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There are a number of different formulations of one-time perfect privacy that all turn
out to be equivalent to the game-based definition we gave in class. In this note we prove
this equivalence for one of the most common formulations (also used in [BR]). First recall
the definition of perfect privacy we used in class. For the purposes of this note, we call this
definition game-based one-time perfect privacy.

Definition 1. An encryption scheme Σ = (Enc,Dec) defined over (K,M, C) has (game-
based) one-time perfect privacy if any adversaryA has zero advantage in the following game

Exp1-priv
Σ (A)

1: b $← {0, 1}
2: K $← Σ.KeyGen
3: M ← A // A picks message it wants to see encrypted
4: R $← {0, 1}|M | // Challenger draws random msg. of equal length
5: C0 ← Σ.Enc(K,M) // “World 0”: encrypt M
6: C1 ← Σ.Enc(K,R) // “World 1”: encrypt R
7: b′ ← A(Cb) // A tries to guess which world it’s in based on Cb

8: return b′
?
= b

where the advantage of A is defined as

Adv1-priv
Σ (A) def

=

∣∣∣∣Pr[Exp1-priv
Σ (A)⇒ true]− 1

2

∣∣∣∣ .
Here is the (more standard) definition of perfect privacy used in [BR].

Definition 2. An encryption scheme Σ = (Enc,Dec) defined over (K,M, C) has one-time
perfect privacy if for everyM,M ′ ∈M and every C ∈ C

Pr[Enc(K,M) = C] = Pr[Enc(K,M ′) = C]. (1)

In both cases the probability is taken over the random choiceK $← K and the coins tossed
by Enc (if any).
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Theorem 1. Definition 1 and Definition 2 are equivalent definitions of one-time perfect privacy.

Theorem 1 says it that if an encryption scheme is secure according to the game-based
definition in Definition 1 then it is also secure according to the definition in Definition 2,
and vice versa. We start by proving the direction Definition 2 =⇒ Definition 1, that is,
the (standard) one-time perfect privacy definition implies the game-based one.

Proof (Definition 2 =⇒ Definition 1): This is basically just a generalization of the argument
given in class: since Pr[EncK(M) = C] = Pr[EncK(M ′) = C] the ciphertext that A sees is
distributed identically in both World 1 and World 0, so it is impossible to distinguish the
two. Hence Pr[b′ = b] = 1/2.

More formally, since we’re dealing with unbounded adversaries we can without loss
of generality assume that A is deterministic (why?). Now let C0 (resp. C1) denote the set
of all the ciphertexts for which A outputs b′ = 0 (resp. b′ = 1). Note that since A must
output either 0 or 1, we have C = C0 ∪ C1 where C0 and C1 are mutually exclusive. Let
Pr[EncK($) = C] denote the probability that EncK(M̃) equals C for a randomly drawn
message M̃ ∈M. Then:

Pr[b′ = b] =
1

2
· Pr[b′ = 1 | b = 1] +

1

2
· Pr[b′ = 0 | b = 0]

=
1

2

∑
C∈C1

Pr[EncK(M) = C] +
1

2

∑
C∈C0

Pr[EncK($) = C]

a)
=

1

2

∑
C∈C1

Pr[EncK(M) = C] +
1

2

∑
C∈C0

Pr[EncK(M) = C]

=
1

2

∑
C∈C

Pr[EncK(M) = C]

b)
=

1

2
,

which proves that Σ has perfect privacy according to the game-based definition (Defini-
tion 1). In a)we used the assumption that Σ has perfect privacy according to Definition 2,
hence Pr[EncK(M) = C] = Pr[EncK($) = C]. In b) we used that

∑
C∈C Pr[EncK(M) =

C] = 1.

We now prove the other direction: security according to the game-based definition
(Definition 1) implies security according to the standard definition (Definition 2). How-
ever, when proving it’s easier to instead prove the (logically equivalent) contrapositive
statement: if Σ does not have perfect privacy according to Definition 2, then it also does
not have perfect privacy according to Definition 1. In particular, if Σ does not have security
according to Definition 2 then there must be someM,M ′, C for which Pr[EncK(M) = C] ̸=
Pr[EncK(M ′) = C]. From this fact we show that we can create an adversary that is able to
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distinguish World 1 andWorld 0 in the game-based experiment with probability different
from 1/2, i.e., Pr[b′ = b] ̸= 1/2. This is exactly what’s needed to show that Σ is not secure
according to Definition 1.

Proof (Definition 1 =⇒ Definition 2): Assume thatΣ is not secure according toDefinition 2.
By definition, this means that there exist M,M ′ ∈ M, C ∈ C such that Pr[EncK(M) =
C] ̸= Pr[EncK(M ′) = C]. Consequently, for this C there must also be an M for which
Pr[EncK(M) = C] is maximal1, hence Pr[EncK(M) = C] > Pr[EncK(M ′) = C]. Note here
that the probability is taken over the choice of all keys (andwhatever random coins flipped
by the encryption algorithm Enc), not over the choice of messages.

From the above fact we can construct the following game-based adversaryA that wins
in experiment Exp1-priv

Σ (A)with probability strictly better than 1/2 (or equivalently: with
advantage Adv1-priv

Σ (A) > 0). Adversary A simply submits the message M having max-
imal probability Pr[EncK(M) = C] to the challenger and outputs b′ = 0 if the returned
ciphertext equals C, and outputs a random bit b′ if not.2

What’s the probability thatAwins inExp1-priv
Σ (A)? To simplify notation, letWindenote

the event that b′ = b and letPr[EncK($) = C]denote the probability thatEncK(M̃) equalsC
for a randomly drawnmessage M̃ ∈M. In the expressionPr[EncK($) = C] the probability
is taken over the choice of keys and the choice ofmessages (andwhatever randomness used
by Enc)—unlike inPr[EncK(M) = C]where the probability is only taken over the choice of
keys (and whatever randomness used by Enc) not the choice of message (which is fixed).

In the real world we then have:

Pr[Win | b = 0] = Pr[Win | b = 0 ∧ EncK(M) = C] · Pr[EncK(M) = C]

+ Pr[Win | b = 0 ∧ EncK(M) ̸= C] · Pr[EncK(M) ̸= C]

= 1 · Pr[EncK(M) = C] +
1

2
· Pr[EncK(M) ̸= C]

= Pr[EncK(M) = C] +
1

2
· (1− Pr[EncK(M) = C])

=
1

2
+

1

2
· Pr[EncK(M) = C]

1Note that there could be multiple messages attaining the maximum.
2How does A actually find M and C? This is where we use the fact that the perfect privacy definition

allows A to be computationally unbounded: A can simply enumerate over all possible keys, messages, and
ciphertexts, until it finds anM that maximizes Pr[EncK(M) = C].
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Similarly, in the ideal world, we have:

Pr[Win | b = 1] = Pr[Win | b = 1 ∧ EncK($) = C] · Pr[EncK($) = C]

+ Pr[Win | b = 1 ∧ EncK($) ̸= C] · Pr[EncK($) ̸= C]

= 0 · Pr[EncK($) = C] +
1

2
· Pr[EncK($) ̸= C]

=
1

2
· (1− Pr[EncK($) = C])

=
1

2
− 1

2
· Pr[EncK($) = C]

Putting these two together we get:

Pr[Win] =
1

2
· Pr[Win | b = 0] +

1

2
· Pr[Win | b = 1]

=
1

4
+

1

4
· Pr[EncK(M) = C] +

1

4
− 1

4
· Pr[EncK($) = C]

=
1

2
+

1

4
· Pr[EncK(M) = C]− 1

4
·
∑

M̃∈M

Pr[EncK(M̃) = C] · 1

|M|

=
1

2
+

1

4 · |M|
·
(
|M| · Pr[EncK(M) = C]

−
∑

M̃∈M
M̃ ̸=M ′

(
Pr[EncK(M̃) = C]

)
− Pr[EncK(M ′) = C]

)

a)

≥ 1

2
+

1

4 · |M|
·
(
|M| · Pr[EncK(M) = C]

− (|M| − 1) · Pr[EncK(M) = C]− Pr[EncK(M̃) = C]
)

=
1

2
+

1

4 · |M|
·
(
Pr[EncK(M) = C]− Pr[EncK(M ′) = C]

)
b)
>

1

2
. (2)

In a) we used that Pr[EncK(M) = C] is maximal, hence

(|M| − 1) · Pr[EncK(M) = C] ≥
∑

M̃∈M
M̃ ̸=M ′

Pr[EncK(M̃) = C].

In b)we used the assumption that Pr[EncK(M) = C] > Pr[EncK(M ′) = C], thus
1

4 · |M|
·
(
Pr[EncK(M) = C]− Pr[EncK(M ′) = C]

)
> 0.
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Finally, this means that the advantage of A is > 0, since

Adv1-priv
Σ (A) def

=

∣∣∣∣Pr[Win]− 1

2

∣∣∣∣ > 0,

by (2). This proves thatΣ does not have perfect privacy according to Definition 1, showing
that ¬Definition 2 =⇒ ¬Definition 1. By the contrapositive, this means that Definition 1
=⇒ Definition 2, which is what we wanted to prove.
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