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Lecture 3

Swarm intelligence

Jonas Moen



Highlights lecture 3 – Swarm intelligence (SI)*

• A new form of AI is needed – the social insect metaphore

• SI (emergence) = stigmergy + self-organization

• Ant Colony Optimization (stigmergy)

• Particle Swarm Optimization (self-organization)

• Taxis

• Artificial Potential Field
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*Bonabeau, Dorigo & Theraulaz, 1999: chapter 1, 2 and preface,

  A collection of papers on ACO and PSO



Types of Agents

• Deductive reasoning agents (1956–present)

Propose that agents use explicit logical reasoning in order to 

decide what to do.

• Reactive agents (1985–present)

Problems with symbolic reasoning led to a reaction against 

this - the reactive agent movement.

• Hybrid agents (1990–present)

Hybrid architectures attempt to combine the best of symbolic 

and reactive architectures.
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Swarm intelligence (SI)

Swam intelligence is the emergent collective intelligence of 

groups of simple agents, typically based on the social insect 

metaphor.

SI is an appealing research since the world has become 

«so complex that no single human being can understand it» in 

terms of utilizing the increasing information and computational 

resources available [Bonabeau et al., 1999].
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Swarm intelligence (SI)

SI was first used by [Beni, 1989; Beni and Wang, 1989/1991; 

Beni and Hackwood, 1992; Hackwood and Beni, 1991/1992] in 

the context of cellular robotics.

SI is here extended to include any attempt to design 

algorithms of distributed problem solving devices inspired by 

the collective behaviour of social insect colonies and other 

animal societies.
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Swarm intelligence (SI)

[Bonabeau et al., 1999] is one of the first attempts to describe 

the SI research field.

Based on modelling a biological example and then use this 

model as a metaphor to design an algorithm, a multiagent 

system or a group of robots.



26.08.2023 8

Swarm intelligence (SI)

Social insect metaphor emphasizing:

1. Autonomy (only requirement in MAS)

2. Distributedness (no central control)

3. Simple agents (reactive agents)

4. Emergence (properties from the many simple interactions)

5. Stigmergy (local direct and indirect communication)

6. Self-organization (flexibility and robustness )
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Swarm intelligence (SI)

Social insects metaphor applications:

1. Optimization

2. Networks

3. Robotics
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Social insects

Ants, bees, wasps and termites live in social colonies, what is 

it that governs them? 

Every single insect seems to have its own agenda and yet an 

insect colony looks so organized.
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Social insects

Leaf cutter ants (Atta)

Ants that cut leafs from plants 

and trees to grow fungi. 

Workers forage for leaves 

hundreds of meters away 

from the nest, literally organizing highways to and from 

foraging sites. [Hölldobler and Wilson, 1978]

Image: inhabitat.com

https://youtu.be/-6oKJ5FGk24
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Social insects

Weaver ants (Oecophylla)

Weaver ants form chains of 

their own bodies, allowing 

them to cross wide gaps.

Workers run back and forth. 

Such chains are powerful enough to pull leaf edges together 

and connect the edges with a strong thread of silk emitted 

from a larva held by workers. [Hölldobler and Wilson, 1978 

and 1990]
Image: http://ngm.nationalgeographic.com

https://youtu.be/ArIQ2DSiJ4Q
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Social insects

Army ants (Eciton)

Army ants organize hunting raids, 

involving hundreds of thousands of 

ants, during which they collect 

thousands of prey. 

[Burton and Franks, 1985; 

Rettenmeyer, 1963; Schneirla, 1971]

Image: en.wikipedia.org

https://youtu.be/JsfiUR0ZzLw
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Social insects

Hive of paper wasp* Termite hive**

Image: *en.wikipedia.org and **inhabitat.com
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Social insects

Specialization

Division of labour reflected in specialization in morphology, 

age or chance allowing simultaneous parallell work to be 

performed.
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Social insects

Robustness

A removal of a class of workers is often compensated by other 

workers. Divison of labour exhibits a high degree of plasticity.
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Social insects

Emergent behaviour and self-organization (SO)

The sensory system of individual insects is reactive, though 

when decribing detailed interaction with nest mates and 

decision-making on the basis of large amounts of information 

can be quite complex. Yet the complexity of individual insects 

is still not sufficient to explain the complexity of what social 

insects can do in terms of coordinated behaviour and nest 

building.
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Social insects

Emergent behaviour and self-organization (SO)

The self-organizing properties of social insects seems to 

require no need for low level individual comlexity to explain 

collective behaviour. SO is a major component in a wide range 

of phenomena in social insects [Bonabeau et al., 1999].
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Social insects

Emergent behaviour and self-organization (SO)

The most difficult question is how to connect the individual 

behaviours with collective performance.

How do complex collective behaviours emerge from interaction 

among individuals that exhibit simple behaviours?
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Social insects

Self-organization (SO)

Hard to build SI systems because what individual behaviour 

produce desired global behaviour?

• Make a catalogue of collective behaviours?

• Model a few biological systems and use this as basis for 

modelling engineering problems and their parameter space?
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Stigmergy

Stigmergy is indirect interaction [Grassé,1946, 1959]:

Two individuals interact indirectly when one of them modifies 

the environment and the other responds to the new 

environment at a later time.

(Direct interaction in insects could be antennation, trophallaxis 

(food or liquid exchange), mandibular contact (nebb, kjeve), 

etc.)
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Stigmergy

Stigmergy is indirect interaction:

1. Indirect, non-symbolic form of interaction mediated by the 

environment. Insects exchange information by modifying 

their environment.

2. Local information is only accessible by those insects that 

can visit the locus in which it was released/deployed.
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Stigmergy

Stigmergy is indirect interaction:

The environment serves as a medium for communication and 

coordination between simple reactive agents with reduced 

communication abilities.

• Incremental construction is possible.

• Agents respond to perturbation without being specifically 

reprogrammed to deal with particular disturbances.
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Ant foraging behaviour

The binary bridge experiment 

[Deneubourg et al., 1990]

Many ant species have trail-laying

and trail-following behaviour when 

foraging. Individual ants deposit a 

chemical substance called 

pheromones as they move to and 

from a food source. Foragers follow 

such pheromone trails.
Image: http://home.iitk.ac.in/~adityat/se367/project/
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Ant foraging behaviour

The binary bridge experiment [Deneubourg et al., 1990]

Biological model of Argentine ants 

(Linepithema humile)

1. Pheromones ∝ number of ants

2. No evaporation of pheromones

Image: Figure 1, Dorigo et al., 2006
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Ant foraging behaviour

The binary bridge experiment [Deneubourg et al., 1990]

 𝑃𝐴 =
𝑘+𝐴𝑖

𝑛

𝑘+𝐴𝑖
𝑛+ 𝑘+𝐵𝑖

𝑛 = 1 − 𝑃𝐵

where 𝑃𝐴  is probability of an ant choosing branch 𝐴
 𝑖    is total number of ants travelled across bridge

 𝐴𝑖  is the number of ants that have used branch 𝐴
 𝑛   determines the degree of nonlinearity, 𝑛 high gives 

     strong bifurcation

 𝑘   determines the degree of attraction of unmarked 

     branches, high 𝑘 gives randomness for low 𝑖
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Ant foraging behaviour

The binary bridge experiment [Deneubourg et al., 1990] 

 𝑃𝐴 =
𝑘+𝐴𝑖

𝑛

𝑘+𝐴𝑖
𝑛+ 𝑘+𝐵𝑖

𝑛 

where choice dynamic are

 𝐴𝑖+1 = ቊ
𝐴𝑖 + 1 if 𝛿 ≤ 𝑃𝐴

𝐴𝑖 if 𝛿 > 𝑃𝐴

 𝑖 = 𝐴𝑖 + 𝐵𝑖

best fit using 𝑛 ≈ 2 and 𝑘 ≈ 20

Image: Figure 2.1, Bonabeau et al., 1999
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Ant foraging behaviour

The binary bridge experiment [Deneubourg et al., 1990]

Length is important: more ants go to and back on shortest 

branch leaving more pheromones. Validated experimentally by 

[Gross et al., 1989].
Image: Figure 1, Dorigo et al., 2006
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Ant Colony Optimization (ACO)

ACO takes inspiration from the foraging behaviours of some 

ant species.

These ants deposit pheromones on the ground in order to 

make some favourable path that should be followed by other 

members of the colony.

ACO exploits a similar mechanism for solving optimization 

problems [Dorigo, 2006].
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Ant Colony Optimization (ACO)

Traveling Salesman Problem (TSP)

A set of cities is given and the distances 

between each of them is known. The goal 

is to find the shortest tour that allows each 

city to be visited once and only once. 

Cities

Distance
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Ant Colony Optimization (ACO)

Traveling Salesman Problem (TSP)

1. ACO is easily adapted to TSP

2. NP-hard

3. Benchmark problem

4. Didactic problem

Cities

Distance
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Ant Colony Optimization (ACO)

Traveling Salesman Problem (TSP)

In more formal terms, the goal is to find a 

Hamiltonian tour of minimal length on a 

fully connected graph 𝐺 𝑽, 𝑬 .

1

3

4

2c12

c24

c23

c34

c14

c13

Vertex

Edge
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ACO metaheuristic

A metaheuristic is a set of algorithmic concepts that can be 

used to define heuristic methods applicable to a wide set of 

different problems.
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ACO metaheuristic

ACO metaheuristic pseudocode [Dorigo et al., 2006]

 Set parameteres, initialize pheromone trails

 while termination condition not met do

     ConstructAntSolutions

     ApplyLocalSearch (optional)

     UpdatePheromones

 endwhile
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ACO metaheuristic

ACO parameters:

 𝑡 is iterations or time (i.e. one increment in while-loop)

 𝑘 = 1,2, … , 𝑚  is ants

 𝑖 = 1,2, … , 𝑛  is the set of vertices (i.e. cities)

 𝑐𝑖𝑗  is edge from vertex 𝑖 to vertex 𝑗

 𝑑𝑖𝑗  is length of edge 𝑐𝑖𝑗

 𝜏𝑖𝑗 is pheromone concentration on edge 𝑐𝑖𝑗

 𝜌 is evaporation rate of pheromone
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ACO metaheuristic

ConstructSolution:

Artificial ants incrementally build a partial solution by moving 

from city 𝑖 to city j. Each of the 𝑚 ants construct solutions by 

adding edges between vertices not visited yet.

The choice of edge is biased by the pheromone concentration 

of the available edges 𝜏𝑖𝑗. This stochastic rule vary across 

different ACO.
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ACO metaheuristic

ApplyLocalSearch:

After all 𝑘 ant solutions have been obtained, but before 

updating the pheromones, a local search could be performed. 

Local search is often applied in state-of-the-art ACO.
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ACO metaheuristic

UpdatePheromone:

Increase value of edges associated with good or promising 

performance and decrease bad ones.

1. Decrease all solutions by evaporation.

2. Increase only good solutions by adding pheromones.
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Main ACO algorithms

1. Ant System (AS) [Dorigo et al., 1991,1992,1996]

2. Max-Min Ant System (MMAS) [Stützle and Hoos, 2000]

3. Ant Colony Systems (ACS) [Dorigo et al., 1996, 1997]
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ACO – Ant System (ACO-AS)

The pheromone update rule:

 

 𝜏𝑖𝑗 ← 1 − 𝜌 𝜏𝑖𝑗 + σ𝑘=1
𝑚 ∆𝜏𝑖𝑗

𝑘

where 𝜏𝑖𝑗 is pheromone concentration on edge 𝑖, 𝑗

 𝜌   is evaporation rate

 𝑚  is number of ants

 ∆𝜏𝑖𝑗
𝑘  is pheromones laid on edge 𝑖, 𝑗  by ant 𝑘
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ACO – Ant System (ACO-AS)

The pheromone update rule:

∆𝜏𝑖𝑗
𝑘 = ቐ

𝑄

𝐿𝑘
 if ant 𝑘 used edge 𝑖, 𝑗  on its tour

0 otherwise

where 𝑄  is a constant

 𝐿𝑘 is the length of the tour constructed by ant 𝑘
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ACO – Ant System (ACO-AS)

The transition rule (the probability of going to city 𝑗):

𝑝𝑖𝑗
𝑘 =

𝜏𝑖𝑗
𝛼 ⋅ 𝜂𝑖𝑗

𝛽

σ𝑐𝑖𝑙∈𝑁 𝑠𝑝 𝜏𝑖𝑙
𝛼 ⋅ 𝜂𝑖𝑙

𝛽
 if 𝑐𝑖𝑗 ∈ 𝑁 𝑠𝑝

0 otherwise

where 𝑁 𝑠𝑝  is the set of feasible components (cities not 

           visited yet)

 𝛼, 𝛽 are nonlinear control parameters

 𝜂𝑖𝑗 =
1

𝑑𝑖𝑗
 is invers distance between city 𝑖 and 𝑗 
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Current hot topics in ACO 

• Dynamic optimization problems

• Multi-objective optimization

• Stochastic optimization problems

• ACO in real world applications
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Bird flocking

Starling birds (Sturnidae)

“The starlings are generally 

a highly social family. Most 

species associate in flocks 

of varying sizes throughout the year. This sociality is 

particularly evident in their roosting behaviour; in the non-

breeding season some roosts can number in the thousands of 

birds” [Wikipedia, 2017].

Image: National Geographic

https://youtu.be/V4f_1_r80RY
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Fish schooling

Sardines (Clupeidae)

Fish may derive benefits from 

shoaling  behaviour including:

• Defence against predators 

• Enhanced foraging success

• Higher success in finding a mate

• Increased hydrodynamic efficiency

Image: en.wikipedia.org

https://youtu.be/15B8qN9dre4
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Mathematical modelling

The observational approach is complemented by the 

mathematical modelling of schools. The most common 

mathematical models of schools instruct the individual animals 

to follow three rules [Wikipedia, 2017]:

1. Move in the same direction as your neighbours

2. Remain close to your neighbours

3. Avoid collisions with your neighbours

i.e. Boids*

*Reynolds, “Flocks, Herds And Schools”, ACM 1987
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Particle Swarm Optimization (PSO)

PSO* is a metaheuristic for optimization of continuous 

nonlinear functions inspired by bird flocking and fish schooling 

(in contrast to ACO often used in dynamic combinatorial 

optimization problems).

According to Google Scholar PSO* ~50.000 citings

*Kennedy & Eberhart, “Particle swarm optimization”, IEEE 1995
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Particle Swarm Optimization (PSO)

PSO metaheuristic pseudocode*

 Set parameteres, initialize particles

 while termination condition not met do

     for each particle

         for each dimension

             UpdateParticleVelocity

         UpdateParticlePosition

         UpdateParticleAndSwarmBestPosition

 endwhile

*Clerc, “Standard Particle Swarm Optimisation”, 2012

https://hal.archives-ouvertes.fr/hal-00764996
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PSO metaheuristic

PSO parameters:

 𝑡 is iterations or time (i.e. one increment in while-loop)

 𝑖 = 1,2, … , 𝑁  is particle

 𝑑 = 1,2, … , 𝑀  is dimension

 𝑣𝑖𝑑  is velocity of particle 𝑖 in dimension 𝑑

 𝑥𝑖𝑑  is position of particle 𝑖 in dimension 𝑑

 𝑝𝑖𝑑  is the best position of particle 𝑖 in dimension 𝑑

 𝑝𝑔𝑑  is the best position of all particles in dimension 𝑑



26.08.2023 50

PSO metaheuristic

UpdateParticleVelocity: 

 𝑣𝑖𝑑
′ = 𝑤 ⋅ 𝑣𝑖𝑑 + 𝑤1𝜑1 𝑝𝑖𝑑 − 𝑥𝑖𝑑 + 𝑤2𝜑2 𝑝𝑔𝑑 − 𝑥𝑖𝑑

where 𝑣𝑖𝑑
′  is updated velocity of particle 𝑖 in dimension 𝑑

 𝜑1 and 𝜑2 are uniform random variables 0,1  

 𝑤, 𝑤1and 𝑤2 are paremeters that need to be tuned

Social termInertia term Cognition term
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PSO metaheuristic

UpdateParticlePosition: 

 𝑥𝑖𝑑
′ = 𝑥𝑖𝑑 + 𝑣𝑖𝑑

′
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PSO metaheuristic

UpdateParticleAndSwarmBestPosition : 

 𝑝𝑖𝑑,𝑏𝑒𝑠𝑡
′ = max 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑖𝑑,𝑏𝑒𝑠𝑡 , 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑥𝑖

 𝑝𝑔𝑑,𝑏𝑒𝑠𝑡
′ = max 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑔𝑑,𝑏𝑒𝑠𝑡 , 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑔𝑑
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Particle Swarm Optimization (PSO)

Demonstration of PSO

using NetLogo
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Current hot topics in PSO

• Dynamic optimization problems

• Multi-objective optimization

• Stochastic optimization problems

• PSO in real world applications
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Taxis

“A taxis (plural taxes, from Ancient Greek, meaning 

'arrangement') is the movement of an organism in response to 

a stimulus such as light or the presence of food. Taxes are 

innate behavioural responses.” [Wikipedia, 2017]

Taxis is often applied to source seeking, i.e. finding a hidden 

resource using chemotaxis, thermotaxis or phototaxis to name 

a few taxes. 
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Chemotaxis

Source seeking with inspiration from bacteria like E.coli*. 

E.coli search for nutrients by moving randomly some distance 

before selecting a new course influenced by the environment. 

1. An unfavourable environment makes the variation in the 

new course large.

2. A favourable environment makes the variation in the new 

couse smaller.

Also the direction changing frequency is higher in varying 

environments.

*Berg & Brown, “Chemotaxis in E.coli analysed by 3D tracking”, Nature, 1972
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Chemotaxis

*Image: FreeScienceLectures.com

https://youtu.be/ZUUfdP87Ssg
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An E.coli algorithm*

 Set parameters, initialize robots

 while termination condition not met do

     read sensor 𝑠𝑡

     if 𝑠𝑡 > 𝑠𝑡−1 then

         turn ±𝑟𝑎𝑛𝑑𝑜𝑚 5°  and move forward

    else

        turn ±𝑟𝑎𝑛𝑑𝑜𝑚 180°  and move forward

 endwhile

*Russel et al., “A comparison of reactive robot chemotaxis algorithms”, Nature, 1972

Chemotaxis
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Artificial Potential Field (APF)

Obstacle avoidance can be a challenge in many mobile robot 

systems.

APF* create repulsive force fields around obstacles in the 

environment, either preprogrammed off-line or deposited on-

line dynamically in the environment.

*Khatib, “Real-time obstacle avoidance for manipulators

and mobile robots”, Nature, 1972
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Artificial Potential Field (APF)

*Image: Figure 2.10 in Jørgen Nordmoen, MSc NTNU, 2013



Summary lecture 3 – Swarm intelligence*

• A new form of AI is needed – the social insect metaphore

• SI (Emergence) = stigmergy + self-organization

• Ant Colony Optimization (ant foraging behaviour)

• Particle Swarm Optimization (self-organization)

• Taxis

• Artificial Potential Field
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*Bonabeau, Dorigo & Theraulaz, 1999: chapter 1, 2 and preface,

  A collection of papers on ACO and PSO
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