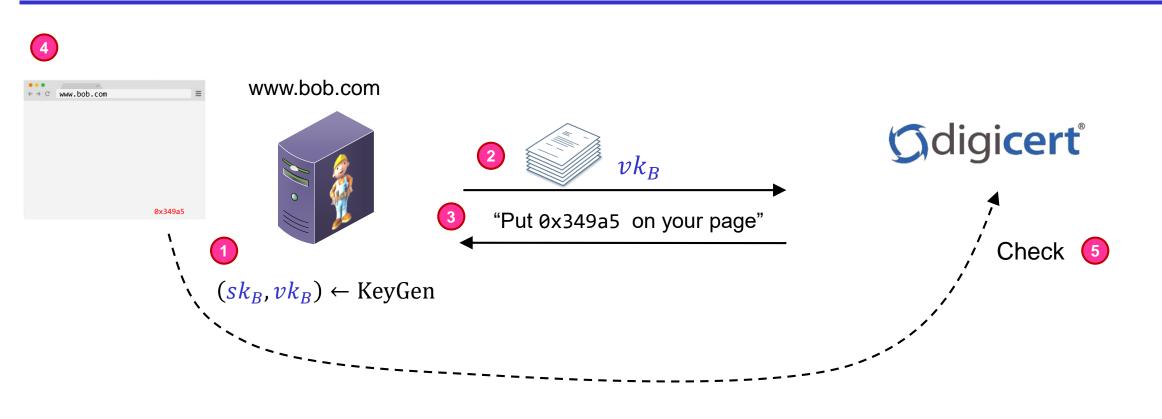
Certificate		>
General Details Certification Path		
Show: <all></all>	~	
Field	Value	^
🖾 Valid to	29. august 2021 00:59:59	
Subject	uio.no, Center for Information	
Public key	ECC (256 Bits)	
Public key parameters	ECDSA_P256	
Authority Key Identifier	KeyID=edb4a0336a1b0891b6	
🐻 Subject Key Identifier	2e59bd0c48c59f58607313916	
Enhanced Key Usage	Server Authentication (1.3.6	
R Certificate Policies	[1]Certificate Policy Policy Ide	¥
$\begin{array}{l} {\rm CN} = {\rm uio.no} \\ {\rm OU} = {\rm Center \ for \ Information \ Techr} \\ {\rm O} = {\rm Universitetet \ i \ Oslo} \\ {\rm STREET} = {\rm Problemveien \ 7} \\ {\rm L} = {\rm Oslo} \\ {\rm S} = {\rm Oslo} \\ {\rm SostalCode} = 0371 \\ {\rm C} = {\rm NO} \end{array}$	nology Services (USIT)	
Ec	dit Properties Copy to File	
	OK	

属 Certificate		×
General Details Cert	ification Path	
Show: <all></all>	×	~
Field	Value	^
Valid to	29. augus	st 2021 00:59:59
Subject	uio.no, C	enter for Information
Public key	ECC (256	i Bits)
Public key parame	eters ECDSA_P	256
Authority Key Ide		db4a0336a1b0891b6
Subject Key Iden		c48c59f58607313916
Enhanced Key Us	-	uthentication (1.3.6
Cost Certificate Policies	s Ill(ertitio	cate Policy Policy Ide
04 20 0a 40 7 aa 56 f5 61 7 0e a5 18 7c b ec 8d d6 43 b f9 e6 cb f0 f	e e3 25 e2 99 4 6 df f4 87 b7 6 9 3b de 0c 14 e	4f 3e 8f 67 83 e4 61 5d 43 1c 8a d7
	Edit Propertie	es <u>C</u> opy to File
		ОК


• CA: an issuer of digital certificates

- Acts as a trusted third-party, certifying (i.e., signing) the public keys of other entities
 - Verifies the identity of a claimed public-key owner

• The basis of a public-key infrastructure (PKI)



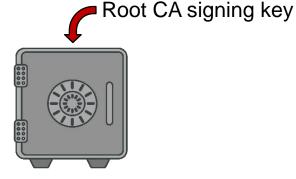
Authenticated key exchange + PKI

abort

How to get a signed certificate?

Other validation methods also possible:

- Confirmation emails
- DNS entries
- Physical verification
- Passport or driver's license

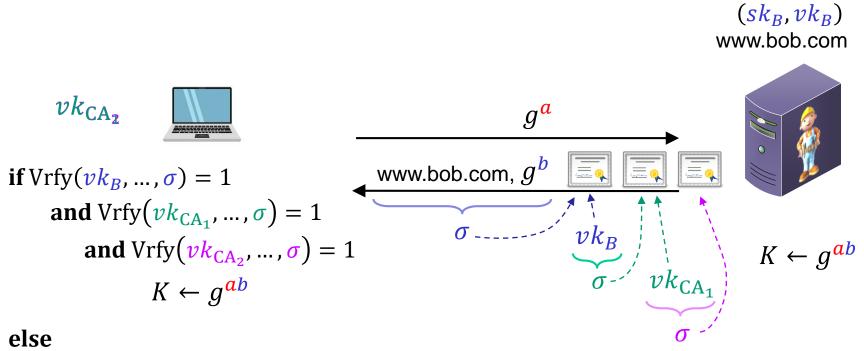


Certificate chains

📻 Certificate	\times
General Details Certification Path	
Certification path	
GEANT OV ECC CA 4	
<u>Vi</u> ew Certificate	
Certificate <u>s</u> tatus:	
This certificate is OK.	
OK	

Root CAs

- Root CAs: CAs that sign other CAs' public keys
 - + only a few root CAs need to be trusted by end-users
 - + root CAs can distribute the signing + verification load to smaller CAs
 - single point of failure; private key must be very heavily guarded
 - Root CAs for the internet: a few large multinational corporations



СОМОДО

HTTPS / TLS + PKI

abort

How to become an internet root CA?

- Need to prove yourself (trust)worthy to browser and OS vendors
 - <u>Microsoft Root Certificate Program</u>
 - Mozilla CA Certificate Program
 - Apple Root Certificate Program
 - <u>Chrome Root CA Program</u>

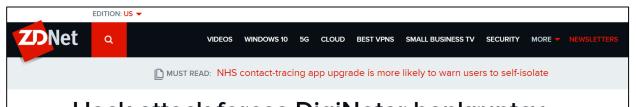
• Lot's of auditing and paperwork

- Many formal technical and non-technical security requirements
 - CA/Browser forum
 - Baseline Requirements v1.7.3

DigiNotar

- Dutch root CA
- Lost control of their private signing key in 2011
- Fraudulent certificates issued for Gmail, Yahoo!, Mozilla, WordPress, ...
- 30 000 Iranian Gmail users targeted

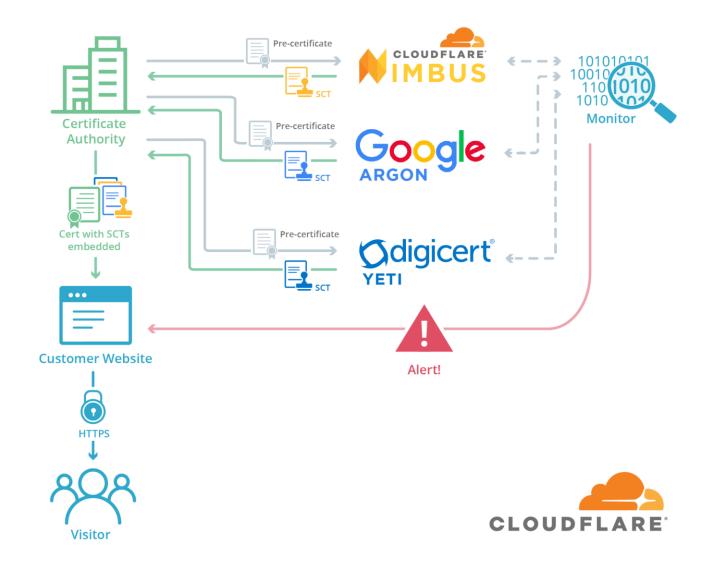
Pro

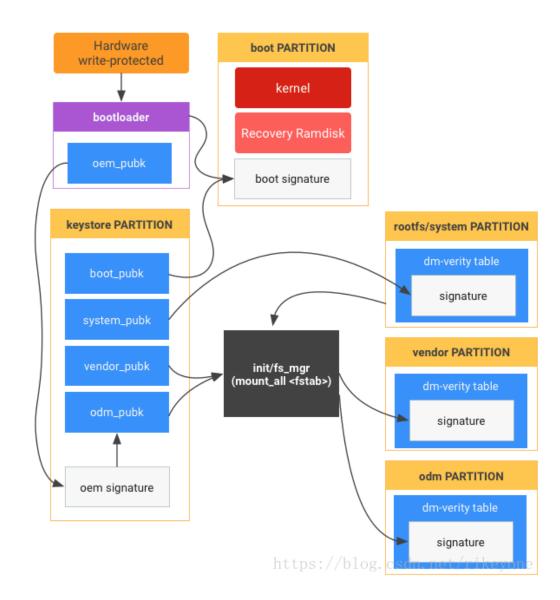

Business Cloud Hardware Infrastructure Security Software Technology

NEWS Home > Security

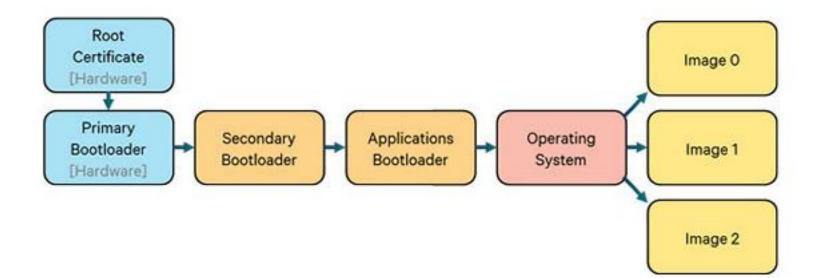
DigiNotar goes bankrupt after hack

The Dutch CA goes into bankruptcy following the significant hacks claimed by ComodoHacker.

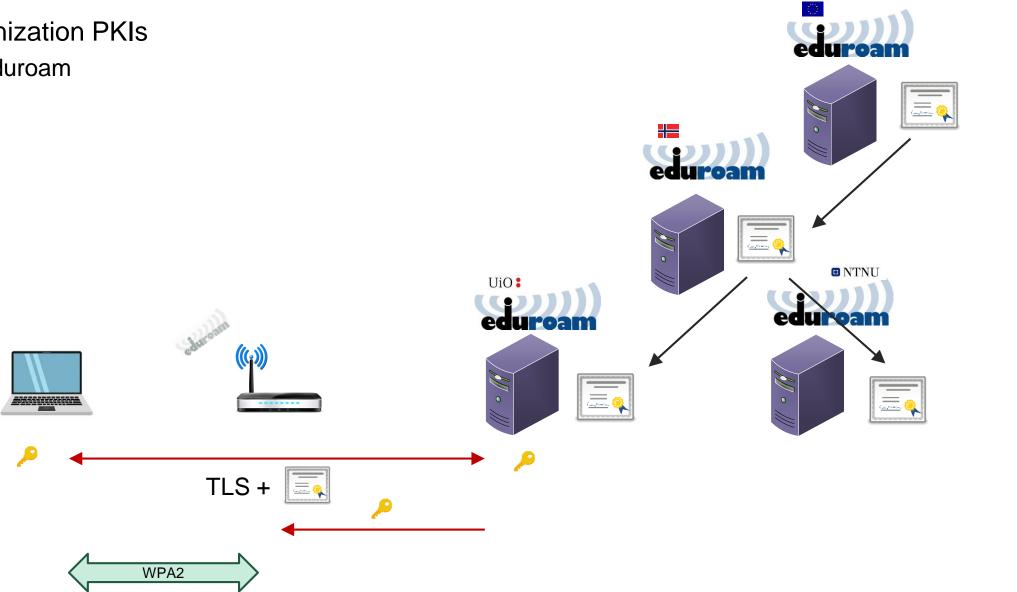


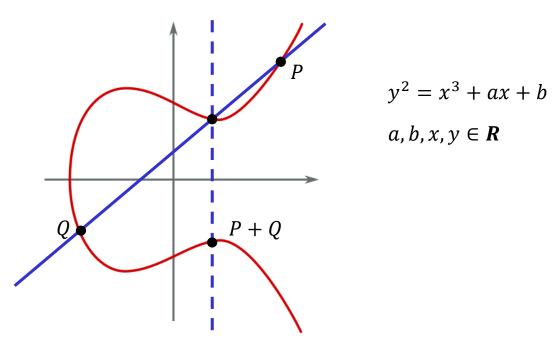


Hack attack forces DigiNotar bankruptcy


Dutch certificate authority DigiNotar has been forced into bankruptcy after a hack attack destroyed trust in its certificates.DigiNotar parent company Vasco announced that DigiNotar would be liquidated in a statement on Tuesday.

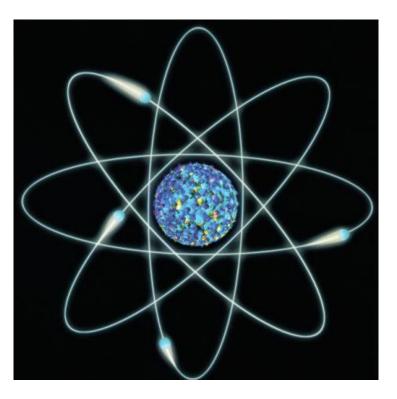
Certificate Transparency




Hardware Root of Trust

Other PKIs exist

- **Organization PKIs** •
 - eduroam



End of Part II (Asymmetric crypto)

Summary of asymmetric cryptography

Primitive	Functi	onality + syntax		Hardness assumpt	tion / security goal	Acronym	Examples
Diffie-Hellman		shared value (key) in a cyclic g $a^{ab} = B^{a}$	roup	Discrete logarithm (I Diffie-Hellman (DH)	,	DH	$ig(oldsymbol{Z}_p^*, \cdot ig) - DH \ ig(Eig(oldsymbol{F}_pig), + ig) - DH ig)$
RSA function	One-wa	ay trapdoor permutation		Factoring problem RSA-problem			Textbook RSA
Public-key encryption	••	t variable-length input $\mathcal{C} \times \mathcal{M} \to \mathcal{C}$		Confidentiality: attac nothing about plainte from ciphertexts		IND-CPA IND-CCA	Hashed/Padded
Digital signatures	Sign : &	signature on variable length inp $\mathcal{SK} \times \mathcal{M} \rightarrow \mathcal{S}$ $\mathcal{2K} \times \mathcal{M} \times \mathcal{S} \rightarrow \{1,0\}$	out	Integrity: attacker sh forge messages, i.e. messages with valid	., create new	UF-CMA	Schnorr Hashed-RSA ECDSA
Cryptographic g	groups	Comment	Comp	utational problem	Best-known attack		Common sizes
$(\mathbf{Z}_{p}^{*},\cdot)$		$p \text{ prime} \ \left oldsymbol{Z}_p^* ight = p-1$	Discret	te logarithm	General number fiel (GNFS)	d sieve	$ p \approx 2000 - 3000$ bits
Subgroups $H < 0$	$\left(oldsymbol{Z}_{p}^{st},\cdot ight)$	H = q (typically prime)	Discret	te logarithm	GNFS		$ q \approx 256$ bits
$(E(F_p), +)$		$p \text{ prime} \\ E(F_p) = q \text{ (typically) prime} \\ p \neq q$	Discret	te logarithm	Generic attacks: Baby-step giant-ster Pollard-rho, Pohlig-ł	Э,	$ E(F_p) \approx 256$ bits $ p \approx 256$ bits
$(\mathbf{Z}_{n}^{*},\cdot)$		$n \text{ not prime} \ \mathbf{Z}_n^* = \phi(n)$	Factori	ing	GNFS		$ n \approx 2000 - 4000$ bits

• Quantum computers

