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Highlights lecture 4 – Swarm robotics 1*

• What is swarm robotics?

• Swarm performance

• Scenarios of swarm robotics

• Modelling approaches

– Local sampling 

– Time-space dynamics

– Fokker-Planck micro-macro link

• Formal design methods in swarm systems
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What is swarm robotics?

«Swarm robotics is the study of how to make robots 

collaborate and collectively solve a task, that would otherwise 

be impossible to solve by a single individual of these robots» 

[Hamann, 2018]. 

A way of handling system complexity inspired by natural 

swarm systems.

 Swarm intelligence applied to robotics
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How big is a swarm?

«Not as large as to be dealt with as statistical averages» and 

«not as small as to be dealt with as a few-body problem», 

[Beni, 2005].

102 < 𝑁 ≪ 1023

(3-body Newtonian mechanics)                (Avogadros  number)
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How big is a swarm?

Alternative approach:

«A swarm is not necessarily defined by its size but rather by 

its behavior.» [Hamann, 2018]

SI observables like self-organization, emergence and 

distributed control among simple autonomous agents.

Fault tolerant, flexible and scalable system design.
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Swarm performance

«The average performance of a robot swarm depends on the 

density or the swarm size if the area in which the swarm 

operates is kept constant.» [Harmann, 2018]

Readily visualized by the example of a bucket brigade, 

[Anderson et al., 2002]
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Bucket brigade
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Image: Figure 1.5 a and b, Hamann, 2018



Bucket brigade
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Image: Figure 1.5 c and d, Hamann, 2018



Swarm performance

Regions of performance: 

1. Super-linear region

2. Sub-linear region 

3. Optimal region

4. Inference region
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Swarm performance

Two processes affect 

performance:

1. Contention or inference 

by sharing limited 

resources

2. Lack of coherency in the 

distributed data due to 

local communication
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Swarm performance

The Universal Scalability Law [Gunther, 1993] of parallel 

processing systems:

 𝑅 𝑁 = 𝑐
𝑁

1+𝛼 𝑁−1 +𝛽𝑁 𝑁−1

where 𝑅 𝑁  is performance as a function of 𝑁 processors

 𝛼 is degree of contention (inference)

 𝛽 gives the lack of coherency in the distributed data

 C is a scalar
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The Universal Scalability Law [Gunther, 1993]

Linear speed up: 𝛼 = 0, 𝛽 = 0
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The Universal Scalability Law [Gunther, 1993]

Sub-linear speed up: 𝛼 = 0.001, 𝛽 = 0
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The Universal Scalability Law [Gunther, 1993]

Speed up levels off: 𝛼 = 0.03, 𝛽 = 0
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The Universal Scalability Law [Gunther, 1993]

Decrease: 𝛼 = 7 × 10−4, 𝛽 = 3 × 10−4
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The Universal Scalability Law [Gunther, 1993]

Super-linear speed up: 𝛼 = −3 × 10−2, 𝛽 = 5 × 10−4
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Empirical support

[Anderson et al., 2002] found that bucket brigades occure in a 

number of ant species.

Also, increasing individual performance with increasing swarm 

size was observed in wasps [Jeanne & Nordheim, 1996]. 
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Scenarios of swarm robotics

• Aggregation and clustering

• Dispersion

• Self-assembled pattern formation, object clustering and 

sorting

• Collective transport, manipulation and motion

• Shepherding

• Bio-hybrid systems

• Swarm robotics 2.0
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Aggregation and clustering

In aggregation the task for the robots is to position themselves 

close to each other in one spot. Position may be specified or 

unspecified guided by collective decision-making

Example: cluster at the warmest, brightest or most radioactive 

spot.

Hard control problem due to the balance between exploration 

and exploitation.
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Dispersion

A robot is supposed to position itself as far as possible from 

every other robot while staying in contact.

Example: large area monitoring and surveillance or minimal 

robot density for conservation of system resources.

Could give raise to clumped, random or uniform distribution of 

swarm depending on algorithm and underlying task.
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Self-assembled pattern formation

Robots aggregate in defined shapes or shape their 

environment.

Example: emergent traffic flow of pedestrians, colourful animal 

patterns, clustering and sorting of resources, self-assembly of 

small robots into larger constructs like bridges and tools.

The self-assembly process should be robust and adaptable to 

dynamic environments.

.
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Collective transport

Robots aggregate to transport resources not movable by 

single robots, i.e. direct cooperation.

Example: factory assembly lines (e.g. box-pushing) or 

collective transport of materials at building sites.
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Collective manipulation

Robots cooperate to solve manipulation tasks, i.e. specialized 

direct cooperation.

Example: drill and mining operations.

In [Ijspeert et al., 2001] the authors investigates ‘stick pulling’ 

in terms of division of labour. Super-linear speed up is 

observed.
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Other swarm applications

Shepherding of animals

Bio-hybrid systems for pest control

Flocking, i.e. PSO

Foraging, i.e. ACO

Task allocation, i.e. response thresholds and auctions
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Swarm robotics 2.0

Swarm systems are now moving out of the labs and into the 

fields:

• Error detection and security

• Interfacing robots and robots as interfaces

• Swarm robotics as field robotics
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Formal design methods in swarm systems

Modelling is introduced as a dimension reducing technique for 

understanding the relevant relations in swarm robotics

• Swarm model description and notation

• Local sampling

• Space-time dynamics using rate/differential equations

• Fokker-Planck equation for the micro-macro link

• Network models

• Formal design methods
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Swarm model description and notation

«Formalization means to describe the modelled system by a 

formal system that allows to derive new insight by means of 

logic and mathematics.» [Hamann, 2018].

We strive to achieve abstraction and simplification. 
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Swarm model description and notation

A swarm system of size N in 2D space can be described by 

the state vector:

𝜸 = 𝒙1, 𝒙2, … , 𝒙𝑁, 𝒗1, 𝒗2, … , 𝒗𝑁, 𝑠1, 𝑠2, … , 𝑠𝑁

where 𝑖 ∈ 1,2, … , 𝑁 is the index of N agents

 𝒙𝒊 = 𝑥𝑖1, 𝑥𝑖2 is the 2D position of agent i

 𝒗𝒊 = 𝑣𝑖1, 𝑣𝑖2 is the velocity of agent i

 𝑠𝑖 is the discrete state of agent i
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Swarm model description and notation

A swarm system of size N in 2D space can be described by 

the state vector:

𝜸 = 𝒙1, 𝒙2, … , 𝒙𝑁, 𝒗1, 𝒗2, … , 𝒗𝑁, 𝑠1, 𝑠2, … , 𝑠𝑁

This system has a configuration space of 𝜸 ∈ Γ

 

 dim Γ = 2𝑁 + 2𝑁 + 𝑁 = 5𝑁
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Swarm model description and notation

In a swarm system of size N=1000 there is not many good 

ways of understanding such a huge system except for running 

direct simulations. 

 dim Γ = 5𝑁 = 5000

The simulation tracks and updates each variable in each time 

step 𝜸𝑡 , 𝜸𝑡+1, 𝜸𝑡+2, however we can only observe one 

configuration at a time starting from a specific initialization 𝜸0. 
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Swarm model description and notation

We need to reduce the configuration space but at the same 

time retain the relevant swarm system dynamics:

 𝑓: Γ → 𝜑

where 𝜑 ∈ Φ and dim 𝜑 ≪ dim Γ
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Swarm model description and notation

Modelling represented as a series of mappings:

 

𝑔: Γ → Γ  giving  𝑔 𝜸𝑡 = 𝜸𝑡+1

h: Φ → Φ giving  ℎ 𝝋𝑡 = 𝝋𝑡+1
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Swarm model description and notation

Modelling represented as a series of mappings:

 

we want  𝑓: Γ → 𝜑 giving ℎ 𝑓 𝜸𝑡 = 𝑓 𝑔 𝜸𝑡
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Swarm model description and notation

Also note that we could have 𝑓−1: 𝜑 → Γ

 

but this is difficult/impossible due to the reduction of 

dimensions when going from 𝑓: Γ → 𝜑
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Swarm model description and notation

An extreme example of dimension reduction:

Assume a binary collective decision-making scenario of option 

A or B with N=1000 agents.

 𝑓 𝜸 =
𝑠𝑖 𝑠𝑖 = 𝐴

𝑁
= 𝜑

where dim 𝜑 = 1, but how does ℎ 𝝋𝑡 = 𝝋𝑡+1 look like?
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Local sampling

Concepts for local sampling in swarm systems are important 

because of robots local perception of the world and their 

typically reduced communication abilities.

In essence, local sampling is to infer the ‘global picture’ from a 

set of samples, i.e. the representativeness of the samples are 

important in order to avoid bias.
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Local sampling

Typical problems of local sampling in swarms:

1. Clustering not representable of swarm system

2. Local robots could be correlated

3. Low density could give strong bias
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Local sampling

Estimation of swarm 

binary state:
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Local sampling

Estimation of swarm area [Mallon and Franks, 2000]

Inspiration taken from:

1. The ant species Leptothorax albipennies search for a new 

nest site

2. Buffon’s needle
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Local sampling

Estimation of swarm area 

[Mallon and Franks, 2000]
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Local sampling

Estimation of swarm area [Mallon and Franks, 2000]

 𝐴𝑟𝑒𝑎 =
2𝐿1𝐿2

𝑛𝜋

where 𝐿1 is pheromone path, a random walk from A to A

𝐿2 is path without pheromones, also A to A

n is number of  intersections of lines 𝐿1 and 𝐿2
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Modelling approaches

«In swarm robotics we are still on the search for an 

appropriate general modelling technique.» [Hamann, 2018]

• Rate equation for time dynamics

• Differential equations for spatial problems

• Fokker-Planck equation for micro-macro link

• Network models
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Modelling time dynamics

Ordinary differential equations (ODE) rate equations 

(inspiration from chemistry)

𝑑𝐶

𝑑𝑡
= 𝑘𝐴𝐵

where 𝐴 + 𝐵 → 𝐶 is the concentration between A, B and C

𝑘 is the rate coefficient
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Modelling time dynamics

Swarm system collecting pucks [Lerman & Galstyan, 2002], 

two states available search or avoid:
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Modelling time dynamics

Swarm system collecting pucks [Lerman & Galstyan, 2002], 

two states available search or avoid:

𝑑𝑛𝑠

𝑑𝑡
= −𝛼𝑟𝑛𝑠 𝑛𝑠 − 1 + 𝛼𝑟𝑛𝑠 𝑡 − 𝜏 𝑛𝑠 𝑡 − 𝜏 + 1

where 𝑛𝑠 is the probability of an agent is in search modus

 𝛼𝑟 is the rate coefficient of detecting other robots

 𝜏 is the time spent in avoid modus
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Modelling time dynamics

Swarm system collecting pucks [Lerman & Galstyan, 2002], 

two states available search or avoid:

𝑑𝑚

𝑑𝑡
= −𝛼𝑝𝑛𝑠𝑚

where 𝑚 is fraction of uncollected pucks

𝛼𝑝 is the rate coefficient of detecting a puck

𝑛𝑠 is the probability of an agent is in search modus
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Modelling time dynamics

Swarm system collecting pucks 

[Lerman & Galstyan, 2002], 

two states available 

search or avoid:

This is a delay differential equation solved numerically
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Modelling space dynamics

Partial differential equations (PDE) allow for more detailed 

spatial modelling (compared to grid-world models).

Model of stochastic motion of one agent with drift:

ሶ𝑹 𝑡 = 𝑭𝑡 + 𝑪

where 𝑹 = (𝑟𝑥 , 𝑟𝑦) is the position of an agent in 2D space

𝑭𝑡 = (𝑋𝑡 , 𝑌𝑡)is the stochastic term of random motion

 𝑪 = (𝑐𝑥 , 𝑐𝑦) is the non-stochastic drift term
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Modelling space dynamics

𝑐𝑥 = 0.1
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Modelling space dynamics

The Langevin equation:

ሶ𝑹 𝑡 = 𝑨 𝑹 𝑡 , 𝑡 + 𝐵 𝑹 𝑡 , 𝑡 𝑭 𝑡

where 𝑹 𝑡  is the position of an agent in 2D space

𝑭 𝑡 is the stochastic term of random perturbation

 𝑨 is the non-stochastic drift term

B is a scalar for the stochastic term
27.08.2023 51
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Modelling space dynamics

The Langevin equation, typically:

𝑨 𝑹 𝑡 , 𝑡 = 𝛻𝑃 𝑹 𝑡 , 𝑡

where 𝛻𝑃 𝑹 𝑡 , 𝑡 is a gradient in a potential field P
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Modelling space dynamics

The Fokker-Planck equation:

• The Fokker-Planck equation is the macroscopically 

corresponding piece to the microscopic approach described 

by the Langevin equation.

• Originally used in physics for modelling Brownian motion 

with drift, describing diffusion processes in thermodynamics. 

[Fokker, 1914; Planck, 1917]
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Modelling space dynamics

The Fokker-Planck equation:

• The combination of the Fokker-Planck equation with the 

Langevin equation establish a direct mathematical micro-

macro link.

• The complicated mathematical modelling shows the general 

challenge of creating explicit micro-macro links in complex 

systems.
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Modelling space dynamics

The Fokker-Planck equation:

Derived from the Langevin equation assuming

• System noise F is white noise (gaussian with zero mean)

• High enough density of particles/agents interacting

• etc

  Only valid for special and idealistic cases
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Modelling space dynamics

The Fokker-Planck equation:

𝜕𝜌 𝒓,𝑡

𝜕𝑡
= −𝛻 𝑨 𝒓, 𝑡 𝜌 𝒓, 𝑡 +

1

2
𝑄𝛻2 𝐵2 𝒓, 𝑡 𝜌 𝒓, 𝑡

where 𝜌 is the robot density at position r and time t

Q is a scalar for the stochastic term

𝛻 is the nabla operator and 𝛻2 is the Laplacian
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Modelling space dynamics

The Fokker-Planck equation:

𝜕𝜌 𝒓,𝑡

𝜕𝑡
= −𝛻 𝑨 𝒓, 𝑡 𝜌 𝒓, 𝑡 +

1

2
𝑄𝛻2 𝐵2 𝒓, 𝑡 𝜌 𝒓, 𝑡

We can derive the fraction of robots at time t over area W by

𝑠 𝑡 = 𝑟∈𝑊
𝜌 𝒓, 𝑡
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Modelling space dynamics

The Fokker-Planck equation:
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Network models

A swarm of robots can be interpreted as a network with robots 

as nodes and edges indication mutual neighbourhood 

relations, typically:

1. Erdos-Renyi random graphs, does not model spatial 

structures

2. Geographic random graphs, static models only

3. Need adaptive networks [Gross and Sayama, 2009] 

allowing dynamic updates of their topology
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Formal design methods

Top-down or bottom-up approaches?

Multi-scale modelling for 

algorithm design
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Formal design methods

Automatic design of robotic controllers, e.g. reinforcement 

learning, ANN, EC, etc, 

Typically, 

1. The required amount of training data is often hard to obtain

2. Well-defined objective functions for swarms are hard to 

derive

3. System state space is growing exponentially with swarm 

size
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Formal design methods

Software engineering and verification

Formal verification of unrestricted swarm systems are hard to 

perform and validate.

How do we define emergence as a property?
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Summary lecture 4 – Swarm robotics 1*

• What is swarm robotics?

• Swarm performance

• Scenarios of swarm robotics

• Modelling approaches

– Local sampling 

– Time-space dynamics

– Fokker-Planck micro-macro link

• Formal design methods in swarm systems
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*Hamann, 2018: chapter 1, 4 and 5
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