Lecture 13 – Quantum computers, Shor's algorithm, post-quantum cryptography

TEK4500

22.11.2023 Håkon Jacobsen hakon.jacobsen@its.uio.no

Elements of (quantum) computing

• Three elements of all computations: data, operations, results

- Quantum computation
 - Data = **qubit**
 - Operation = quantum gate
 - Results = **measurements**

Qubits

- Classical bit:
 0
 1
- Qubit:

Can be in a **superposition** of two basic states $|0\rangle$ and $|1\rangle$

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ $\alpha, \beta \in C$ $|\alpha|^2 + |\beta|^2 = 1$

But we can never observe α and β directly!

Must **measure** $|\psi\rangle$ to obtain its value \Rightarrow state *randomly* collapses to either $|0\rangle$ or $|1\rangle$

What's the probability of observing $|0\rangle$ or $|1\rangle$?

Pr[observe
$$|0\rangle$$
] = $|\alpha|^2$
Pr[observe $|1\rangle$] = $|\beta|^2$

• 2-qubit system

٠

 $|\psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$ $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

• *N*-qubit system: 2^N basis states

Quantum computation – quantum gates

• Classic bits are transformed using logical gates

 Qubits are transformed using quantum gates

 $|\psi
angle \stackrel{{\it G}}{\mapsto} |\psi'
angle$

$$\frac{\alpha}{|0\rangle} + \frac{\beta}{|1\rangle} \stackrel{G}{\mapsto} \frac{\alpha'}{|0\rangle} + \frac{\beta'}{|1\rangle}$$

Operator	$\mathbf{Gate}(\mathbf{s})$	Matrix
Pauli-X (X)	- x	$- \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Z (Z)	$-\mathbf{Z}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$	$rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$
Controlled Not (CNOT, CX)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

(Quantum) NOT-gate (or X gate)

 $|0\rangle \xrightarrow{X} |1\rangle$ $|1\rangle \xrightarrow{X} |0\rangle$ X gate: $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

$$X|0\rangle = X\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}0\\1\end{pmatrix} = |1\rangle \qquad X|1\rangle = X\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix} = |0\rangle \qquad X|\psi\rangle = X\begin{pmatrix}\alpha\\\beta\end{pmatrix} = ?$$

$$\begin{bmatrix}0 & 1\\1 & 0\end{bmatrix}\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}0\\1\end{pmatrix} \qquad \begin{bmatrix}0 & 1\\1 & 0\end{bmatrix}\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix} \qquad \begin{bmatrix}0 & 1\\1 & 0\end{bmatrix}\begin{pmatrix}\alpha\\\beta\end{pmatrix} = \begin{pmatrix}\beta\\\alpha\end{pmatrix}$$

The Hadamard gate

$$|0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$|1\rangle \xrightarrow{H} \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$$

H gate:

$$H = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ Pr[measure $|\psi\rangle \Rightarrow |0\rangle] = |\alpha|^2$ Pr[measure $|\psi\rangle \Rightarrow |1\rangle] = |\beta|^2$

Pr[measure
$$H|1\rangle \Rightarrow |0\rangle] = \left|\frac{1}{\sqrt{2}}\right|^2 = 0.5$$

$$\Pr[\text{measure } \boldsymbol{H}|1\rangle \Rightarrow |1\rangle] = \left|\frac{-1}{\sqrt{2}}\right|^2 = 0.5$$

The Hadamard gate allows us to create random bits!

$$\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \qquad \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$$

Controlled-NOT gate (CNOT)

CNOT

 $|00
angle\mapsto|00
angle$

 $|01
angle\mapsto|01
angle$

 $|10
angle\mapsto|11
angle$

 $|11\rangle\mapsto|10\rangle$

$$\begin{vmatrix} 10 \rangle & |11 \rangle \\ | & | \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ \end{vmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \delta \\ \gamma \end{pmatrix}$$

Many other gates...

	Operator	Gate(s)	Matrix
	Pauli-X (X)	- X -	 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
	Pauli-Y (Y)	- Y -	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
	Pauli-Z (Z)	— Z —	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
	Hadamard (H)	-H-	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$
	Phase (S, P)	$-\mathbf{S}$	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
	$\pi/8~({ m T})$	- T -	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
	Controlled Not (CNOT, CX)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
	Controlled Z (CZ)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
	SWAP		 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
al logic!(Toffoli (CCNOT, CCX, TOFF)		$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

Universal for classical logic!

Quantum gates

- Turns out that all quantum gates can be described by matrices
 - In fact, very special matrices: unitary matrices
 - ... and only unitary matrices! (fact of nature)
- Quantum operations are *linear* and can be combined

 $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \qquad |0\rangle \mapsto |1\rangle$ $|1\rangle \mapsto |0\rangle$

$$|\psi_0\rangle \xrightarrow{Z} \psi_1\rangle \xrightarrow{X} |\psi_2\rangle \xrightarrow{H} |\psi_3\rangle \xrightarrow{Z} |\psi_4\rangle$$

$$|0\rangle \mapsto |0\rangle = |0\rangle$$

 $ZHXZ|\psi_0\rangle = |\psi_4\rangle$

$$\begin{aligned} \mathbf{Z}H\mathbf{X}\mathbf{Z}|0\rangle &= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\ H &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \\$$

Quantum computer

- A quantum computer consists of:
 - *N* input qubits
 - a sequence of quantum gates
 - *N* output qubits
 - result = measurement of final quantum state (output qubits)

What makes quantum computation special?

- Warning: a quantum computer does *not* simply "try out all solutions in parallel"
- The magic comes from allowing *complex* amplitudes (or even just negative reals)

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
 $\alpha, \beta \in C$

• Quantum interference: can *carefully* choreograph computations so wrong answers "cancel out" their amplitudes, while correct answers "combine"

- increases probability of measuring correct result
- only a few special problems allow this choreography

Peter W. Shor[†]

Abstract

A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

Keywords: algorithmic number theory, prime factorization, discrete logarithms, Church's thesis, quantum computers, foundations of quantum mechanics, spin systems, Fourier transforms

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...

sequences are periodic

Factoring to order-finding

 $a^{1}, a^{2}, a^{3}, \dots, a^{r}, a^{1}, a^{2} \dots \pmod{N}$ N = pqorder of a = the smallest positive r such that $a^r = 1 \pmod{N}$ **Euler's theorem:** for all $a \in \mathbb{Z}_N^*$ **Fact:** *r* must divide $(p-1)(q-1) = \phi(N)$ $a^{\phi(N)} = a^{(p-1)(q-1)} = 1 \pmod{N}$ **Proof:** • (p-1)(q-1) = sr + t $0 \leq t < r$ • $a^{(p-1)(q-1)} = a^{sr+t} = a^{sr}a^t = (a^r)^s a^t = 1 \cdot a^t = a^t = 1 \mod N$ \Rightarrow t = 0 (since *r* is the *smallest*) • (p-1)(q-1) = srQED **Conclusion:** learn $r \implies$ we learn a factor of (p-1)(q-1)repeat with a different $a \Rightarrow$ learn another factor of (p-1)(q-1)(with high prob.) eventually we can learn full $\phi(N) = (p-1)(q-1) \implies$ can find p and q (Problem set 9)

Where the quantum magic happens!

Shor's algorithm

- To factor N: find order r of a in Z_N^*
- Problem: *r* can be very large
 - Classical solutions take exponential time

• Note: the function $f(i) = a^i \mod N$ is *periodic*:

 $f(i+kr) = a^{i+kr} = a^i \operatorname{mod} N = f(i)$

- finding signal frequencies ⇔ finding signal period
- Key ingredient of Shor's algorithm:

quantum Fourier transform (QFT)

Fourier transform

Source: https://www.scottaaronson.com/qclec.pdf

 More on the Fourier transform:
 (3Blue1Brown) https://www.3blue1brown.com/lessons/fourier-transforms
 (Veritasium) https://www.be/nmgFG7PUHfo

Consequences of Shor's algorithm

- Cryptosystems broken by Shors' algorithm:
 - RSA
 - Diffie-Hellman
 - Schnorr
 - ElGamal
 - ECDSA
- ...public-key crypto is dead

both Z_p^*	and $E(F_p)$
--------------	--------------

Shor's algorithm		
Input: $N = pq$ Output: p and q		
1. 2. 3. 4. 5.	repeat until $\phi(N)$ is factored: $a \stackrel{\$}{\leftarrow} Z_N$ $r \leftarrow \text{Order}_N(a)$ use r to find factor of $\phi(N)$ compute p and q from N and $\phi(N)$	

The quantum menace

- How far away is a quantum computer?
 - Nobody knows

- Building a large-scale quantum computer is a huge engineering challenge
 - very susceptible to noise (decoherence)
 - requires quantum error correction (is it even possible?)
 - many *physical* qubits needed to simulate a single *logical* qubit
 - ≥ 1000 logical qubits needed for Shor's algorithm
 - largest (known) quantum computers:

 \approx 53 physical qubits (<u>Google</u>; 2019) \approx 65 physical qubits (<u>IBM</u>; 2020) \approx 127 physical qubits (<u>IBM</u>; 2021) \approx 433 physical qubits (<u>IBM</u>; 2022) (no error correction) (no error correction) (no error correction) (no error correction)

How many qubits in a quantum computer?

How many qubits in a quantum computer?

The quantum menace

Computing

NSA Says It "Must Act Now" Against the Quantum Computing Threat

The National Security Agency is worried that quantum computers will neutralize our best encryption – but doesn't yet know what to do about that problem.

by Tom Simonite February 3, 2016

Dealing with quantum computers

Symmetric cryptography

- Grover's algorithm: solves $O(2^n)$ problems in $O(2^{n/2})$ quantum steps
- Inherently serial + huge constants
- AES-128 is most likely safe; using AES-256 removes any doubts

Quantum cryptography

- Use quantum mechanics to build cryptography
- Requires specialized equipment
- Only used for key distribution; does not solve authentication problem
- Quantum-resistant cryptography (a.k.a. post-quantum cryptography)
 - Classical (asymmetric) algorithms believed to withstand quantum attacks

Post-quantum cryptography

Lattice-based cryptography

Code-based encryption

Hash-based signatures

The NIST post-quantum competition

- Public competition to standardize post-quantum schemes
 - Public-key encryption
 - Digital signatures
- Started in 2017
 - Round 1: 69 submissions
 - Round 2: 26 candidates selected
 - Round 3: 15 candidates selected

	Search CSRC Q ECSRC MENU
Information Technology Laboratory	
COMPUTER SECURITY RESOURCE CENTER	CSRC
PROJECTS	
Post-Quantum Cryptography PQC	
f ¥	
Project Overview	⊗ PROJECT LINKS
Round 3 Seminars	Overview
Kick-Off: October 27	FAQs
NIST has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptographic	News & Updates
algorithms. Full details can be found in the Post-Quantum Cryptography Standardization page.	Publications
The Round 3 candidates were announced July 22, 2020. NISTIR 8309, Status Report on the Second Round of the NIST Post-	Presentations
Quantum Cryptography Standardization Process is now available. NIST has developed <u>Guidelines for Submitting Tweaks</u> for Third Round Finalists and Candidates.	ADDITIONAL PAGES
Background	Post-Quantum Cryptography Standardization
In recent years, there has been a substantial amount of research on quantum computers – machines that exploit quantum	Call for Proposals
mechanical phenomena to solve mathematical problems that are difficult or intractable for conventional computers. If large-	Example Files Round 1 Submissions
scale quantum computers are ever built, they will be able to break many of the public-key cryptosystems currently in use. This would seriously compromise the confidentiality and integrity of digital communications on the internet and elsewhere	Round 2 Submissions
The goal of post-quantum cryptography (also called quantum-resistant cryptography) is to develop cryptographic systems	Round 3 Submissions Workshops and Timeline
that are secure against both quantum and classical computers, and can interoperate with existing communications protocols	Round 3 Seminars
The question of when a large-scale quantum computer will be built is a complicated one. While in the past it was less clear	External Workshops
that large quantum computers are a physical possibility, many scientists now believe it to be merely a significant engineering	Email List (PQC Forum)
challenge. Some engineers even predict that within the next twenty or so years sufficiently large quantum computers will be	PQC Archive
modern public key cryptography infrastructure. Therefore, regardless of whether we can estimate the exact time of the	nasii-baseu signatures
arrival of the quantum computing era, we must begin now to prepare our information security systems to be able to resist nuantum computing	LONTACTS
· · ·	PQC Crypto Technical Inquiries
Federal Register Notices	pqc-comments@nist.gov
	Dr. Lity Cnen - NIST 301-975-6974
December 20, 2016 Request for Nominations for Public-Key Post-Quantum Cryptographic Algorithms	301-313-0314

The NIST post-quantum competition

(PKE)

(Signature)

(Signature)

(Signature)

- Public competition to standardize post-quantum schemes
 - Public-key encryption
 - Digital signatures
- Started in 2017
 - Round 1: 69 submissions
 - Round 2: 26 candidates selected
 - Round 3: 15 candidates selected
- Winners:
 - CRYSTALS-KYBER
 - CRYSTALS-DILITHIUM
 - Falcon
 - SPHINCS+

Algorithm (public-key encryption)	Problem
Classic McEliece	Code-based
CRYSTALS-KYBER	Lattice-based
NTRU	Lattice-based
SABER	Lattice-based
BIKE	Code-based
FrodoKEM	Lattice-based
HQC	Code-based
NTRU Prime	Lattice-based
SIKE	Isogeny-based

Algorithm (digital signatures)	Problem
CRYSTALS-DILITHIUM	Lattice-based
Falcon	Lattice-based
Rainbow	Multivariate-based
GeMSS	Multivariate-based
Picnic	ZKP
SPHINCS+	Hash-based

The NIST post-quantum competition

(PKE)

(Signature)

(Signature)

(Signature)

- Public competition to standardize post-quantum schemes
 - Public-key encryption
 - Digital signatures
- Started in 2017
 - Round 1: 69 submissions
 - Round 2: 26 candidates selected
 - Round 3: 15 candidates selected
 - Round 4: alternative candidates
- Winners:
 - CRYSTALS-KYBER
 - CRYSTALS-DILITHIUM
 - Falcon
 - SPHINCS+

Algorithm (public-key encryption)	Problem
Classic McEliece	Code-based
CRYSTALS-KYBER	Lattice-based
NTRU	Lattice-based
SABER	Lattice-based
BIKE	Code-based
FrodoKEM	Lattice-based
HQC	Code-based
NTRU Prime	Lattice-based
SIKE	Isogeny-based

Algorithm (digital signatures)	Problem
CRYSTALS-DILITHIUM	Lattice-based
Falcon	Lattice-based
Rainbow	Multivariate-based
GeMSS	Multivariate-based
Picnic	ZKP
SPHINCS+	Hash-based

Lattice-based cryptography

- Very versatile computational problems
 - Public-key encryption
 - Digital signatures
 - Hash functions
 - Fully homomorphic encryption
 - Key exchange

• Leads to efficient and compact schemes

- Based on hardness of problems in algebraic number theory
 - Believed to be hard also for quantum computers

Shortest vector problem

Closest vector problem

Lattice-based cryptography

Next week – guest lecture!

Post-quantum cryptography

- Want to learn more about post-quantum cryptography?
- Sign up for <u>TEK5550</u> <u>Advanced Topics in Cryptology</u> next spring!