Solutions to exercises from Lecture 5 Swarm robotics 2

TEK5010 Multiagent systems 2020

Question 1

a) Explain and characterize the **voter model**:

A robot *i* considers its neighbours' opinions o_j with $j \in \mathcal{N}_i$ (without *i*) and picks a neighbour *j* at random and switches to its opinion. Typically, the *k*-nearest neighbours are evaluated.

- Very simple model
- High accuracy
- Slow convergence

b) Explain and characterize the **majority rule**:

A robot *i* considers its neighbourhood group G_i (including *i*) and counts the occurrence w_j of each option in *O*. The robot them switches its opinion to the most frequent option O_k with $k = \operatorname{argmax} w_j$, that is, the majority within its group.

Also here, the *k*-nearest neighbours are typically evaluated.

- Fast convergence
- Less accurate than the voter model

Notes

- Accuracy is the probability of system converging to the majority of initial states or reproducing the initial frequencies?
- Convergence is the number of iterations in the consensus process or the complexity of algorithm in terms of big \mathcal{O} -notation?
- Simultaneously or sequentially update of individuals?
- K-nearest neighbours or within distance *d*?

() one iteration of consensus process Distance matris (4,7) YP (0,0) (5,0) ((4,7) (2,5) (0,4) S_{0} (2,5)(0,D) $\boldsymbol{\varkappa}$ ${\mathfrak O}$ 4 5 8,1 SY 7,1 S,0) 5 5,8 $\boldsymbol{\aleph}$ 6,4 (0,4) 4,7 8,1 1,1 \boldsymbol{arphi} 2,8 5 (2,5)5,4 2,2 5,8 2,8 \succ C 0,9) 4 64 7,2 5 Ś (5,0) × (0,0) \mathbb{O} ∆ ≈ O

D 7=(

nodel, let * VSter h=3

Smultoneously #1 Distance matrix 40 2,5) (0,4) 801 (0,0) |(5,0)|((4,1))|(0, D)(0,4) (d') S (S,o)(2,5)(0,0) ${\mathfrak O}$ $\boldsymbol{\varkappa}$ SY 4 5 8,1 $\boldsymbol{\times}$ \mathcal{O} \mathcal{O} \mathcal{O} 7,1 (S,D) 5 5,8 Х 6,4 X δ (4,7) 2,1 8.1 \succ 2,8 \boldsymbol{arphi} 5 X (2,5)0 \bigcirc \mathcal{O} 5,4 2,2 5,8 \succ 2,8 Ø O ,4) \bigcirc \mathcal{O} 6,4 Ч 5 2,2 ४

nodel, let * VSter h=3

Jeguen filly #1 Distance matris 40 2,5) (0,4) 50 (0,0) |(5,0)|((4,7))|(0, D)(0,4) (S,o)(d'J) ß (2,5) (0,0) ${\mathfrak O}$ $\boldsymbol{\varkappa}$ 8,1 SY 4 5 $\boldsymbol{\times}$ 7,1 Þ (S,D) 5 5,8 Х X 6,4 δ (4,7) \bigcirc 2,1 D 8.1 \succ ${\mathbb O}$ 2,8 \boldsymbol{arphi} 5 X \bigcirc (2,5)Y \bigcirc \mathcal{O} 5,4 2,2 5,8 \succ 2,8 Ø O $\left(\right)$,4) 6,4 Ч 5 2,2 ४

h = 3 + 1* Major by rule les

Simultaneously #1 40 Distance matris (0,4) S. 25) (5,0)|(4,7)(0, 0) $(\mathcal{O}, \mathcal{O})$ (S,o)((Y,J) ß (2,5) $(0, \mathcal{U})$ (0,0) ${\mathfrak O}$ $\boldsymbol{\varkappa}$ 4 \bigcirc 8,1 SY 5 \mathcal{O} $\boldsymbol{\times}$ \mathcal{O} \mathcal{O} 7,1 S,D) 5 X 5,8 6,4 X δ 4,7 2,1 8.1 \succ 2,8 \boldsymbol{arphi} 5 Х (2,5) 0 \bigcirc \bigcirc \mathcal{O} \mathcal{O} 5,4 5,8 2,2 2,8 \succ Ø O ,4) 6,4 Ч 5 2,2 ४ · 4 = + · 102 fo= 1 ₹0² 2 もごうわ=約 $f_{i}=\frac{1}{2}$