
Introduction to Cryptography
TEK 4500 (Fall 2023)

Problem Set 5

Problem 1.
Read note on authenticated encryption.

Problem 2.
Let CTR$ be the CTR mode encryption scheme using a random IV. Define Σ to be the
following encryption scheme:

Σ.Enc(K,M) = CTR$.Enc(K,M∥CRC32(M)),

where CRC32 : {0, 1}∗ → {0, 1}32 is the well-known error-detecting code. Suppose C =
C0∥C1∥C2 was the Σ-encryption of message M = 0128, where C0 is the (random) IV of
CTR$ and |C2| = 32. Explain how you would modify C so that it instead decrypts to
M ′ = 1128.
Would changing CRC32 to another function, say a strong hash function like SHA2-256 or
a truly random (but public) function ρ, change anything?

Problem 3. [Problem 7.3 in [BR]]
LetΣ = (KeyGen,Enc,Dec) be a symmetric encryption scheme and letΠ = (KeyGen,Tag,Vrfy)
be a message authentication code. Alice (A) and Bob (B) share a secret keyK = (K1,K2)

where K1
$← Σ.KeyGen and K2

$← Π.KeyGen. Alice wants to send messages to Bob in a
private and authenticated way. Consider her sending each of the following as a means to
this end. For each, say whether it is a secure way or not, and briefly justify your answer.
(In the cases where the method is good, you don’t have to give a proof, just the intuition.)
a)M , TagK2

(EncK1(M))

b) EncK1(M,TagK2
(M))

c) TagK2
(EncK1(M))

d) EncK1(M), TagK2
(M)

1

https://www.uio.no/studier/emner/matnat/its/TEK4500/h23/notes/authenticated_encryption.pdf
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/SHA-2

Expae
Σ (A)

1: b $← {0, 1}
2: K $← Σ.KeyGen
3: Ciphertexts← []
4: b′ ← AE(·),D(·)

5: return b′ = b

E(M):
1: R← {0, 1}|M |

2: C0
$← Σ.Enc(K,M)

3: C1 ← Σ.Enc(K,R)
4: Ciphertexts.add(Cb)
5: return Cb

D(C):
1: if C ∈ Ciphertexts then
2: return ⊥
3: M0 ← Σ.Dec(K,C)
4: M1 ← ⊥
5: return Mb

Advae
Σ (A) = |2 · Pr[Expae

Σ (A)⇒ true]− 1|

Figure 1: Authenticated encryption (AE) security experiment and AE-advantage defini-
tion.

e) EncK1(M), EncK1(TagK2
(M))

f) C, TagK2
(C), where C ← EncK1(M)

g) EncK1(M,A)whereA encodes the identity of Alice;B decrypts the received ciphertext
C and checks that the second half of the plaintext is “A”.
In analyzing these schemes, you should assume that Σ is IND-CPA secure and that Π

is UF-CMA secure, but nothing else; for an option to be good it must work for any choice
of a secure encryption scheme and a secure MAC.

Now, out of all the ways you deemed secure, suppose you had to choose one to imple-
ment for a network security application. Taking performance issues into account, do all
the schemes look pretty much the same, or is there one you would prefer?

Problem 4. [Problem 9.1 in [BS]]
Let Σ be an AE-secure cipher. Consider the following two derived ciphers:

2

Σ1.KeyGen:
1: return Σ.KeyGen

Σ2.KeyGen:
1: return Σ.KeyGen

Σ1.Enc(K,M):
1: C1 ← Σ.Enc(K,M)
2: C2 ← Σ.Enc(K,M)
3: return (C1, C2)

Σ2.Enc(K,M):
1: C ← Σ.Enc(K,M)
2: return (C,C)

Σ1.Dec(K,C):
1: Parse C as (C1, C2)
2: M1 ← Σ.Dec(K,C1)
3: M2 ← Σ.Dec(K,C2)
4: if M1 = M2 then
5: return M1

6: else
7: return ⊥

Σ2.Dec(K,C):
1: Parse C as (C1, C2)
2: if C1 = C2 then
3: return Σ.Dec(K,C1)
4: else
5: return ⊥

Is Σ1 AE-secure? Is Σ2 AE-secure? If yes, give a high-level justification; if no, give a con-
crete attack.

Problem 5.
An important point about the Encrypt-then-MACconstruction is that the encryption scheme
and the MAC scheme must use independent keys. In this problem we’ll look at what can
go wrong if this is not the case.
a) As a warm-up, suppose we are only interested in encryptingmessages of exactly n bits

for some small n (say n = 128) and that we have access to a block cipher E : {0, 1}k ×
{0, 1}2n → {0, 1}2n with the following property:

• E is a secure PRP; and

• the inverse direction of E, i.e., DK(Y) = E−1
K (Y) is also a secure PRP.

A block cipher with this property is said to be a strong block cipher. Thus, a strong
block cipher is a secure PRP nomatter if you’re using it in the “forward” direction or in
the “backward” direction. As an example, AES is believed to be a strong block cipher.

GivenE we construct the following encryption andMAC schemes, defined by their
Enc and Tag algorithms (the remaining algorithms are the obvious ones):

• Enc(K,M) = EK(R∥M), whereM ∈ {0, 1}n andR
$← {0, 1}n is a random string.

• Tag(K,M) = DK(M).

3

It is possible to show that if E is a strong PRP then Enc is IND-CPA secure and that
Tag is UF-CMA secure1. However, show that the Encrypt-then-MAC combination of
Enc and Tag is not secure if you’re using the same keyK for both.

b) Suppose instead we’re using Encrypt-then-MAC with CBC$-mode for encryption and
CBC-MAC for authentication, and that we’re careful to only encrypt messages having
exactly ℓ blocks of n bits each. From class we know that CBC$-mode encryption is
IND-CPA secure and that CBC-MAC is UF-CMA secure as long as we’re only MACing
messages having exactly ℓ + 1 blocks and not MACing any other lengths. However,
show that the Encrypt-then-MAC combination of the two is not secure if you’re using
the same keyK for both.

Expind-cpa
Σ (A)

1: b← {0, 1}
2: Ciphertexts← []

3: K $← Σ.KeyGen
4: b′ ← AE(·)

5: return b′
?
= b

E(M):
1: R $← {0, 1}|M |

2: C0 ← Σ.Enc(K,M)
3: C1 ← Σ.Enc(K,R)
4: Ciphertexts.add(Cb)
5: return Cb ▷ real ciphertext or encryption of random string

D(C):
1: if C ∈ Ciphertexts then ▷ adversary cheating; suppress output
2: return ⊥
3: return Σ.Dec(K,D)

Advind-cca
Σ (A)) =

∣∣∣2 · Pr[Expind-cca
Σ (A)⇒ true]− 1

∣∣∣
Figure 2: IND-CCA security experiment.

1The last point is trivial given what we saw in class: any secure PRF is also a good fixed-length MAC, and
all secure PRPs are also secure PRFs.

4

Problem 6. [AE =⇒ IND-CCA, but IND-CCA ≠⇒ AE]
In this exercise we will see that IND-CCA security (ref. Fig 2) does not imply AE security
(ref. Fig 1), while AE security does imply IND-CCA security. In other words, AE is a
stronger security notion than IND-CCA. LetΣ = (KeyGen,Enc,Dec) be an IND-CCA secure
encryption scheme. Define the following derived encryption scheme:

Σ′.KeyGen:
1: return Σ.KeyGen

Σ′.Enc(K,M):
1: C ← Σ.Enc(K,M)
2: return 0∥C

Σ′.Dec(K,C):
1: Parse C as x∥C ′ where x is one bit
2: if x = 0 then
3: return Σ.Dec(K,C ′)
4: else
5: return 0

a) Argue why Σ′ is also IND-CCA secure.
b) Show that Σ′ is not AE secure by demonstrating a concrete attack. Calculate the AE-

advantage of your attack. That is, compute Advae
Σ′(A), where A is the adversary that

runs your attack.
c) Show that AE security implies IND-CCA security. You don’t have to provide a full

proof, just a high-level argument.

Problem 7. [Nonce-reuse in GCM leaks the authentication key.]
Note: This isn’t really an exercise per se (there isn’t anything for you to answer!), instead,
it is a write-up of how bad the GCM mode can fail if you ever reuse a nonce. Reading
through this exercise is a good way for you to become more familiar with the GCMmode-
of-operation. Also, this exercise requires some familiarity with polynomials. If you want
to read more about the (practical) consequences of nonce-reuse in GCM inside the TLS
protocol, have a look at the paper “Nonce-Disrespecting Adversaries: Practical Forgery Attacks
on GCM in TLS” (link) byHanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and
Philipp Jovanovic.

Recall that the GCMmode-of-operation is essentially an instance of the Encrypt-then-
MACparadigm. In particular, to encrypt amessageM GCMfirst encryptsM with (nonce-
based) CTR to produce a ciphertext C. Then it applies a (nonce-based) MAC to C called
GMAC to produce the final tag T . In particular: T = GMAC(H,S,C)whereH is the MAC
key and S is the nonce for GMAC. See Fig. 3 for details. When GMAC is used inside GCM
then S is actually derived from the nonceN and keyK. On the other hand, the valueH is
not dependent on the nonce, only on the keyK. HenceH will be the same for all messages
encrypted under the same key. This will be important later.

5

https://eprint.iacr.org/2016/475.pdf

Figure 3: GCMmode-of-operation. The internal MAC function GMAC circled.

The GMAC function, which produces the tag T in GCM, can be thought of as an eval-
uation of a polynomial

g(X) =
∑
i

αiX
i,

where the coefficients αi are determined by the values of the additional data AD and the
ciphertext C, where the constant term is the “one-time pad”-like value S. For example,
suppose the additional data consists of two blocks AD = A1∥A2, and the ciphertext of
three blocks C = C1∥C2∥C3 (as shown in Fig. 3). Then we get the polynomial:

g(X)← A1X
6 +A2X

5 + C1X
4 + C2X

3 + C3X
2 + LX + S, (1)

where L encodes the length of A and C and S is a nonce-derived value. To compute the
GMAC tag on A and C we simply evaluate g(X) on the (secret) value H = EK(0128):

T ← g(H) = A1H
6 +A2H

5 + C1H
4 + C2H

3 + C3H
2 + LH + S.

It is very important that GCM never reuses the same nonce N twice for the same key
K. We will now show why.

Suppose two messages M and M ′ have been GCM encrypted under the same nonce
(and key). For simplicity, assume there is no additional data and themessages only consist
of a single 128-bit block. Thus, the corresponding CTR-part of the ciphertexts also only
consist of a single block C and C ′, respectively.

6

Referring to (1), the corresponding GMAC polynomials then become:

g(X)← CX2 + LX + S

g′(X)← C ′X2 + LX + S

where L encodes the length of C (and C ′) and S = EK(N∥0311). In particular, note that
S is the same for both since they are reusing the nonce N .

To compute the tag on C and C ′ we simply evaluate g(X) and g′(X) onH = EK(0128):

T ← g(H) = CH2 + LH + S (2)
T ′ ← g′(H) = C ′H2 + LH + S (3)

Now, the multiplication and addition happening in (2) and (3) is not actually normal
multiplication and addition over the integers, but rather happening in a finite field. Fortu-
nately, we don’t have to care about the details of finite fields here. The only thing we need
to know is that the addition in the finite field used by GCM is the same as the standard
XOR operation between bitstrings.

Thus, if we add T and T ′ we get:

T + T ′ = g(H) + g(H ′) = CH2 + C ′H2 = (C + C ′)H2 (4)

where we used the fact that the “LH + S” term is the same for both T and T ′, and hence
cancel out (as happens when you XOR two equal values). Rearranging (4) we have:

(C + C ′)H2 + (T + T ′) = 0. (5)

Notice that the only value we (the attacker) don’t know in (5) isH , since C, C ′, T , and
T ′ are all known to us. Thus, if we could solve (5) forH we would actually be able to forge
any GCM ciphertext! Why? Look at Fig. 3: the H value does not depend on the nonce N .
It is re-used for all GCM computations, and can thus be reused by us to create forgeries
on new ciphertexts. However, we still need the value S to create the final tag (again, refer
to Fig. 3). Fortunately, this is a not a big problem: when creating a forgery, we simply
reuse the nonce from a previous message from which we can learn S (since we knowH).
Concretely, suppose we use the nonce N from above in our future forgeries. This would
also require us to use the same S. But this S can easily be deduced from (2) since we now
know H (together with C, L, and T):

S ← T + CH2 + LH (6)

With all of this in hand, let’s see how we would use it to forge an arbitrary cipher-
text, say C∗ = C∗

1∥C∗
2∥C∗

3 . For an added bonus, suppose we also want to include some
additional data AD = A∗

1. Our final output will then be:

N∥C∗
1 |C∗

2∥C∗
3∥T ∗,

7

https://en.wikipedia.org/wiki/Finite_field

where N is the same N used to create C and C ′ above, and T ∗ is computed as:

T ∗ ← A∗
1H

5 + C∗
1H

4 + C∗
2H

3 + C∗
3H

2 + L∗H + S,

where S is the value recovered in (6).

The only thingwe still haven’t answered is how to actually solve forH in (5). However,
this is easy: the equation in (5) is a quadratic equation hence can be solved by simple
algebra (in particular, the quadratic formula which is also valid in finite fields).

Conclusion: Reusing the nonce (with the same key) in GCM is bad! It essentially leaks
the GMAC key (H) which more or less voids all authentication guarantees that GCMwas
supposed to give. The lesson is: never resuse the nonce when using GCM!

References

[BR] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. https:

//web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf.

[BS] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography, (version
0.5, Jan. 2020). https://toc.cryptobook.us/.

8

https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://toc.cryptobook.us/

