Exercises from lecture 6 (auctions) TEK5010 Multiagent systems 2019

Question 1

3 agents $\mathrm{Ag}=\{1,2,3\}$ are to decide on the allocation of 3 different resources (or perhaps tasks?)
$Z=\{a, b, c\}$. They decide that a combinatorial auction is the preferred mechanism that they will use in order to distribute the resources among themselves.
a. Agents/bidders are making XOR bids representing their valuation function:
$\beta_{1}=(\{a\}, 4) \operatorname{XOR}(\{c\}, 2) \operatorname{XOR}(\{a, b\}, 7) \operatorname{XOR}(\{a, b, c\}, 8)$
$\beta_{2}=(\{b\}, 1) \operatorname{XOR}(\{c\}, 5) \operatorname{XOR}(\{a, b\}, 10) \operatorname{XOR}(\{b, c\}, 17)$
$\beta_{3}=(\{a\}, 1) \operatorname{XOR}(\{c\}, 3) \operatorname{XOR}(\{a, b\}, 4) \operatorname{XOR}(\{a, b, c\}, 14)$

Could you evaluate the valuation functions for the agents in terms of the following bundles:
$v(\{a\}), v(\{b\}), v(\{c\})$
$v(\{a, b\}), v(\{a, c\}), v(\{b, c\})$
$v(\{a, b, c\})$
b. Determine the winner in this auction assuming the auctioneer is maximizing social welfare. (Hint, since there is a limited number of possible outcomes you could enumerate and evaluate all bundles in a comparative analysis.)
c. Could you explain the VCG-mechanism? What are the pros and cons of using the VCG-mechanism in auctions?
d. What is the price each agent has to pay if we use the VCG-mechanism for evaluating the given auction?

