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Elements of (quantum) computing

• Three elements of all computations: data, operations, results

• Quantum computation

• Data = qubit

• Operation = quantum gate

• Results = measurements
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Qubits

• Classical bit:

• Qubit: 

Can be in a superposition of two basic states 0 and 1

But we can never observe 𝛼 and 𝛽 directly!

Must measure 𝜓 to obtain its value ⟹ state randomly collapses to either 0 or 1

What's the probability of observing 0 or 1 ?

3

 0〉  1〉 𝛼 2 + 𝛽 2 = 1

0 1

𝜓 = + 𝛽 𝛼, 𝛽 ∈ 𝑪

Pr observe 0 = 𝛼 2

Pr observe 1 = 𝛽 2

𝛼



Multiple qubits

• 2-qubit system

• 𝑁-qubit system: 2𝑁 basis states

• Representable by a 2𝑁 element vector:
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 00〉  01〉
𝛼 2 + 𝛽 2 + 𝛾 2 + 𝛿 2 = 1

𝜓 = + 𝛽

𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝑪

 10〉  11〉+ 𝛾 + 𝛿𝛼

𝜓 = 𝛼0 0…00 + 𝛼1 0…01 + 𝛼2 0…10 + ⋯+ 𝛼2𝑁−1 1…11

000 =

1
0
0
0
0
0
0
0

001 =

0
1
0
0
0
0
0
0

010 =

0
0
1
0
0
0
0
0

011 =

0
0
0
1
0
0
0
0

100 =

0
0
0
0
1
0
0
0

101 =

0
0
0
0
0
1
0
0

110 =

0
0
0
0
0
0
1
0

111 =

0
0
0
0
0
0
0
1

𝜓 =

𝛼0
𝛼1
⋮

𝛼2𝑁−1

0.8 001 − 0.6𝑖 101 =

0
0.8
0
0
0

−0.6𝑖
0
0

𝛼0
2 + 𝛼1

2 +⋯+ 𝛼2𝑁−1
2
= 1

Pr observe 101 = −0.6𝑖 2 = −0.6 2
2
= 0.36

Pr observe 001 = 0.8 2 = 0.64



Quantum computation – quantum gates

• Classic bits are transformed using logical gates

• Qubits are transformed using 

quantum gates
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𝜓  
𝑮
𝜓′

𝛼 0 + 𝛽 1  
𝑮
𝛼′ 0 + 𝛽′ 1



(Quantum) NOT-gate (or X gate)
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0  
𝑿
1

𝜓 = 𝛼 0 + 𝛽 1

𝜓 =
𝛼

𝛽

1  
𝑿
0

𝑿 0 = 𝑿
1

0
=
0

1
= 1 𝑿 1 = 𝑿

0

1
=
1

0
= 0

0

1

1

0

1

0
=
0

1

0

1

1

0

0

1
=
1

0

𝑿 𝜓 = 𝑿
𝛼

𝛽
= ?

0

1

1

0

𝛼

𝛽
=
𝛽

𝛼

𝛼 0 + 𝛽 1  
𝑿
𝛽 0 + 𝛼 1

X gate:  

𝑿 =
0

1

1

0



The Hadamard gate

7

0  
𝑯 1

2
0 +

1

2
1

1  
𝑯 1

2
0 −

1

2
1

Pr measure 𝑯 1 ⇒ 0 =

Pr measure 𝑯 1 ⇒ 1 =

The Hadamard gate allows us to create random bits!

 𝜓⟩ = 𝛼 0 + 𝛽 1

Pr measure  𝜓⟩ ⇒ 0 = 𝛼 2

Pr measure  𝜓⟩ ⇒ 1 = 𝛽 2

1/ 2

1/ 2

1/ 2

−1/ 2

1

0
=
1/ 2

1/ 2

1/ 2

1/ 2

1/ 2

−1/ 2

0

1
=

1/ 2

−1/ 2

H gate:  

𝑯 =
1/ 2

1/ 2

1/ 2

−1/ 2

1

2

2

= 0.5

−1

2

2

= 0.5



Controlled-NOT gate (CNOT)
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00  00

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

0
0
1
0

=

0
0
0
1

CNOT gate:  

𝐂𝐍𝐎𝐓 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

01  01

10  11

11  10

CNOT

10 11

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

𝛼
𝛽
𝛾
𝛿

=

𝛼
𝛽
𝛿
𝛾

𝑥

𝑦

𝑥

𝑥 ⊕ 𝑦



Many other gates…
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Universal for classical logic!



Quantum gates

• Turns out that all quantum gates can be described by matrices

• In fact, very special matrices: unitary matrices 

• … and only unitary matrices!  (fact of nature)

• Quantum operations are linear and can be combined
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0  1

1  0𝑿 =
0

1

1

0

0  0

1  − 1𝒁 =
1

0

0

−1

0  
1

2
0 +

1

2
1

1  
1

2
0 −

1

2
1

𝑯 =
1/ 2

1/ 2

1/ 2

−1/ 2

𝜓0  
𝒁
𝜓1  

𝑿
𝜓2  

𝑯
𝜓3  

𝒁
𝜓4

𝒁𝑯𝑿𝒁 𝜓0 = 𝜓4

𝒁𝑯𝑿𝒁 0 =
1

0

0

−1

1/ 2

1/ 2

1/ 2

−1/ 2

0

1

1

0

1

0

0

−1

1

0

=
1/ 2

1/ 2

−1/ 2

1/ 2

1

0
=
1/ 2

1/ 2
=
1

2
0 +

1

2
1



Quantum computer

• A quantum computer consists of:

• 𝑁 input qubits

• a sequence of quantum gates

• 𝑁 output qubits

• result = measurement of final quantum state (output qubits)
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What makes quantum computation special?

• Warning: a quantum computer does not simply 

"try out all solutions in parallel"

• The magic comes from allowing complex amplitudes

(or even just negative reals)

• Quantum interference: can carefully choreograph 

computations so wrong answers "cancel out" their amplitudes,

while correct answers "combine"

• increases probability of measuring correct result 

• only a few special problems allow this choreography
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https://www.smbc-comics.com/comic/the-talk-3

𝜓 = 𝛼 0 + 𝛽 1 𝛼, 𝛽 ∈ 𝑪

https://www.smbc-comics.com/comic/the-talk-3


Shor's algorithm
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First: something completely different
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2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,…

2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2… mod15

2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 11, 1, 2… mod21

sequences are periodic



Factoring to order-finding
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𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑟 , 𝑎1, 𝑎2…

Euler’s theorem: for all 𝑎 ∈ 𝒁𝑁
∗

𝑎𝜙 𝑁 = 𝑎 𝑝−1 (𝑞−1) = 1 mod𝑁
Fact: 𝑟 must divide 𝑝 − 1 𝑞 − 1 = 𝜙(𝑁)

order of 𝑎

Proof:  

• 𝑝 − 1 𝑞 − 1 = 𝑠𝑟 + 𝑡 0 ≤ 𝑡 < 𝑟

• 𝑎(𝑝−1)(𝑞−1)

• 𝑝 − 1 𝑞 − 1 = 𝑠𝑟

= 𝑎𝑟 𝑠𝑎𝑡 = 1 ⋅ 𝑎𝑡 = 1mod𝑁

QED

Conclusion: learn 𝑟 ⟹ we learn a factor of (𝑝 − 1)(𝑞 − 1)

repeat with a different 𝑎 ⟹ learn another factor of 𝑝 − 1 𝑞 − 1 (with high prob.)

eventually we can learn full  𝜙 𝑁 = 𝑝 − 1 𝑞 − 1 ⟹ can find 𝑝 and 𝑞 (Problem set 9) 

⟹ 𝑡 = 0 (since 𝑟 is the smallest) 

mod𝑁

= the smallest positive 𝑟 such that 𝑎𝑟 = 1 mod𝑁

= 𝑎𝑠𝑟+𝑡 = 𝑎𝑠𝑟𝑎𝑡

𝑁 = 𝑝𝑞

= 𝑎𝑡



Shor's algorithm
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Shor's algorithm

Input: 𝑁 = 𝑝𝑞
Output: 𝑝 and 𝑞

1. repeat until 𝜙(𝑁) is factored:

2. 𝑎 
$
𝒁𝑁

3. 𝑟  Order𝑁 𝑎
4. use 𝑟 to find factor of 𝜙 𝑁
5. compute 𝑝 and 𝑞 from 𝑁 and 𝜙 𝑁

// but how to find 𝑟?

Where the quantum magic happens! 



Shor’s algorithm

• To factor 𝑁:  find order 𝑟 of 𝑎 in 𝒁𝑁
∗

• Problem: 𝑟 can be very large

• Classical solutions take exponential time

• Note: the function 𝑓 𝑖 = 𝑎𝑖mod𝑁 is periodic:

𝑓 𝑖 + 𝑘𝑟 = 𝑎𝑖+𝑘𝑟 = 𝑎𝑖mod𝑁 = 𝑓(𝑖)

• finding signal frequencies ⟺ finding signal period

• Key ingredient of Shor's algorithm: 

quantum Fourier transform (QFT)
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Fourier transform
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Source: https://www.scottaaronson.com/qclec.pdf

More on the Fourier transform:

(3Blue1Brown) https://www.3blue1brown.com/lessons/fourier-transforms

(Veritasium)     https://youtu.be/nmgFG7PUHfo

https://www.scottaaronson.com/qclec.pdf
https://www.3blue1brown.com/lessons/fourier-transforms
https://youtu.be/nmgFG7PUHfo


Shor’s algorithm
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Consequences of Shor’s algorithm

• Cryptosystems broken by Shors' algorithm:

• RSA

• Diffie-Hellman

• Schnorr

• ElGamal

• ECDSA

• …public-key crypto is dead
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Shor's algorithm

Input: 𝑁 = 𝑝𝑞
Output: 𝑝 and 𝑞

1. repeat until 𝜙(𝑁) is factored:

2. 𝑎 
$
𝒁𝑁

3. 𝑟  Order𝑁 𝑎
4. use 𝑟 to find factor of 𝜙 𝑁
5. compute 𝑝 and 𝑞 from 𝑁 and 𝜙 𝑁



The quantum menace

• How far away is a quantum computer?

• Nobody knows

• Building a large-scale quantum computer is a huge 

engineering challenge

• very susceptible to noise (decoherence)

• requires quantum error correction (is it even possible?)

• many physical qubits needed to simulate a single logical qubit

• ≥ 1000 logical qubits needed for Shor's algorithm

• largest (known) quantum computers: 

≈ 53 physical qubits (Google; 2019) (no error correction)

≈ 65 physical qubits (IBM; 2020) (no error correction)

≈ 127 physical qubits (IBM; 2021) (no error correction)

≈ 433 physical qubits (IBM; 2022) (no error correction)
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https://blog.google/perspectives/sundar-pichai/what-our-quantum-computing-milestone-means/
https://www.sciencemag.org/news/2020/09/ibm-promises-1000-qubit-quantum-computer-milestone-2023
https://arstechnica.com/science/2022/11/ibm-pushes-qubit-count-over-400-with-new-processor/
https://arstechnica.com/science/2022/11/ibm-pushes-qubit-count-over-400-with-new-processor/


The quantum menace

23Source: JP Aumasson; https://www.aumasson.jp/data/talks/quantum-cyberpeace-2021.pdf

https://www.aumasson.jp/data/talks/quantum-cyberpeace-2021.pdf


The quantum menace

24Source: JP Aumasson; https://www.aumasson.jp/data/talks/quantum-cyberpeace-2021.pdf

https://www.aumasson.jp/data/talks/quantum-cyberpeace-2021.pdf


The quantum menace

25http://sam-jaques.appspot.com/quantum_landscape_2022

http://sam-jaques.appspot.com/quantum_landscape_2022
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Dealing with quantum computers

• Symmetric cryptography

• Grover's algorithm: solves 𝒪 2𝑛 problems in 𝒪 2𝑛/2 quantum steps

• Inherently serial + huge constants

• AES-128 is most likely safe; using AES-256 removes any doubts

• Quantum cryptography

• Use quantum mechanics to build cryptography

• Requires specialized equipment

• Only used for key distribution; does not solve authentication problem

• Quantum-resistant cryptography (a.k.a. post-quantum cryptography)

• Classical (asymmetric) algorithms believed to withstand quantum attacks
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Post-quantum cryptography
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𝐻 𝐻 𝐻 𝐻

𝐻 𝐻

𝐻

𝑝𝑘ots
1 𝑝𝑘ots

2 𝑝𝑘ots
3 𝑝𝑘ots

4 𝑝𝑘ots
5 𝑝𝑘ots

6 𝑝𝑘ots
7 𝑝𝑘ots
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𝑝𝑘

𝑠𝑘ots
1 𝑠𝑘ots

2 𝑠𝑘ots
3 𝑠𝑘ots

4 𝑠𝑘ots
5 𝑠𝑘ots

6 𝑠𝑘ots
7 𝑠𝑘ots
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Lattice-based cryptography Code-based encryption 

Supersingular isogeny key exchange Hash-based signatures 

Broken 

last year!

https://eprint.iacr.org/2022/975

https://eprint.iacr.org/2022/975


Algorithm (public-key encryption) Problem

Classic McEliece Code-based

CRYSTALS-KYBER Lattice-based

NTRU Lattice-based

SABER Lattice-based

BIKE Code-based

FrodoKEM Lattice-based

HQC Code-based

NTRU Prime Lattice-based

SIKE Isogeny-based

Algorithm (digital signatures) Problem

CRYSTALS-DILITHIUM Lattice-based

Falcon Lattice-based

Rainbow Multivariate-based

GeMSS Multivariate-based

Picnic ZKP

SPHINCS+ Hash-based

The NIST post-quantum competition

• Public competition to standardize 

post-quantum schemes

• Public-key encryption

• Digital signatures

• Started in 2017

• Round 1: 69 submissions

• Round 2: 26 candidates selected

• Round 3: 15 candidates selected 

• Round 4: alternative candidates

• Winners:

• CRYSTALS-KYBER (PKE)

• CRYSTALS-DILITHIUM (Signature)

• Falcon (Signature)

• SPHINCS+ (Signature)
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Lattice-based cryptography

• Very versatile computational problems

• Public-key encryption

• Digital signatures

• Hash functions

• Fully homomorphic encryption

• Key exchange

• Leads to efficient and compact schemes

• Based on hardness of problems in algebraic number theory

• Believed to be hard also for quantum computers
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Shortest vector problem

Closest vector problem



Lattice-based cryptography
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https://cr.yp.to/talks/2017.12.28/slides-dan+nadia+tanja-20171228-latticehacks-16x9.pdf

https://cr.yp.to/talks/2017.12.28/slides-dan+nadia+tanja-20171228-latticehacks-16x9.pdf


Next week – guest lecture!
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Post-quantum cryptography

• Want to learn more about post-quantum cryptography?

• Sign up for TEK5550 - Advanced Topics in Cryptology next spring!
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https://www.uio.no/studier/emner/matnat/its/TEK5550/index-eng.html

