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Highlights lecture 10 – Cooperative game theory*

• Cooperative games – forming coalitions

– Characteristic function

– The core

– The Shapley value

• Simple games – ‘yes/no’ games

– Weighted voting games

• Coalition structure formation – ‘central planner’
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*Wooldridge, 2009: chapter 13
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Forming coalitions

It can be claimed that agents in Prisoner’s dilemma are 

prevented from cooperation due to:

• Binding agreements are not possible. (The issue of trust.)

• Utility is given directly to individuals as a result of individual 

action.

If we drop these assumptions we can open up for modelling 

coalitions of cooperating agents or cooperative games.



Cooperative games

Cooperative game theory attempts to answer two basic 

questions:

1. Which coalition will be formed by self-interested rational 

agents?

2. How is the utility divided among members in this coalition?
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Cooperative games

Given a set of 𝑁 agents

that can form coalitions 𝐶, 𝐶’, 𝐶1, …

 𝐶 ∈ 𝐴𝑔 is a subset of 𝐴𝑔

 𝐶 = 𝐴𝑔 is the Grand Coalition

 𝐶 = 𝑖  is singelton coalition of one singel agent 𝑖
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𝐴𝑔 = 1,2, … , 𝑁



Cooperative games

A cooperative game (or a coalitional game) is a pair

where 𝐴𝑔 is the set of agents

 𝑣: 𝟐𝐴𝑔 ⟶ ℝ is the characteristic function

The characteristic function assigns a numerical value to all 

possible coalitions. 𝑣 𝐶 = 𝑘 means that the value 𝑘 is 

assigned to coalition 𝐶 and distributed among its members.
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𝐺 = 𝐴𝑔, 𝑣



Cooperative games

Note:

• The characteristic function is given

• The game does not explicitly say how to distribute utility 

among members
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Cooperative games

The cooperation lifecycle – 

Three stages of cooperative 

action, [Sandholm et al., 1999]
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Image: Figure 13.1, Wooldridge 2009



The cooperation lifecycle

1. Coalition structure generation

Agents maximize utility by looking at the characteristic 

function of all possible coalitions. Which coalition is stable? 

This is answered by using the notion of the core.

2. Solving the optimization problem for each coalition

This is assumed to be solved given the utility of the 

characteristic function.
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The cooperation lifecycle

3. Dividing the utility of the solution for each coalition

The Shapley value is used for ‘fair’ distribution of the utility 

among coalition members.
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The core – coalitional stability

We say that the core is the set of outcomes for a coalition, that 

no other coalition objects to.

Formally, a coalition 𝐶′ ⊆ 𝐴𝑔 objects to an outcome 

𝐱 𝑥1, … , 𝑥𝑁  of the coalition 𝐶 if there exist some outcome 

𝐱′ 𝑥1
′ , … , 𝑥𝑁

′  in 𝐶’ such that 𝑥𝑖
′ > 𝑥𝑖  for all 𝑖 ∈ 𝐶′ . Meaning 𝑥𝑖

′ 

is strictly better for all 𝑖. The outcomes satisfies the 

characteristic function 𝑣.

   𝑣 𝐶 = σ𝑖∈𝐶 𝑥𝑖
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The core – coalitional stability

The coalition 𝐶 is stable if the core is non-empty.
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The core – coalitional stability

Example of a cooperative game 𝐺 = 𝐴𝑔, 𝑣  where

 

 𝐴𝑔 = 1,2
 𝑣 1 = 5
 𝑣 2 = 5
 𝑣 1,2 = 20
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The core – coalitional stability

The grand coalition of game 𝐺 = 𝐴𝑔, 𝑣  is stable for outcomes

 

 𝑣 1,2 = 0,20 = 20 → 𝑣 1 = 5: agent 1 objects

 𝑣 1,2 = 1,19 = 20 → 𝑣 1 = 5: agent 1 objects

 𝑣 1,2 = 5,15 = 20

     ⋮

 𝑣 1,2 = 15,5 = 20
 𝑣 1,2 = 20,0 = 20 → 𝑣 2 = 5: agent 2 objects
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The Core



The core – coalitional stability

The grand coalition of game 𝐺 = 𝐴𝑔, 𝑣  is stable for outcomes

 𝑣 1,2 = 5,15 = 20

     ⋮

 𝑣 1,2 = 15,5 = 20

How to divide the utility among coalition members?
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The Core



The Shapley value

The Shapley value is based on the idea that agents should get 

the average marginal contribution it makes to a coalition, 

estimated over all possible positions that it would enter the 

coalition.

The Shapley value is the unique value that satisfies the 

‘fairness’ axioms.
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The Shapley value

The Shapley value of agent 𝑖 is given by:

Where ∏ 𝐴𝑔  is set of all possible ordering of coalition 𝐶

 𝑜 is an ordering of an coalition

 𝜇𝑖 𝐶 = 𝑣 𝐶 ∪ 𝑖 − 𝑣 𝐶 , given that 𝐶 ⊆ 𝐴𝑔\ 𝑖 .

  is the marginal contribution of agent 𝑖 to 𝐶
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𝑆ℎ𝑖 =
1

𝐴𝑔 !


𝑜∈∏ 𝐴𝑔

𝜇𝑖 𝐶𝑖 𝑜



The Shapley value

The Shapley value satisfies 3 ‘fairness’ axioms:

1. Symmetry

Agents that make the same contribution to the coalition 

should get the same utility.

Formally, if 𝜇𝑖 𝐶 = 𝜇𝑗 𝐶  for 𝐶 ⊆ 𝐴𝑔\ 𝑖, 𝑗  then 𝑖 and 𝑗 are 

interchangeable and 𝑠ℎ𝑖 = 𝑠ℎ𝑗.
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The Shapley value

The Shapley value satisfies 3 ‘fairness’ axioms:

2. Dummy player

Agents that do not contribute to coalitions should only 

receive what they can earn on their own.

If 𝜇𝑖 𝐶 = 𝑣 𝑖  for 𝐶 ⊆ 𝐴𝑔\ 𝑖  then 𝑠ℎ𝑖 = 𝑣 𝑖 .
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The Shapley value

The Shapley value satisfies 3 ‘fairness’ axioms:

3. Additivity

Agents that play two games get the sum of the two games. 

The agent does not benefit from playing the game more 

than once.
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The Shapley value

The Shapley value satisfies 3 ‘fairness’ axioms:

3. Additivity

If 𝐺1 = 𝐴𝑔, 𝑣1  and 𝐺2 = 𝐴𝑔, 𝑣2  with 𝑠ℎ𝑖,1 and 𝑠ℎ𝑖,2 for 

player 𝑖 ∈ 𝐴𝑔 then 𝐺1+2 = 𝐴𝑔, 𝑣1+2  such that 𝑣1+2 𝐶 =

𝑣1 𝐶 + 𝑣2 𝐶  then 𝑠ℎ𝑖,1+2 = 𝑠ℎ𝑖,1+ 𝑠ℎ𝑖,2.
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The Shapley value

Example of a cooperative game 𝐺 = 𝐴𝑔, 𝑣  where

 

 𝐴𝑔 = 1,2,3
 𝑣 1 = 𝑣 2 = 𝑣 3 = 5
 𝑣 1,2 = 𝑣 1,3 = 10
 𝑣 2,3 = 20
 𝑣 1,2,3 = 25
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The Shapley value

Permutations of {1,2,3}     Marginal contribution of {1,2,3}

1,2,3         → 5,5,15
1,3,2     

2,1,3     

2,3,1    

3,1,2     

3,2,1  
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The Shapley value

Permutations of {1,2,3}     Marginal contribution of {1,2,3}

1,2,3         → 5,5,15
1,3,2     → 5,15,5

2,1,3     

2,3,1    

3,1,2     

3,2,1     
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The Shapley value

Permutations of {1,2,3}     Marginal contribution of {1,2,3}

1,2,3         → 5,5,15
1,3,2     → 5,15,5

2,1,3     → 5,5,15

2,3,1     → 5,5,15

3,1,2     → 5,15,5

3,2,1     → 5,15,5
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The Shapley value

Permutations of {1,2,3}     Marginal contribution of {1,2,3}

1,2,3         → 5,5,15
1,3,2     → 5,15,5

2,1,3     → 5,5,15

2,3,1     → 5,5,15

3,1,2     → 5,15,5

3,2,1     → 5,15,5

                     Shapley value ⇒
30

6
,

60

6
,

60

6
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The Shapley value

The Shapley value is hard to compute and represent for large 

number of players (exponential in 𝑁).

Is it possible to represent the different coalition permutations in 

a more succinct and tractable way?

1. Induced subgraph representation is succinct but not 

complete

2. Marginal contribution nets are complete and succinct
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Induced subgraph

The characteristic function can be defined by an undirected, 

weighted graph, in which nodes in the graph are members of 

𝐴𝑔 and the edges are the weight 𝑤𝑖,𝑗  of the edge from node 

𝑖 to node 𝑗 in the graph [Deng and Papadimitriou, 1994].
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Induced subgraph

To compute the characteristic value of a coalition 𝐶 ⊆ 𝐴𝑔 we 

simply sum the weights 𝑤𝑖,𝑗 over all the edges in the graph 

whose components are all contained in 𝐶:

 𝜐 𝐶 = σ 𝑖,𝑗 ⊆𝐶 𝑤𝑖,𝑗
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Induced subgraph

The Shapley value of each player is then given by:

𝑠ℎ𝑖 =
1

2
σ𝑗≠𝑖 𝑤𝑖,𝑗

This comes directly from the symmetry axiom, where agents 

are interchangeable in a two player game.
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Induced subgraph

Example:

𝑣 1 = 𝑣 2 = 𝑣 3 = 5
𝑣 1,2 = 𝑣 1,3 = 10,
𝑣 2,3 = 20
𝑣 1,2,3 = 25
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Induced subgraph

Example:

𝑠ℎ1 = 5 + 0 + 0 = 5

𝑠ℎ2 = 5 + 0 +
10

2
= 10

𝑠ℎ3 = 5 +
10

2
+ 0 = 10 
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Marginal contribution nets

A marginal contribution net is an extension to the induced 

subgraph. The characteristic function of a game is represented 

by a set of rules 𝑟𝑠:

𝑟𝑠𝐶 = 𝜙 → 𝑥 ∈ 𝑟𝑠 𝐶 = 𝜙

where 𝜙 → 𝑥 is a rule

𝐶 is a coalition

 ȁ𝐶 = means that the rule applies to coalition 𝐶
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Marginal contribution nets

The characteristic function 𝑣𝑟𝑠 associated with the rule set 𝑟𝑠 is 

defined as follows:

𝑣𝑟𝑠 𝐶 = 

𝜙→𝑥∈𝑟𝑠𝐶

𝑥

where 𝜙 → 𝑥 is a rule in the rule set 𝑟𝑠𝐶
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Marginal contribution nets

Example:

 

 𝐴𝑔 = 1,2,3

 1 → 5
 2 → 5
 3 → 5
 2 ∧ 3 → 10
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Marginal contribution nets

Example:

 1 → 5
 2 → 5
 3 → 5
 2 ∧ 3 → 10

 𝑣 1 = 5
 𝑣 2 = 5
 𝑣 3 = 5
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Marginal contribution nets

Example:

 1 → 5
 2 → 5
 3 → 5
 2 ∧ 3 → 10

 𝑣 1,2 = 5 + 5 = 10
 𝑣 1,3 = 5 + 5 = 10
 𝑣 2,3 = 5 + 5 + 10 = 20
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Marginal contribution nets

Example:

 1 → 5
 2 → 5
 3 → 5
 2 ∧ 3 → 10

 𝑣 1,2,3 = 5 + 5 + 5 + 10 = 25
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Marginal contribution nets

Example:

 1 → 5
 2 → 5
 3 → 5
 2 ∧ 3 → 10

 𝑣 1 = 𝑣 2 = 𝑣 3 = 5
 𝑣 1,2 = 𝑣 1,3 = 10
 𝑣 2,3 = 20, 𝑣 1,2,3 = 25
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Simple games

Simple games are games with coalition values of either 0 

(‘losing’) or 1 (‘winning’).

Simple games are representative of ‘yes/no’ voting systems 

often used in politics.

Which coalition is ‘winning’?
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Simple games

Formally, a simple game is a pair of 

 

 Υ = 𝐴𝑔, 𝑊

where 𝐴𝑔 = 1,2, … , 𝑁  is 𝑁 agents/voters

 𝑊 ⊆ 𝟐𝐴𝑔 is the set of winning coalitions such that

  𝑣 𝑊 = 1

  𝑣 𝐶 ∉ 𝑊 = 0
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Simple games

Some properties of simple games:

1. Non-triviality

There are some winning coaltions, but not all coalitions are 

winners, ∅ ⊂ 𝑊 ⊂ 2𝐴𝑔.

2. Monotonicity

If 𝐶1 ⊆ 𝐶2 and 𝐶1 ∈ 𝑊 then 𝐶2 ∈ 𝑊. Meaning that if 𝐶 wins 

then all supersets of 𝐶 also wins.
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Simple games

Some properties of simple games:

3. Zero-sum

if 𝐶 ∈ 𝑊 then 𝐴𝑔\𝐶 ∉ 𝑊 

If coalition 𝐶 wins then the agents outside 𝐶 do not win.

4. Empty coalition lose, ∅ ∉ 𝑊

5. Grand coalition wins, 𝐴𝑔 ∈ 𝑊
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Simple games

Explicitly listing all coalitions will be exponential in number of 

players.

Weighted voting games are natural extensions of simple 

games possibly reducing number of players in these games.
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Weighted voting games

Weighted voting games are a more concise way of 

representing many simple games.

For instance, instead of representing 100 US senators 

explicitly we represent the different ‘blocks’ of voters and 

evaluate those against the criteria of winning, called the quota.

This can greatly reduce the number of players/voters
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Weighted voting games

Given a set of  agents 𝐴𝑔 = 1,2, … , 𝑁 . For each agent 𝑖 we 

define a weight 𝑤𝑖 and a overall quota 𝑞 such that every 

coalition 𝐶 exceeding quota 𝑞 is a winning coalition 𝑊.

 𝑣 𝐶 = ቊ
1 if σ𝑖∈𝐶 𝑤𝑖 ≥ 𝑞 

0

where 𝑣 is the characteristic function of coalition 𝐶

 𝑞 =
𝐴𝑔 +1

2
  in simple majority voting
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Weighted voting games

The weighted voting game can be written on the form

𝑞; 𝑤1, 𝑤1, … , 𝑤𝑁

where 𝑞 is the quota

 𝑤𝑖  is the weight of player 𝑖 ∈ 𝐴𝑔

The Shapley value calculates the power of voters in the game.
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Weighted voting games

Example from the book

100; 99,99,1

Let us calculate the Shapley values for the Grand coalition in 

order to determine the power of the 3 voter blocks.
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Weighted voting games

How many permutations of 𝐶 = 100; 99,99,1  is possible?
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Weighted voting games

How many permutations of 𝐶 = 100; 99,99,1  is possible?

991, 992, 1
991, 1, 992

992, 991, 1
992, 1, 991

1,991, 992

1, 992, 992
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Weighted voting games

What is the marginal contribution of voter in each permutation? 

                  {1,2,3}

991, 992, 1   → 0,1,0
991, 1, 992

992, 991, 1
992, 1, 991

1,991, 992

1, 992, 992
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Weighted voting games

Permutations of {1,2,3}     Marginal contribution of {1,2,3}

991, 992, 1       → 0,1,0
991, 1, 992   → 0,0,1

992, 991, 1   → 1,0,0

992, 1, 991   → 0,0,1

1,991, 992   → 1,0,0

1, 992, 991   → 0,1,0
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Weighted voting games

Permutations of {1,2,3}     Marginal contribution of {1,2,3}

991, 992, 1       → 0,1,0
991, 1, 992   → 0,0,1

992, 991, 1   → 1,0,0

992, 1, 991   → 0,0,1

1,991, 992   → 1,0,0

1, 992, 991   → 0,1,0

  Shapley value ⇒
1

3
,

1

3
,

1

3
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Weighted voting games

The Shapley value is NP-hard to compute,

[Deng and Papadimitriou, 1994]
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Weighted voting games

The core is much easier to compute, i.e. to check if there are 

non-empty coalitions. This can be done in polynomial time.

The core is non-empty, iff there is an agent present in every 

winning coalition. Formally, for a coalition 𝐶

 

 σ𝑗∈𝐶 𝑤𝑗 < 𝑞 and σ𝑗∈𝐶∩ 𝑖 𝑤𝑗 ≥ 𝑞 

where 𝑞 is quota, 𝑤𝑗 is weight and 𝑖 is voter 𝑖. 
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𝑘-weighted voting games

Weighted voting games are not complete (representation of 

simple games).

𝑘-weighted voting games are complete.

We define a number 𝑘 of different weighted voting games with 

the same set of players the overall winner is the coalition that 

wins in all 𝑘 coalition games.
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𝑘-weighted voting games

European Union three-weight voting game:

Germany, the UK, France, Italy, Spain, Poland, Romania, the Netherlands, Greece, 

Czech Republic, Belgium, Hungary, Portugal, Sweden, Bulgaria, Austria, Slovak 

Republic, Denmark, Finland, Ireland, Lithuania, Latvia, Slovenia, Estonia, Cyprus, 

Luxembourg, Malta

𝑔1 = 255; 29,29,29,29,27,27,14,13,12,12,12,12,12,10,10,10,7,7,7,7,7,4,4,4,4,4,3
𝑔2 = 14; 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 
𝑔3 = 620; 170,123,122,120,82,80,47,33,22,21, 21,21,21,18,17,17,11,11,11,8,8,5,4,3,2,1,1

(where 𝑔1 is number of commissioners, 𝑔2 simple majority, 𝑔3 is population size)
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𝑘-weighted voting games

How many 𝑘-dimensions are needed in order to be a complete 

representation of a simple game?

Upper bound is 2𝑁, but a check if games could be represented 

by a smaller number of components is NP-complete.

A game of non-reducible 𝑘 is called ‘minimal’.
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Network flow games

Directed graph with edges representing capacities between 

nodes as routers.
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Network flow games

Now, what coalitions of nodes allow for a capacity 𝑏 between 

𝑙1 and 𝑙2 in the graph? We get

 𝑣 𝐶 = ቊ
1 if 𝑁 ↓ 𝐶 allows a flow of 𝑏 from 𝑙1 to 𝑙2

0 otherwise

where 𝑁 ↓ 𝐶 is the network flow of coalition 𝐶.

04.10.2023 61



Coalitional games with goals

Qualitative Coalitional Games (QCG)

In QCG the numerical valued payoffs are replaced with goals.

The player has a set of goals it wants to achieve and they do 

not prioritize among them, they only want one of them to be 

achieved.

The coalition is successful if it can cooperate in such a way 

that all of its members are satisfied.
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Coalitional games with goals

Coalitional Resouce Games (CRG)

To achieve a goal requires some resources that agents are 

endowed with. The coalition will pool resources in order to 

achieve some mutual set of goals.
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Coalition structure formation

Central forming of coalition

1. All nodes owned by a single designer

2. Maximizing social welfare

The problem is to find the coalition structure that maximizes 

the aggregated outcome.

This is a search through a partition of the overall set of agents 

𝐴𝑔 into mutually disjoint coalitions.
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Coalition structure formation

Example using 𝐴𝑔 = 1,2,3

Coalitions 

1 , 2 , 3 , 1,2 , 1, 3 , 2,3 , 1,2,3

Coalition structures

1,2,3 , 1 2,3 , 2 1,3 , 3 1,2 , 1 2 3
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Coalition structure formation

The social choice is:

𝐶𝑆∗ = arg max
𝐶𝑆∈𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑔

𝑉 𝐶𝑆

where 𝑉 𝐶𝑆 = σ𝐶∈𝐶𝑆 𝑣 𝐶  is the outcome of 𝐶𝑆

The problem is that the number of possible coalition structures 

is exponentially more than coalitions over 𝐴𝑔.
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Coalition structure formation

In the coalition graph the highest 𝐶𝑆1,2
∗  of the two lowest levels 

are no worse than 1/𝑁 ⋅ 𝐶𝑆∗.
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Coalition structure formation

[Sandholm et al., 1999] propose a search algorithm:

1. Search the 2 lowest levels for 𝐶𝑆1,2
∗ .

2. If time, search rest of coalition structure graph, using 

breadth-first search from top until exhausted or time is up.

3. Return coalition structure with highest value seen.
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Summary lecture 10 – Cooperative game theory*

• Cooperative games – forming coalitions

– Characteristic function (value of coalition)

– The Core (stability, non-empty)

– The Shapley value (‘fairness’ axioms, induced subgraphs, 

marginal contribution nets)

• Simple games – ‘yes/no’ games

– Weighted voting games, k-weighted voting games, network flow 

games

• Coalition structure formation – ‘central planner’
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