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Corona restrictions at UiO

Remember to keep everyone safe by:

1. Washing hands

2. Keeping your distance (1 metre)

3. Staying home if you are sick

https://www.uio.no/english/about/hse/corona/index.html
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Highlights lecture 5 – Swarm robotics 2*

• Swarm collective decision-making

– Terminology and notation 

– The decision-making process

– Different models (voting, urn, Hegselmann-Krause, etc)

• Swarm case study: Adaptive aggregation, BEECLUST
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*Hamann, 2018: chapter 6 and 7



Swarm collective decision-making

Terminology and notation [Hamann, 2018]:

Swarm has to decide over a set of options 𝑂 = 𝑂1, 𝑂2, … , 𝑂𝑚
with 𝑚 > 1 options. Task is to achieve consensus on one 

option Oj. 

• 𝑞 𝑂𝑗 is quality of option

• A robot i has a defined option 𝑜𝑖 at any time

• 𝒩𝑖 defines the neighbourhood of robot i without robot i

• 𝒢𝑖 defines the neighbourhood of robot i including robot i
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Swarm collective decision-making

Decision-making process:
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Image: Figure 6.5, Hamann, 2018



Swarm collective decision-making

Decision-making process:

1. Exploration phase: robots explore local area in search of 

information on quality of options.

2. Dissemination phase: robots signal its opinion to 

neighbours. Typically signal is correlated with quality of 

opinion, e.g. duration and/or intensity.

3. Opinion switch: robots follow a decision-making rule to 

switch their opinion, e.g. voter rules.
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Swarm collective decision-making

Decision-making process:

• Robots do not have to follow all 3 phases

• Process need not be synchronized among robots

• Signalling needs to be agreed upon

• How to connect micro-rule with global behaviour? 
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Swarm collective decision-making

The voter model [Clifford & Sudbury, 1973]:

A robot i considers its neighbours’ opinions oj with 𝑗 ∈ 𝒩𝑖 and 

picks a neighbour j at random and switches to its opinion.

• Very simple model

• High accuracy

• Slow convergence
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Swarm collective decision-making

The majority rule:

A robot i considers its neighbourhood group 𝒢𝑖 and counts the 

occurrence wj of each option in O. The robot them switches its 

opinion to the most frequent option Ok with 𝑘 = argmax 𝑤𝑗, that 

is, the majority within its group.

• Fast convergence

• Less accurate than the voter model
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Swarm collective decision-making

Urn models:
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Image: Figure 6.6, Hamann, 2018



Swarm collective decision-making

Urn models:

No spatial information, i.e. a well-mixed density is assumed

• The Ehrenfest model – an introduction to urn models 

(originally diffusion processes in thermodynamics)

• The Eigen model – self-organization through positive 

feedback gives perfect consensus

• The swarm urn model – self-organization through positive 

and negative feedback to avoid perfect consensus
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Swarm collective decision-making

Ehrenfest urn model 

[Ehrenfest & Ehrenfest , 1907]:
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Image: Figure 6.6, Hamann, 2018



Swarm collective decision-making

Ehrenfest urn model [Ehrenfest & Ehrenfest, 1907]:

𝐵 𝑡 + 1 = 𝐵 𝑡 + ∆𝐵 𝐵 𝑡

where 𝐵 𝑡 is number of balls of colour C at time t

∆𝐵 𝐵 𝑡 is expected change in balls of colour C

 An exponential convergence is expected
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Swarm collective decision-making

Ehrenfest urn model [Ehrenfest & Ehrenfest, 1907]:

Assume 64 balls in urn, 16 Blue and 48 Red:

𝑃𝐵𝑙𝑢𝑒 =
16

64
= 0.25 and 𝑃𝑅𝑒𝑑 =

48

64
= 0.75

⟹ ∆𝐵
16

64
= −1 𝑃𝐵𝑙𝑢𝑒 + +1 𝑃𝑅𝑒𝑑 = 0.5

09.09.2020 15



Swarm collective decision-making

Ehrenfest urn model [Ehrenfest & Ehrenfest, 1907]:

∆𝐵 𝐵 𝑡 = −2
𝐵

𝑁
+ 1

where N is total number of balls

The recurrence 𝐵 𝑡 + 1 = 𝐵 𝑡 + ∆𝐵 𝐵 𝑡 can be solved by 

a generating function assuming 𝐵 𝑡 = 0 is given.

09.09.2020 16



Swarm collective decision-making

Eigen urn model 

[Eigen & Winkler, 1993]:
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Image: Figure 6.7, Hamann, 2018



Swarm collective decision-making

Eigen urn model [Eigen & Winkler, 1993]:

∆𝐵 𝐵 𝑡 = ൝
2
𝐵

𝑁
− 1, for 𝐵 ∈ 1,𝑁 − 1

0, 𝑒𝑙𝑠𝑒

The Eigen model is an ‘inverted’ Ehrenfest model. 

Special care must be taken for the extreme cases of 

B=0 and B=N.
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Swarm collective decision-making

Swarm urn model 

[Hamann, 2013]:
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Image: Figure 6.10, Hamann, 2018



Swarm collective decision-making

Swarm urn model [Hamann, 2013]:
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Image: Figure 6.9, Hamann, 2018



Swarm collective decision-making

Swarm urn model [Hamann, 2013]:

∆𝑠 𝑠 = 4 𝑃𝐹𝐵 𝑠 −
1

2
𝑠 −

1

2

Where Ehrenfest 𝑃𝐹𝐵 𝑠 = 0 ⇒ 𝑠∗ = 0.5

Eigen 𝑃𝐹𝐵 𝑠 = 1 ⇒ 𝑠∗ = 0 ∨ 1

Swarm     𝑃𝐹𝐵 𝑠 = 0.75 sin 𝜋𝑠 ⇒ 𝑠∗ = 0.23 ∨ 0.77
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Swarm collective decision-making

Hegselmann and Krause [Hegselmann-Krause, 2002]:

Clustering of opinions by having robots move to the centre of 

gravity of their neighbourhood:

𝑥𝑖 =
1

𝒢𝑖
σ𝑗∈𝒢𝑖

𝑥𝑗 + 𝜀𝑖

where 𝒢𝑖 = 1 ≤ 𝑗 ≤ 𝑁: 𝑥𝑖 − 𝑥𝑗 ≤ 1 and 𝜀𝑖 is a noise term
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Swarm collective decision-making

Hegselmann and Krause [Hegselmann-Krause, 2002]:
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Image: Figure 6.12, Hamann, 2018



Swarm collective decision-making

Various other models:

• Kuramoto, inspired by coupled oscillators in physics

• Axelrod, inspired by dissemination of culture in sociology

• Ising, inspired by solid state physics

• Fiber bundle, inspired by texture tensile tests

• Bass diffusion, inspired by how innovative products spread

• Contrarians, inspired by sociology to make a swarm 

heterogeneous
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Use case: Swarm adaptive aggregation

Make a control system that aggregates the robot swarm at a 

certain spot determined by sensor input but stays flexible to 

changes in the dynamic environment.

Could be warmest, brightest or most radioactive spot in 

search area.
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Use case: Swarm adaptive aggregation

Possibly multimodal, noisy and/or systematic plateaus
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Image: Figure 7.1, Hamann, 2018



Use case: Swarm adaptive aggregation

Alternative modelling approaches:

1. Ad-hoc random search, baseline benchmark

– Must keep track of position to be effective

2. Gradient ascent and evolutionary optimization

– Communication improve performance 

– Problems with multimodality and plateaus

3. Positive feedback, inspiration by natural swarm systems

– The BEECLUST algorithm [Schmickl & Hamann, 2011] 

inspired by honeybees (bark beetles, ants and cockroaches)
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BEECLUST algorithm
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Video: Youtube

https://youtu.be/BOEP603VRdE


BEECLUST algorithm

Behavioural model:

• Step 1: move straightforward

• Step 2: obstacle or robots around?

a) In case of an obstacle: turn away, return to step 1

b) In case of a robot: stop, measure sensor, wait for some time 

dependent on sensor reading, u-turn, and return to step 1

Positive feedback since robots are more inclined to stop in 

high density areas correlated with high sensor readings.
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BEECLUST algorithm

Modelling objectives:

1. Capture the ineffective single robot vs the effective robot 

swarm 

2. Explicitly model parameters of the robot control algorithm

3. Spatial modelling

4. Validate model against experiment
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BEECLUST algorithm

Microscopic model: The Langevin equation

ሶ𝑹 𝑡 = 𝛼𝛻𝑃 𝑹 𝑡 + 𝐵𝑭 𝑡

where 𝑹 𝑡 is position of an agent in 2D space

𝛻𝑃 𝑹 𝑡 is the gradient of temperature field P

𝛼 ∈ 0,1 is intensity of drift

𝑭 𝑡 is random perturbation and B is a scalar
09.09.2020 31

Non-stochastic

drift term

Stochastic

random term



BEECLUST algorithm

Microscopic model: 

𝛼 = 0.01, 0.025, 0.05, 0.1

and Brownian F
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Image: Figure 7.3, Hamann, 2018



BEECLUST algorithm

Microscopic model: The Langevin equation

ሶ𝑹 𝑡 = 𝛼𝛻𝑃 𝑹 𝑡 + 𝐵𝑭 𝑡 = 𝐵𝑭 𝑡

where 𝛼 = 0 i.e. no drift and pure random walk

𝑭 𝑡 is random perturbation and B is a scalar
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Only stochastic

random term



BEECLUST algorithm

Microscopic model: The waiting time

𝑤 𝑹 =
𝑤𝒎𝒂𝒙𝑃

𝟐 𝑹

𝑃𝟐 𝑹 +𝑐

where 𝑃 𝑹 is temperature at position R

𝑤𝒎𝒂𝒙 is maximal waiting time

𝑐 is a scaling constant
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BEECLUST algorithm

Microscopic model: Finite state machine

Where

moving is: ሶ𝑹𝑚 𝑡 = 𝐵𝑭 𝑡

stopped is: ሶ𝑹𝑠 𝑡 = 0
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Image: Figure 7.5, Hamann, 2018



BEECLUST algorithm

Microscopic model: Finite state machine

• Agents modelled by simple Langevin equations of random 

walk.

• Not a completely analytical model since we have to 

adminster the state transitions, positions, waiting time, 

check distances to neighbour robots, etc.
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BEECLUST algorithm

Macroscopic model: Fokker-Planck equation (from Langevin)

moving: ሶ𝑹𝑚 𝑡 = 𝐵𝑭 𝑡 ⟹
𝜕𝜌𝑚 𝒓,𝑡

𝜕𝑡
= 𝐵2𝛻2𝜌𝑚 𝒓, 𝑡

stopped: ሶ𝑹𝑠 𝑡 = 0 ⟹
𝜕𝜌𝑠 𝒓,𝑡

𝜕𝑡
= 0

Where  𝜌 𝒓, 𝑡 is density of moving or stopped agents
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BEECLUST algorithm

Macroscopic model: Fokker-Planck equation (from Langevin)

We need a way of connecting the state transitions since the 

Fokker-Planck equation is continous. 

We define a stopping rate 𝜑 where 𝜌𝑚 𝒓, 𝑡 𝜑 gives us the 

correct density flow into stopped robots (this is a rather strong 

assumption).
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BEECLUST algorithm

Macroscopic model: Fokker-Planck equation (from Langevin)
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Image: Figure 7.6 and 7.7, Hamann, 2018



BEECLUST algorithm

Macroscopic model: Fokker-Planck equation (from Langevin)

moving: 

𝜕𝜌𝑚 𝒓, 𝑡

𝜕𝑡
= 𝐵2𝛻2𝜌𝑚 𝒓, 𝑡 − 𝜌𝑚 𝒓, 𝑡 𝜑 + 𝜌𝑚 𝒓, 𝑡 − 𝑤 𝒓
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Diffusion term Flow into stopped Flow into move



BEECLUST algorithm

Macroscopic model: Fokker-Planck equation (from Langevin)

Stopped (not necessary to model explicit): 

𝜕𝜌𝑠 𝒓, 𝑡

𝜕𝑡
= 𝜌𝑚 𝒓, 𝑡 𝜑 − 𝜌𝑚 𝒓, 𝑡 − 𝑤 𝒓
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Flow into stopped Flow into move



BEECLUST algorithm

Experimental validation: 

[Schmickl et al., 2009; 

Kernbach et al., 2009]

15 Jasmine robots measuring ambient light on a 150×100 cm2

rectangular area.
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Image: swarmrobots.org

http://www.swarmrobot.org/index.html


BEECLUST algorithm

Experimental validation: 

[Schmickl et al., 2009; Kernbach et al., 2009]

Two lamps at both ends are operated in 

mode ={off, dimmed or bright}

and swarm was allowed to converge to steady-state after 

uniform initial distribution of moving robots.

B was fitted to data.
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BEECLUST algorithm

Experimental 

validation: 
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Image: Figure 7.8, Hamann, 2018



BEECLUST algorithm
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Video: Youtube

https://youtu.be/BOEP603VRdE


Summary lecture 5 – Swarm robotics 2*

• Swarm collective decision-making

– Terminology and notation 

– The decision-making process

– Different models (voting, urn, Hegselmann-Kraus, etc)

• Swarm case study: Adaptive aggregation, BEECLUST
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*Hamann, 2018: chapter 6 and 7


