
Introduction to Cryptography
TEK 4500 (Fall 2023)

Problem Set 10

Problem 1.
Read Chapter 12 in [BR] (Section 12.3.6 can be skipped) and Chapter 10 in [PP] (Section
10.3 can be skipped).

Problem 2.
Given an instance of the Textbook RSA signature scheme (Fig. 1) with public verification
key vk = (e, n) = (131, 9797), which of the following signatures are valid?
a) (M,σ) = (123, 6292)

b) (M,σ) = (4333, 4768)

c) (Mσ) = (4333, 1424)

Problem 3.
Given the same Textbook RSA instance as in Problem 2, make a forgery on the message
M = 1234. Suppose you’re in the UF-CMA setting, i.e., you have access to a signing oracle
that returns signatures on messages of your choice.

Problem 4. [Katz & Lindell]
Consider a padded RSA signature scheme where the public key is (n, e) as usual, and a
signature on a messagem ∈ {0, 1}ℓ is computed by choosing uniform r ∈ {0, 1}2n−ℓ−1 and
outputting (r∥m)d (mod n).
a) How is verification done in this scheme?
b) Show that this padded RSA variant is not secure.

Problem 5.
The Schnorr signature scheme, like ElGamal encryption and the Diffie-Hellman protocol,
is based on the discrete log problem. A simplified variant of the Schnorr signature scheme
is shown in Fig. 2. It is defined over a cyclic group (G, ⋆) = ⟨g⟩ having prime order q.
Note that the message space of this simplified scheme is Zq, i,e, the integers 0 to q − 1.
As a convention we use uppercase letters for the elements in the group G (except for the
generator element g) and lowercase letters for integers.
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RSA.KeyGen:

1: p, q $← two large prime numbers
2: n← p · q
3: ϕ(n) = (p− 1) · (q − 1)
4: choose e ∈ Z∗

ϕ(n)

5: d← e−1 (mod ϕ(n))
6: sk ← (d, n)
7: vk ← (e, n)
8: return (sk, vk)

RSA.Sign(sk,M):
1: Parse sk as (d, n)
2: σ ←Md (mod n)
3: return σ

RSA.Vrfy(vk,M, σ):
1: Parse vk as (e, n)
2: if σe = M (mod n):
3: return 1
4: else
5: return 0

Figure 1: The Textbook RSA signature scheme.

a) Show that Simplified Schnorr is a correct signature scheme, i.e., for every key (d,D)
$←

KeyGen and every message m ∈ Zq, show that Vrfy(D,m, Sign(d,m)) = 1.

Let p = 2 · 11 + 1 = 23 and consider the group (Z∗
23, ·)

b) List all the subgroups of (Z∗
23, ·).

Let G < (Z∗
23, ·) be the subgroup of (Z∗

23, ·) having order q = 11 and assume we use 2
as the generator ofG. In the following subproblems suppose we instantiate the Simplified
Schnorr signature scheme with the group G = ⟨2⟩.

c) Suppose we use d = 5 as our private signing key. Compute public verification key.

d) Suppose during signing of the message m = 8 we draw the random element k = 7.
What is the corresponding signature onm?

e) Verify the signature computed in d).

KeyGen:

1: d $← {1, . . . , q}
2: D ← gd

3: return (d,D)

Sign(d,m ∈ Zq):

1: k $← {1, . . . , q}
2: R← gk

3: s← dm+ k (mod q)
4: return (R, s)

Vrfy(D,m, σ):
1: Parse σ as (R, s)

2: return Dm ⋆ R
?
= gs

Figure 2: The Simplified Schnorr signature scheme.
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f) Unfortunately, Simplified Schnorr is not secure! Show how you can break Simplified
Schnorr by forging on an arbitrary messagem ∈ Zq.
Another problemwith Simplified Schnorr (beside it being completely insecure!) is that

the message space is limited to the integers in Zq. In real life we want to sign arbitrary bit
strings of any length, i.e. we want our message space to be {0, 1}∗. As always, the solution
is to use a hash function: the actual Schnorr scheme uses a hash functionH : G×{0, 1}∗ →
Zq to map a pair of elements (X,M), whereX is a group element andM is the (bit string)
message, to an element in Zq. The signing algorithm of actual Schnorr is shown below.

Sign(d,M ∈ {0, 1}∗):

1: k $← {1, . . . , q}
2: r ← H(gk,M)
3: s← dr + k (mod q)
4: return (r, s)

g) Describe the corresponding verification algorithmof the actual Schnorr signature scheme
and show that the scheme is correct.

h)What happens if you try to run your attack from f) on the actual Schnorr scheme?

Problem 6.
a) The Schnorr signature scheme (both simplified and actual) has a very sharp edge: if

the same random value k is ever used to sign two different messages then an attacker
can obtain the private signing key d! Show this.

Hint: Suppose you are given two signatures σ = (r, s) and σ′ = (r′, s′) that both used
the same value k during signing. What is s− s′?

b) Given the catastrophic failuremode of Schnorr on k reuse it would be good if we didn’t
have to rely on any randomness at all. And this turns out to be possible! To do this,
on Line 1 of the (actual) Schnorr Sign algorithm, instead of picking k at random, we
instead derive it as

1: k ← H(sk,M)
2: ...

where sk = d is the long-term private signing key of Schnorr, M is the message to be
signed, and H is a hash function. Explain why this solves the problem of k reuse.

c) Unfortunately, it turns out that making Schnorr deterministic also makes it more vul-
nerable to certain side-channel attacks that are able to measure the power drawnwhile
signing. Suggest a way of bringing non-determinism back to deterministic Schnorr,
but without re-introducing the k-reuse problem.
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