
Introduction to Cryptography
TEK 4500 (Fall 2023)

Problem Set 8

Problem 1.
Read Chapter 9 (Section 9.4 can be skipped) and Chapter 10.1–10.2 in [BR] and Chapter 8
(Section 8.5 can be skipped).

Problem 2.

a) In a programming language of your choice implement the Square-and-Multiply algo-
rithm for exponentiations in the group (Z∗

p, ·).

b) Let p = 7123242874534573495798990100159. Convince yourself that p is prime.

Hint: Use your implementation from a) to run the Fermat primality test for some dif-
ferent values a ∈ {2, 3, . . . , p− 1}.

c) Suppose Alice and Bob run the Diffie-Hellman protocol using the group (Z∗
p, ·), where

p is the prime above. They use 2 as the generator for (Z∗
p, ·). Let Alice’s secret value be

a = 2081934828612837167732093031150, and let b = 897710169350499321443689869714
be the secret value of Bob. Compute their shared Diffie-Hellman secret.

Computing with elliptic curves

The remaining exercises give some introduction to computing with elliptic curves. Let
p ≥ 5 be a prime number and let

E : y2 = x3 + ax+ b (mod p) (1)

be an elliptic curve where a, b ∈ Fp
1 satisfy 4a3 + 27b2 ̸= 0 (mod p)2. As explained in

class, the collection E(Fp) of all the points P = (x, y) that satisfy (1), together with a
1Recall that Fp just denotes the combination of the additive group (Zp,+) and the multiplicative group

(Z∗
p, ·). That is, we allow ourselves both the option to add elements from {0, 1, . . . , p− 1}modulo p, as well as

multiplying elements from {1, . . . , p− 1}modulo p. This combination is called a finite field.
2This requirement is just to avoid some complications. You can safely ignore it.
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special point O, is actually an abelian group (E(Fp),+). Here, the addition operation
“+” is not simply the component-wise addition of two points. That is, for two points
P = (x1, y1), Q = (x2, y2) ∈ E(Fp), it is not the case that P + Q = (x1 + x2, y1 + y2)
where both coordinates are taken modulo p. Instead, P + Q is motived by the geomet-
ric “chord-and-tangent” procedure defined for an elliptic curve over the real numbers R
(ref. Lecture 8 and 9). Now, for a finite field Fp, the curve defined by (1) does not give a
nice graph like in R. However, the algebraic equations that define the chord-and-tangent
procedure inR carry over to Fp.

These equations are not unique and there are many different, equivalent, ways of for-
mulating them. One common way of expressing the addition operation in (E(Fp),+) is
as a number of cases, each dealing with whether the coordinates of P and Q are equal or
not (or the identity). Specifically, the following set of equations specify how to add two
points P = (x1, y1), Q = (x2, y2) ∈ E(Fp). (See Lecture 9 for examples illustrating the
cases below.)

E.1) If Q = O then P +Q = P // by definition, the identity doesn’t change the other point

E.2) If P = O then P +Q = Q // same as above

E.3) If x1 = x2 and y1 = −y2 then P +Q = O // P and Q lie on opposite sides of the x-axis, i.e., are
inverses

E.4) If P = Q and y1 = 0 then P + P = O // “special case” of point doubling

E.5) If P = Q and y1 ̸= 0 then P + P = (x3, y3) where // point doubling

x3 = (m2 − 2x1) (mod p) y3 = (m · (x1 − x3)− y1) (mod p)

and
m =

3x21 + a

2y1
(mod p)

E.6) If P ̸= Q and x1 ̸= x2 then P +Q = (x3, y3)where // “general” case

x3 = (m2 − x1 − x2) (mod p) y3 = (m · (x1 − x3)− y1) (mod p)

and
m =

y2 − y1
x2 − x1

(mod p)

For all the remaining problems, elliptic curve addition refer to the equations defined
above.

When using E.5) and E.6) you need to be able to compute inverses modulo pwhen calcu-
lating m. In class I mentioned that the common way of doing this is using the Extended
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Expdlog
G,G(A):

1: x $← {0, 1, . . . , |G| − 1}
2: X ← Gx

3: x′ ← A(X)

4: return x′
?
= x

Advdlog
G,G(A) = Pr[Expdlog

G,G(A)⇒ true]

Advdh
G,G(A) = Pr[Expdh

G,G(A)⇒ true]

Expdh
G,G(A):

1: x, y $← {0, 1, . . . , |G| − 1}
2: X ← Gx

3: Y ← Gy

4: z ← A(X,Y )

5: return Gz ?
= Gxy

Figure 1: Formal security experiments for the discrete logarithm (DLOG) problem and
the Diffie-Hellman problem in a cyclic group G = ⟨G⟩.

Euclidean algorithm (EEA). However, there is a neat trick that avoids the need to use the
EEA in order to calculate inverses. The trick uses Fermat’s Theorem, which recall says that:
for any a ̸= 0 (mod p) we have

ap−1 = 1 (mod p).

However, note that we can also write this as

ap−2 · a = 1 (mod p)

In other words: the inverse of a is simply ap−2 (mod p)!

Problem 3.
The DLOG experiment Expdlog

G,G(A) and the DH experiment in Expdh
G,G(A) in Fig. 1 are

written using multiplicative notation. Rewrite them to use additive notation instead. Note
that the group is denoted G while the elements are denoted with normal uppercase letters,
i.e., G,X, Y ∈ G.

Problem 4.
Let E be the elliptic curve y2 = x3 + 3x+ 7 defined over the finite field F11.

a) Show that P = (8, 9) is a point on the curve E.

b)What is the inverse ofP ? That is, what are the coordinates of−P in the group (E(F11),+)?
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c) Compute 2P = P + P .

Hint: this is case E.5).

d) Compute 3P = P + P + P = 2P + P .

e) Compute 4P .

f) Compute Q = 5P .

g) Compute 2Q.

h) Based on f) and g) what’s the order of the cyclic subgroup ⟨P ⟩ < (E(F11),+)? What’s
the order of the cyclic subgroup ⟨Q⟩ < (E(F11),+)?

Problem 5.
Let E be the elliptic curve y2 = x3 + 5x − 1 defined over the finite field F23. It turns out
that (E(F23),+) has order 17, i.e., it has 17 elements. Since 17 is a prime number we know
that any point P ̸= O is a generator for (E(F23),+).

a) Show that P = (3, 8) is a point on E.

b) Show that 17P = O.

Hint: Compute 2P 7→ 4P 7→ 8P 7→ 16P 7→ 17P
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