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Cryptography oversimplified

World A
• The parties share strong secrets
• Encryption is cheap and efficient

World B
• The parties don’t share [fresh] secrets
• Encryption is significantly less efficient
• Goal: Get to world A

Idea
Encrypt a symmetric key in world B, and use it in world A.

KEM: PKE only for random keys
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Recap: IND-CPA security definition

Game IND-CPAE,A(λ)

b ←$ {0, 1}

(pk, sk)← E .KGen(1λ)

(state,m0)← A(pk)

m1 ←$ {0, 1}
c∗ ← E .Enc(mb; pk)

b′ ← A(state, pk, c)

return b = b′

Oracle DEC(c)

if c ̸= c∗

return E .Dec(c; sk)

Advind-cpa
E,A (λ) =

∣∣∣∣Pr[IND-CPAE,A(λ) = 1]− 1
2

∣∣∣∣
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Recap: IND-CCA security definition

Game IND-CCAE,A(λ)

b ←$ {0, 1}

(pk, sk)← E .KGen(1λ)

(state,m0)← ADEC(pk)

m1 ←$ {0, 1}
c∗ ← E .Enc(mb; pk)

b′ ← ADEC(state, pk, c)

return b = b′

Oracle DEC(c)

if c ̸= c∗

return E .Dec(c; sk)

Advind-cca
E,A (λ) =

∣∣∣∣Pr[IND-CCAE,A(λ) = 1]− 1
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Textbook ElGamal

KGen Let G = (g) of order q. Choose a secret sk = s and compute pk = h = gs

Enc(pk,m) Select r at random. Compute c = (c1 = gr , c2 = mhr )

Dec(sk, c) Compute m′ = c−s
1 c2
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ElGamal: A sky-high perspective

KGen In some structure, let s be some secret, and let pk embed the secret in the
structure.

Enc(pk,m) Select r at random. Bind r to the structure as well as to the public key. Bind
the message to the latter.

Dec(sk, c) Use the private key on the embedding of r , and compute its inverse. Use
commutativity to remove both r and s from the message.
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Lattice problems

Shortest Vector Problem
Given a basis for L, find the shortest
vector in V that is also a point in L.

Closest Vector Problem
Given a basis for L and a point v in V ,
find closest lattice point to v in L.

b1

b2
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Lattice problems

Shortest Vector Problem
Given a basis for L, find the shortest
vector in V that is also a point in L.

Closest Vector Problem
Given a basis for L and a point v in V ,
find closest lattice point to v in L.

−b1 + 2b2
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Learning with errors

a1,1s1 + . . . a1,nsn + e1 = b1

a2,1s1 + . . . a2,nsn + e2 = b2

a3,1s1 + . . . a3,nsn + e3 = b3

a4,1s1 + . . . a4,nsn + e4 = b4

a5,1s1 + . . . a5,nsn + e5 = b5

...
Given A, b, and if ei are small,
what is s?
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Learning with errors

Let n,q be positive integers and let χ be a probability distribution over Z.
Let ai be a vector over Zq , and let s ← χn, ei ← χ be sampled independently according to
χ.

Challenge

Distinguish between
• (ai ,bi), bi uniformly sampled from Zq , and
• (ai ,aT

i · s + ei)
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Ring-LWE

Let q be a prime, let f (X ) be a polynomial, and let Rq = Zq[X ]/ (f (X )). Let χ be a
distribution over Rq .
Let ai(X ) be a polynomial from Rq , and ei(X ) and s(X ) be small polynomials sampled
independently according to χ.

Challenge

Distinguish between
• (ai(X ),bi(X )), bi(X ) uniformly sampled from Rq , and
• (ai(X ),ai(X ) · s(X ) + ei(X ))

11



Module-LWE

Let q be a prime, d a power of 2 and n an integer. Let f (X ) = X d + 1 be a polynomial, and
let Rq = Zq[X ]/ (f (X )). Let χ be a distribution over Rq .
Sample ai from Rn

q and ei , s similarly as before.

Challenge

Distinguish between
• (ai(X ),bi(X )), bi(X ) uniformly sampled from Rq , and
• (ai(X ), ⟨ai(X ), s(X )⟩+ ei(X ))
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Kyber as mathematics

Let Rq = Zq[X ]/(X 256 + 1) be a ring.

KGen 1. Choose matrix A from Rk×k
q

2. Choose short vectors sk = s and e from Rk
q

3. Compute t = As + e, and set pk = (t ,A)
Enc(pk,m) 1. Choose short r ,e1 from Rk

q and e2 from Rk
q

2. Set u = AT r + e1 and v = tT · r + e2 + m
3. Return c = (u, v)

Dec(sk, c) Compute w = v − sT · u and return w
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Correctness

v − sT · u

= tT + e2 + m − sT (
AT r + e1

)
= (As + e)T r + e2 + m − (As)T r + sT · e1

= (As)T r − (As)T r + eT · r + e2 + sT e1 + m
= m + (small)
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Warning: Mathematics follows!



Tool: Fourier series

Let s be a periodic function.

A0 =
1
P

∫ P/2

−P/2
s(x)dx

An =
2
P

∫ P/2

−P/2
s(x) cos

(
2πnx

P

)
dx

Bn =
2
P

∫ P/2

−P/2
s(x) sin

(
2πnx

P

)
dx

s(x) ∼ A0 +
∞∑

n=1

(
An cos

(
2πnx

P

)
+

Bn sin

(
2πnx

P

))

(A0,A1,B1,A2,B2, . . .) and s are equivalent representations of the same function.
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The Kyber polynomial

Let q = 3329 = 28 · 13 + 1 and let ζ = 17, a primitive 256-th root of unity modulo q.

Fact

X 256 + 1 =
127∏
i=0

(X 2 − ζ2i+1)

=
127∏
i=0

(
X 2 − ζ2BitReverse7(i)+1

)
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The Number Theoretic Transform (NTT)

Fact

Rq = Z[X ]/(X 256 + 1) ≃
127⊕
k=0

Zq[X ]/
(

X 2 − ζ2BitReverse7(i)+1
)
= Tq

Let f ∈ Rq . Then NTT : Rq → Tq is given by

NTT(f ) =
(

f mod
(

X 2 − ζ2BitReverse7(0)+1
)
, . . . , f mod

(
X 2 − ζ2BitReverse7(127)+1

))
and NTT−1 is also efficient.

18



Kyber in the NTT realm

Multiplication in Rq :
256 × 256 multiplications

Multiplication in Tq :
128 × 4 multiplications
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Sampling algorithms

SampleNTT Convert a stream of bytes into a polynomial in the NTT domain
SamplePolyCBDη Sample a coefficient array of a polynomial f ∈ Rq , according to a

centered binomial distribution specified by η.
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Compression using seeds
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Computer-friendly representation
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Compression and decompression of numbers

Compressd : Zq → Z2d

x 7→
⌊(

2d/q
)
· x

⌉
Decompressd : Z2d → Zq

y 7→
⌊(

q/2d) · y⌉

Decompressd ◦ Compressd ≈ 1

[Decompressd (Compressd (x))− x ] mod ±q ≤
⌊
q/2d+1⌉
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The finished K-PKE algorithm
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The finished K-PKE algorithm
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Security amplification: The Fujisaki-Okamoto transformation

Theorem (Fujisaki-Okamoto (informal))

If E is an IND-CPA secure public-key cryptosystem, then FO(E) is an IND-CCA secure key
encapsulation mechanism.

(Hofheinz, Hövelmanns, Kiltz: “A Modular Analysis of the Fujisaki-Okamoto
Transformation” (2017))
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ML-KEM
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ML-KEM
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ML-KEM
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Parameter sets and key sizes
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NIST security levels

NIST cat. As strong as Kyber
I AES-128 ML-KEM-512
II SHA-256
III AES-192 ML-KEM-768
IV SHA-384
V AES-256 ML-KEM-1024
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Is ML-KEM-512 really cat. I?

Daniel J. Bernstein: You can’t change the metrics halfway in. What’s going on in the
background here?

NIST, and many others: Hey, it’s fine. Also, we want the algorithms to be usable and
efficient in practice.

Bernstein: Also, your counting is wrong, and you are exaggerating your
numbers. Memory access is considerably cheaper than you
calculate. You’d better abandon Kyber altogether.

NIST, and many others: Dan, you’re wrong. We’re right to count memory access as we do.
Bernstein: Also, these S-unit attacks are devastating for lattices.

Our MS student: Well, they ought to work, but we can’t verify the speed.
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... and then it went downhill

It seems like Dan changes his point of view – inconsistently with himself – and
never "retracts" misinformation that he has published.
What could be the reason for this? I’ve come up with three thoughts:

1. Daniel J. Bernstein is so incredibly egotistic, that scientific truth doesn’t
matter to him.

2. Daniel J. Bernstein is acting on behalf of a foreign (to the U.S.) intelligence
agency, with the aim to undermine the work of NIST in the long run.

3. Daniel J. Bernstein is a shill for the NSA
Well – to me – (2) seems not so likely. In such a scenario, surely the NSA would
throw its weight around to stave off such a threat.
So, it seems to me, there are two likely cases: Either DJB is an independent actor
with no regard for the truth (only to satisfy his own ego), or DJB is acting on behalf
of the NSA to subvert public cryptographic standards.
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Well, that escalated quickly
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Expected adoption
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FFI turns knowledge and ideas
into an effective defence


	Warning: Mathematics follows!

