
Introduction to Cryptography
TEK 4500 (Fall 2023)

Problem Set 9

Problem 1.
Read Chapter 10.3 and Chapter 11 in [BR] and Chapter 7 in [PP].

Problem 2.
Implement Textbook RSA in a programming language of your choice. Verify that your
implementation achieves correctness: first encrypt a message with the public key, then de-
crypt the ciphertext with the private key and check that you get back the original message.

Hint: Use Sage! This is basically Python, but with a lot of additional enhancements to deal
with the algebraic structures used in cryptography. Some useful functions:

• next prime(n) – return the first prime number larger than the integer n.

• Integers(n) – create the structure Zn. To create the elements 5 and 7 in Z9 write
1: Zn = Integers(n)

2: a = Zn(5)

3: b = Zn(7)

If you then do
1: a + b
2: a * b

the result will be 3 and 8, respectively, which is the expected result in Z9. Note that
you didn’t explicitly have to do the (mod 9) operation.

• One difference from Python: in Sage the ˆ operation means exponentiation and not
XOR as in Python.

Problem 3.
Asnoted in class, TextbookRSA should not be thought of as an encryption scheme in and of
itself. The reason is that Textbook RSA is deterministic and thus has no chance of achieving

1

https://sagecell.sagemath.org/


Expind-cca
Σ (A)

1: b← {0, 1}
2: Ciphertexts← [ ]

3: (sk, pk) $← Σ.KeyGen
4: b′ ← AE(·),D(·)(pk)

5: return b′
?
= b

E(M):
1: R $← {0, 1}|M |

2: C0 ← Σ.Enc(pk,M)
3: C1 ← Σ.Enc(pk,R)
4: Ciphertexts.add(Cb)
5: return Cb

D(C):
1: if C ∈ Ciphertexts : // Cheating!
2: return ⊥
3: return Σ.Dec(sk, C)

Advind-cca
Σ (A)) =

∣∣∣2 · Pr[Expind-cca
Σ (A)⇒ true]− 1

∣∣∣
Figure 1: IND-CCA security experiment for a public-key encryption scheme Σ.

IND-CPA security. Instead, Textbook RSA should be thought of as a more basic primitive,
from which we can build an encryption scheme. One way of doing this is by padding the
message with random bits before encrypting with Textbook RSA.

Consider the following padded version of RSA: for a modulus n of k bits, the message
space is bit strings of ℓ < k bits for some fixed ℓ. When encrypting, themessageM ∈ {0, 1}ℓ
is first padded with k − ℓ− 1 random bits P ∈ {0, 1}k−ℓ−1.1 The concatenationX = P∥M
is then treated as an integer in the natural way and encrypted with Textbook RSA. On
decryption, Textbook RSA decryption is applied and the first k − ℓ − 1 bits are removed.
The remaining bits are returned as the decrypted message.

For very small ℓ relative to k (e.g. ℓ ≈ 10 and k = 2048) it is possible to show that
Padded RSA is IND-CPA secure under the RSA-assumption.

Exercise: Unfortunately, Padded RSA is not IND-CCA secure (ref Fig. 1). Show this.

Hint: Exploit the fact that RSA has the following property: if C = M e (mod n), then
Se · C = (S ·M)e (mod n).

1The “−1” is just to ensure that the padded message is smaller than the modulus n

2



Problem 4.
Suppose you are given n = p · q and ϕ(n) = (p− 1)(q − 1) = n− p− q + 1, where p and q
are two distinct prime numbers.
a) Find an expression for p (or q) in terms of n and ϕ(n).
b) Suppose you are given n = 1517 and ϕ(n) = 1440. Find p and q.
c) Suppose you are given

n = 0x58cfda78810ec57ec74cf45415cbd9ee386e775550e4a3654b62db2a9ca32f9ed6a9d0e6d8c85e7f0ba5cf4375fd68157b56329d1b2675

and
ϕ(n) = 0x58cfda78810ec57ec74cf45415cbd9ee386e775550e4a3654b62db1582d94f712123656dc2ec8fba147f302523b7d045f9016c257bd76c

Find p and q.

Problem 5.
In practice, whenever RSA encryption is used (in some properly padded form; see Prob-
lem 3), it is only used to encrypt a short symmetric key. This key is then used in some sym-
metric encryption scheme to encrypt the actual data. Thus, RSA encryption is in reality
mostly used as a key transport mechanism of symmetric keys. We’ve already seen another
way of establishing a shared key between two parties: the Diffie-Hellman key exchange
protocol. Thus, we have two natural ways for Alice and Bob to establish a shared secret
between them:

• Diffie-Hellman: Alice and Bob run the Diffie-Hellman protocol.
• RSA:Alice picks a random symmetric key and then encrypts it with Bob’s RSApublic

key. The ciphertext of the key is sent to Bob which decrypts it to obtain the key.

a) Compare these two methods for establishing a shared secret. Focus both on security
and efficiency.

Hint: Look up the story of the email service provider Lavabit and why it was shut
down in August 2013.

Hint: A keyword is forward secrecy.
b) Explain how you would obtain forward secrecy when using RSA for key exchange.

Problem 6.
The way we defined ElGamal in class is slightly different from how it is presented in most
textbooks, which typically do not include the symmetric encryption scheme Σ. Instead,
they encrypt themessage directly using the derived keyZ in a “one-time-pad” like fashion
(see Fig. 2).

3

https://scotthelme.co.uk/perfect-forward-secrecy/


ElGamal.KeyGen:
1: x $← {0, 1, . . . , |G| − 1}
2: X ← gx

3: return (sk = x, pk = X)

ElGamal.Enc(pk = X,M):
1: y $← {0, 1, . . . |G| − 1}
2: Y ← gy

3: Z ← Xy

4: C ← Z ⋆M
5: return (Y,C)

Figure 2: The Textbook ElGamal encryption scheme. It is parameterized by a cyclic group
(G, ⋆) = ⟨g⟩.

a)What is the message space for Textbook ElGamal?
b) Describe the decryption algorithm for Textbook ElGamal.
c) Show that Textbook ElGamal does not achieve IND-CCA security (Fig. 1).

Problem 7.
One way of upgrading an IND-CPA secure public-key encryption scheme Σasym into an
IND-CCA secure one is to apply something called the Fujisaki-Okamoto (FO) tranforma-
tion. The FO-transform consists of essentially three steps:

1. Generate a random bitstring σ. From σ derive a symmetric keyK by hashing it with
as hash functionH1, i.e. K ← H1(σ). WithK encrypt the actual messageM using a
symmetric encryption scheme Σsym, yielding a ciphertext C2.

2. Encrypt σ with the IND-CPA secure public-key encryption scheme Σasym, giving a
ciphertext C1. However, there’s a twist to this encryption step. Normally, a public-
key encryption algorithm generates its own internal randomness when encrypting
a message, but here we feed in the random coins externally. Moreover, these ran-
dom coins σ′ are derived from σ and C2 using another hash function H2, i.e. σ′ ←
H2(σ,C2).
In particular, when encryptingσweuseσ′ as the “internal” randomness ofΣasym.Enc.
To make this explicit we use the notation C2 ← Σasym.Encpk(σ;σ

′), as opposed to
the usual notation C2 ← Σasym.Encpk(σ) where the internal randomess is “hidden”.
Thus, Σasym.Encpk(σ) is a probabilistic algorithm on input σ, while Σasym.Encpk(σ;σ

′)
is a deterministic function of the two inputs σ and σ′.
The final ciphertext is C = C1∥C2.

3. When decrypting a ciphertext C = C1∥C2 we first decrypt C1 to get σ. Then we
derive σ′ ← H2(σ,C2), and re-encrypt σ with Σasym using random coins σ′. If the

4

https://link.springer.com/content/pdf/10.1007%2Fs00145-011-9114-1.pdf
https://link.springer.com/content/pdf/10.1007%2Fs00145-011-9114-1.pdf


FO.KeyGen:
1: (sk, pk) $← Σasym.KeyGen
2: return (sk, pk)

FO.Enc(pk,M):
1: σ $← {0, 1}k
2: K ← H1(σ)
3: C2 ← Σsym.Enc(K,M)
4: σ′ ← H2(σ,C2)
5: C1 ← Σasym.Enc(pk, σ;σ′)
6: return C1, C2

FO.Dec(sk, C):
1: Parse C as (C1, C2)
2: σ ← Σasym.Dec(sk, C1)
3: K ← H1(σ)
4: σ′ ← H2(σ,C2)
5: M ← Σsym.Dec(K,C2)
6: C ′

1 ← Σasym.Enc(pk, σ;σ′)
7: if C ′

1 = C1:
8: return M
9: else
10: return ⊥

Figure 3: The FO-transform. It is parameterized by a public-key encryption scheme Σasym,
a symmetric encryption scheme Σsym, and two hash functions H1, H2.

result is not equal to the original C1 we return ⊥, else we derive K (from σ) and
decrypt C2 with Σsym.

The details of the FO-transform are given in Fig. 3.
a) Suppose the public-key encryption scheme Σasym has private/public-key space SK ×
PK, message spaceM1 and ciphertext space C1; and that the symmetric encryption
scheme Σsym has key space K, message spaceM2 and ciphertext space C2. Then their
corresponding encryption algorithms have the following “type signatures”:

Σasym.Enc : PK ×M1 → C1
Σsym.Enc : K ×M2 → C2

Similarly, their decryption algorithms have type signatures:

Σasym.Dec : SK × C1 →M1

Σsym.Dec : K × C2 →M2 ∪ {⊥}.

What are the type signatures of FO.Enc and FO.Dec?
b) Show that the FO transform yields a correct encryption scheme. That is, show that

FO.Dec(sk,FO.Enc(pk,M)) = M

c) Suppose your are using Textbook ElGamal as the public-key encryption scheme Σasym

in the FO-transform. What happens if you carry out your attack from Problem 6 now?

5



d) It is possible to prove that the FO-transform gives an IND-CCA secure public-key en-
cryption scheme provided that the public-key encryption scheme Σasym is IND-CPA
secure2, the symmetric encryption scheme Σsym is (one-time) IND-CCA secure, and
the hash functions are modeled as random oracles3. The formal proof of this fact is not
straightforward. Instead, try to give some high-level arguments for why an IND-CCA
attacker against an FO-transformed public-key encryption scheme is unlikely to suc-
ceed.

References

[BR] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. https:

//web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf.

[PP] Christof Paar and Jan Pelzl. Understanding Cryptography - A Textbook for Students and
Practitioners. Springer, 2010.

2Plus an additional assumption on the distribution of the ciphertexts.
3A random oracle is simply a keyless publicly accessibly function that on input X responds with a random

output Y . It returns the same value Y if queried on X again. However, the internals of the random oracle are
completely hidden, i.e., the only way to learn an output value is by querying it on some input value, hence
the name oracle. Modeling a hash function as a random oracle is a very strong assumption. Essentially, by
invoking the random oracle model we are assuming that any attacker against the full construction (e.g. the
FO-transform), will not try to exploit the internal structure of the hash functions.

6

https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf

