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Highlights lecture 8 – Non-cooperative game theory*

• Classification of game theory

• Utility of self-interested agents

• Strategic interaction and strategic games

• Solution concepts

• Prisoner’s dilemma and the iterated PD

• Program equilibria

*Wooldridge, 2009: chapter 11
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A quick survey of game theory

• Non-cooperative games: 

self-interested agents 

• Cooperative games: 

agents forming coalitions

• Evolutionary games:

payoffs are frequency dependent

• Behavioural game:

discrepancy between theory

and reality

Images: thatsmaths, Harvard, Balzan



Self-interested agents

Agents have their own desires and beliefs

1. Desires are modelled by maximizing expected utility*

2. Beliefs are modelled by information processes
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𝐴𝑔𝑜𝑝𝑡 = max
𝐴𝑔∈𝐴𝐺𝑚



𝑟∈𝑅 𝐴𝑔,𝐸𝑛𝑣

𝑘

𝑢 𝑟 𝑃 𝑟 𝐴𝑔, 𝐸𝑛𝑣

*MAS chapter 2, The intelligent agent



Outcomes

where Ω  is a set of outcomes that agents can have

 𝜔𝑖 is outcome
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Ω = 𝜔1, 𝜔2, …



Utility

where 𝑢𝑖  is utility of agent 𝑖

 Ω   is the set of possible outcomes

 ℝ   is the set of real numbers

 𝜔1 is a particular outcome
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𝑢𝑖: Ω → ℝ e.g. 𝑢𝑖 𝜔1 → ℝ  



Preference ordering

Agents are able to rank outcomes:

meaning agent 𝑖 prefers outcome 𝜔 over 𝜔′ or is indifferent

meaning agent 𝑖 strictly prefers outcome 𝜔 over 𝜔′
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𝑢𝑖 𝜔 ≥ 𝑢𝑖 𝜔′ ⟺ 𝜔 ≽𝑖 𝜔′

𝑢𝑖 𝜔 > 𝑢𝑖 𝜔′ ⟺ 𝜔 ≻𝑖 𝜔′



Properties of the preference ordering

1. Reflexivity

For all 𝜔 ∈ Ω, we have that 𝜔 ≽𝑖 𝜔

2. Transitivity

If 𝜔 ≽𝑖 𝜔′, and 𝜔′ ≽𝑖 𝜔′′ then 𝜔 ≽𝑖 𝜔′′

3. Comparability

For all 𝜔 ∈ Ω, and 𝜔′ ∈ Ω we have either 𝜔 ≽𝑖 𝜔′ or 

𝜔′ ≽𝑖 𝜔
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Utility and money 
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Image: Figure 11.2, Wooldridge 2009



Strategic interaction

Basic idea:

«What I do depend on what you do, and what you do depend 

on what I do… which we both should have taken into account 

in the first place.»
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Strategic interaction

Basic idea: 

The environment is altered in simultaneous actions by agents.

Assume:

1. Agents must act

2. Agents can not see other agents perform actions
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Strategic interaction

Mathematically,

where 𝜏    is state transformer function

 𝐴𝑐𝑖 is action of agent 𝑖

 Ω    is the set of outcomes
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𝜏: 𝐴𝑐𝑖 × 𝐴𝑐𝑗 → Ω



Strategic interaction

The simplest strategic game conceivable:

2 agents, 𝑖 and 𝑗, with 2 actions available, 𝐶 and 𝐷,

 ‘𝐶’ for Cooperate

 ‘𝐷’ for Defect
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Strategic interaction

Let us find the possible action combinations:

Giving 4 possible outcomes:
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𝜏 𝐶, 𝐶 = 𝜔1

𝜏 𝐶, 𝐷 = 𝜔2

𝜏 𝐷, 𝐶 = 𝜔3

𝜏 𝐷, 𝐷 = 𝜔4

𝐶, 𝐶 ∨ 𝐶, 𝐷 ∨ 𝐷, 𝐶 ∨ 𝐷, 𝐷



Strategic interaction

How do agents evaluate these 4 outcomes?
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Agent i:
𝑢𝑖 𝜔1 = 𝑢𝑖1 = 𝑝𝑎𝑦𝑜𝑓𝑓1,𝑖

𝑢𝑖 𝜔2 = 𝑢𝑖2 = 𝑝𝑎𝑦𝑜𝑓𝑓2,𝑖

𝑢𝑖 𝜔3 = 𝑢𝑖3 = 𝑝𝑎𝑦𝑜𝑓𝑓3,𝑖

𝑢𝑖 𝜔4 = 𝑢𝑖4 = 𝑝𝑎𝑦𝑜𝑓𝑓4,𝑖

Ω = 𝜔1, 𝜔2, 𝜔3, 𝜔4

Agent j:
𝑢𝑗 𝜔1 = 𝑢𝑗1 = 𝑝𝑎𝑦𝑜𝑓𝑓1,𝑗

𝑢𝑗 𝜔2 = 𝑢𝑗2 = 𝑝𝑎𝑦𝑜𝑓𝑓2,𝑗

𝑢𝑗 𝜔3 = 𝑢𝑗3 = 𝑝𝑎𝑦𝑜𝑓𝑓3,𝑗

𝑢𝑗 𝜔4 = 𝑢𝑗4 = 𝑝𝑎𝑦𝑜𝑓𝑓4,𝑗



Game in strategic form*

Outcome matrix:
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i  
j D C

D 𝜔4 𝜔3

C 𝜔2 𝜔1

*Also called normal form



Game in strategic form*

Payoff matrix (in utility):
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i 
j D C

D 𝑢𝑖4, 𝑢𝑗4 𝑢𝑖3, 𝑢𝑗3

C 𝑢𝑖2, 𝑢𝑗2 𝑢𝑖1, 𝑢𝑗1

*Also called normal form



Game in extensive form*

Payoffs (in utility):
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*Also called a game tree

D

C

(𝑢𝑖2, 𝑢𝑗2)

D

D

C

C (𝑢𝑖3, 𝑢𝑗3)

(𝑢𝑖4, 𝑢𝑗4)

(𝑢𝑖1, 𝑢𝑗1)

Player i

Player j

Player j



Solution concepts

1. Maximizing social welfare

2. Pareto efficiency

3. Dominant strategy

4. Nash equilibrium
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Maximizing social walfare

Chose the strategy that gives the highest aggregated utility 

among all agents.

where 𝑠𝑤 𝜔𝑖  is social welfare of outcome 𝜔𝑖

 𝑢𝑗 is utility for agent 𝑗 of outcome 𝜔𝑖 
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𝑠𝑤 𝜔𝑖 = 

𝑗∈𝐴𝑔

𝑢𝑗 𝜔𝑖



Pareto efficiency

A solution is Pareto efficient if no improvement is possible 

without making someone else worse off.

Also called Pareto optimality.

This is a central concept in economics and in multi-objective 

optimization.
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Dominant strategy

A strategy 𝑠𝑖 for agent 𝑖 is dominant if 𝑠𝑖 is best respons to all 

of agent 𝑗’s strategies 𝑠𝑗.

There is no guarantee of the existence of such a solution.
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Nash equilibrium

The two strategies 𝑠𝑖 and 𝑠𝑗 of agents 𝑖 

and 𝑗 are in Nash equilibrium

1. if player 𝑖 plays 𝑠𝑖, player 𝑗 can do no better than playing 𝑠𝑗

2. if player 𝑗 plays 𝑠𝑗, player 𝑖 can do no better than playing 𝑠𝑖

𝑠𝑖 and 𝑠𝑗 are best response to each other, no player regret 

their strategy choice.
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Image: dreamingtheworld.tv



Nash equilibrium

Two types of Nash equilibria

1. Pure strategy Nash equilibrium

2. Mixed strategy Nash equilibrium

Nash’s theorem guarantees the existence of a solution in 

mixed strategy games (or as a pure strategy game).
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Pure strategy Nash equilibrium

Check all combinations of 𝑁 agents and 𝑀 strategies

1. This gives a computational complexity of 𝒪 𝑀𝑁 , which is 

acceptable for small 𝑀 and 𝑁

2. There might not exist a pure strategy Nash equilibrium

3. There might be more than one pure strategy Nash 

equilibrium
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Mixed strategy Nash equilibrium

Include the probability of playing different strategies.

The solution concept becomes to find the optimal probabilities 

of playing the various strategies. How do you play the game? 

How often do you play a particular strategy?

A mixed strategy over (𝑠1, 𝑠2, …, 𝑠𝑀) strategies is to find a 

probability distribution (𝑝1, 𝑝2, …, 𝑝𝑀) of playing the different 

strategies (𝑠1, 𝑠2, …, 𝑠𝑀). 
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Nash’s theorem

Every game in which every player has a finite set of 

possibilities has a Nash equilibrium in mixed strategy (or in 

pure strategy).

Note:

Often difficult to find Nash equilibrium in pure/mixed strategies 

due to high computational complexity, but they do exist!
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The Prisoner’s dilemma (PD)

The most famous game in game theory
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The Prisoner’s dilemma

«Two men are collectively charged with a crime and held in separate 

cells. They have no way of communicating with each other or making 

any kind of agreement. The two men are told that:

1. If one of them confesses to the crime and the other does not, the 

confessor will be freed, and the other will be jailed for 3 years.

2. If both confess to the crime, then each will be jailed for 2 years.

Both prisoners know that if neither confesses, then they will be jailed 

for 1 year.» [Wooldridge, 2009]

24.09.2023 30



The Prisoner’s dilemma

Let us model the game:

1. Who are the players?

2. What are their available strategies?

3. What are the possible outcomes?

4. What are the payoffs (how do the players evaluate the 

outcomes)?
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The Prisoner’s dilemma

Let us model the game:

1. Who are the players? 

Prisoner 𝑖 and prisoner 𝑗, making it a 2 player game 𝑁=2.
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The Prisoner’s dilemma

Let us model the game:

1. Who are the players? Agent 𝑖 and 𝑗, 𝑁=2

2. What are their available strategies?

2 possible strategies for each player, either 

Cooperate (𝐶) or Defect (𝐷), making 𝑆 ∈ 𝐶, 𝐷 , 𝑀=2.
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The Prisoner’s dilemma

Let us model the game:

1. Who are the players? Agent 𝑖 and 𝑗, 𝑁=2

2. What are their available strategies? 𝑆 ∈ 𝐶, 𝐷 , 𝑀=2

3. What are the possible outcomes?

We could have 4 different outcoms 𝑠𝑖 = 𝐴𝑐𝑙,𝑖 , 𝑠𝑗 = 𝐴𝑐𝑘,𝑗 :

𝐶, 𝐶 , 𝐷, 𝐶 , 𝐶, 𝐷  or 𝐷, 𝐷  ⇔ (1,1), (0,3),(3,0) or (2,2) years
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The Prisoner’s dilemma

Let us model the game:

1. Who are the players? Agent 𝑖 and 𝑗, 𝑁=2

2. What are their available strategies? 𝑆 ∈ 𝐶, 𝐷 , 𝑀=2

3. What are the outcomes? (1,1), (0,3), (3,0) or (2,2) years

4. What are the payoffs? 
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𝑢𝑖 2𝑦 = 𝑢𝑗 2𝑦 = 2 utility

𝑢𝑖 0𝑦 = 𝑢𝑗 0𝑦 = 5 utility

𝑢𝑖 1𝑦 = 𝑢𝑗 1𝑦 = 3 utility

𝑢𝑖 3𝑦 = 𝑢𝑗 3𝑦 = 0 utility

(3,3), (5,0), (0,5) or (2,2)



The Prisoner’s dilemma

Let us model the game:

1. Who are the players? Agent 𝒊 and 𝒋, 𝑵=2

2. What are their available strategies? 𝑺 ∈ 𝑪, 𝑫 , 𝑴=2

3. What are the outcomes? 𝑪, 𝑪 , 𝑫, 𝑪 , 𝑪, 𝑫  or 𝑫, 𝑫  

4. What are the payoffs? (3,3), (5,0), (0,5) or (2,2) utility

⇒ Symmetric 2×2 interaction on strategic form
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The Prisoner’s dilemma

Payoff matrix:
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i  
j D C

D 2,2 5,0

C 0,5 3,3



The Prisoner’s dilemma

Maximizing social welfare:

Chose the strategy that gives the highest aggregated utility 

among all agents.
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i  
j D C

D 2,2 (2+2=4) 5,0 (5+0=5)

C 0,5 (0+5=5) 3,3 (3+3=6) *



The Prisoner’s dilemma

Pareto efficiency:

A solution is Pareto efficient if no improvement is possible 

without making someone else worse off.
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i  
j D C

D 2,2 5,0 *

C 0,5 * 3,3 *



The Prisoner’s dilemma

Dominant strategy:

A stragegy 𝑠 for agent 𝑖 is dominant if 𝑠 it is best respons to all 

of agent 𝑗’s strategies 𝑠’.
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i  
j D C

D 2,2 * 5,0

C 0,5 3,3 



The Prisoner’s dilemma

Nash equilibrium:

𝑠𝑖 and 𝑠𝑗 are best respons to each other, no player regret their 

strategy choice. Check all combinations of 𝑁 agents and 𝑀 

strategies.
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i 
j D C

D 2,2 * 5,0

C 0,5 3,3



The Prisoner’s dilemma

Why is it called a dilemma?

The notion that rational agents could do better by cooperating.

24.09.2023 42

Solution concept Solution Payoffs Social welfare, σ 𝑢

Maximizing social welfare (C,C) (3,3) 6

Pareto efficiency (C,C),

(D,C), (C,D)

(3,3),

(5,0), (0,5)

6,

5, 5

Dominant strategy (D,D) (2,2) 4

Nash equilibrium (D,D) (2,2) 4



The Prisoner’s dilemma

Important real-world game:

• «Tragedy of the commons», [Hardin, 1968]

– Grazing livestock

– Overfishing the seas

– Capacity bandwidth on the Internet 

• What is cooperation in biology?
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The Prisoner’s dilemma

Can we have cooperation and rationality at the same time?

[Binmore, 1992]

• Are we altruists? Affects the payoffs, not PD anymore.

• How about including punishment? Also not PD anymore.

• Group selection and kin selection? Selfish genes? 

• People are not rational for small utilities, but in life and death 

situations we prefer the the rational outcome.
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Iterated Prisoner’s dilemma (IPD)

By repeating the Prisoner’s dilemma over many rounds the 

chance of cooperation increases, mainly due to:

• The threat of «punishment» by defecting in subsequent 

rounds

• Loss of utility can be «amortized» over many rounds
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Iterated Prisoner’s dilemma

How does repeating the game affect the outcomes?

1. Infinite rounds of PD

Cooperation is rational outcome due to threat of defection.

2. Fixed number of rounds PD

Rational to defect in last round, i.e. ‘backward induction’.

3. Non-zero probability of future PD round  

Rational to cooperate if probability of one more round is 

large enough compared to the payoffs.
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Axelrod’s tournament

«The Evolution of Cooperation», 

[Axelrod, 1984].

• Best-known piece of multiagent system reserach.

• How can cooperation arise in societies of self-interested 

agents?

• Tested different submitted strategies for the iterated PD.

• Winner was best overall strategy against all other strategies 

tested in 200 rounds of IPD.

24.09.2023 47

Image: Youtube



Axelrod’s tournament

Some strategies submitted:

• Random, 50/50 𝐶 or 𝐷

• All-D; only 𝐷

• Tit-For-Tat (TFT); first 𝐶 then repeat opponent

• Tester; first 𝐷 then change to TFT is opponent 𝐷

• Joss; TFT but 10% 𝐷

• …
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Axelrod’s tournament

Overall winner was TFT…

 …but TFT will lose to All-D.
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Axelrod’s tournament

Rules for success in iterated PD

• Do not be envious, don’t try to beat opponent.

• Do not be first to defect, instead amortize loss

• Reciprocate 𝐶 and 𝐷, balanced forgiveness and retaliation is 

necessary

• Do not be too clever, TFT was simplest strategy

– Too complex for opponent to understand, appear random

– Overgeneralization of opponents model
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Program equilibria

Basic idea is to compare strategies before conditional action is 

taken by a moderator.

«I will cooperate if you will»

Proposed by [Tennenholtz, 2004] and is subject of much 

ongoing research.
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Program equilibria
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Image: Figure 11.3, Wooldridge 2009



Rock-paper-scissors game

How to win this game?
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Image: Wikipedia



Rock-paper-scissors game

Payoffs in normal form
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R P S

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

j
i



Rock-paper-scissors game

Nash?
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R P S

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

j
i



Rock-paper-scissors game

No pure strategy Nash!
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R P S

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

j
i



Rock-paper-scissors game

Mixed strategy Nash?
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R P S

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

j
i



Rock-paper-scissors game

Player j must chose between strategy {R,P,S},

i.e. maximizing expected utility max{Ej(UR), Ej(UP), Ej(US)}
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R P S

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

Ej(UR) Ej(UP) Ej(US)

j
i



Rock-paper-scissors game

Expected utility of player j chosing Rock depends on player i

  Ej(UR)=piRUjRR+piPUjPR+piSUjSR
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R P S

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

Ej(UR)

j
i



Rock-paper-scissors game

General idea: Player j is not able to change outcome if player i 

plays a mixed strategy of piR, piP, piS giving 

Ej(UR)=Ej(UP)=Ej(US)=U
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R P S

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

Ej(UR)

j
i

Ej(UP) Ej(US)



Rock-paper-scissors game

Why? Expected utility of player j is given by 

pjRU+pjPU+pjSU=(pjR+pjP+pjS)U=U since (pjR+pjP+pjS)=1 and 

assuming Ej(UR)=Ej(UP)=Ej(US)=U 
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R P S

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

U

j
i

U U



Rock-paper-scissors game

And vice versa! Meaning that none of the players have any 

reason for changing their mixed strategy, i.e. Nash equilibrium! 
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R P S

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

Uj

j
i

Uj Uj

Ui

Ui

Ui



Rock-paper-scissors game

For player i: 

 Eq 1: 𝑝𝑖𝑅0 + 𝑝𝑖𝑃 −1 + 𝑝𝑖𝑆1 = 𝑝𝑖𝑆 − 𝑝𝑖𝑃

 Eq 2: 𝑝𝑖𝑅1 + 𝑝𝑖𝑃0 + 𝑝𝑖𝑆 −1 = 𝑝𝑖𝑅 − 𝑝𝑖𝑆 

 Eq 3: 𝑝𝑖𝑅 −1 + 𝑝𝑖𝑃1 + 𝑝𝑖𝑆0 = 𝑝𝑖𝑃 − 𝑝𝑖𝑅
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R P S

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

Uj

j
i

Uj Uj

Ui

Ui

Ui



Rock-paper-scissors game

For player i: 

 Eq 1 and eq 2: 𝑝𝑖𝑆 − 𝑝𝑖𝑃 = 𝑝𝑖𝑅 − 𝑝𝑖𝑆 ⟹ 𝑝𝑖𝑅 = 2𝑝𝑖𝑆 − 𝑝𝑖𝑃

 And : 𝑝𝑖𝑆 + 𝑝𝑖𝑃 + 𝑝𝑖𝑆 = 1 ⟹ 𝑝𝑖𝑃 = 1 − 𝑝𝑖𝑆 − 𝑝𝑖𝑅
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R P S

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

Uj

j
i

Uj Uj

Ui

Ui

Ui



Rock-paper-scissors game

For player i: 

𝑝𝑖𝑅 = 2𝑝𝑖𝑆 − (1 − 𝑝𝑖𝑆 − 𝑝𝑖𝑅)
𝑝𝑖𝑆 = Τ1 3

and by symmetry 𝑝𝑖𝑅 = 𝑝𝑖𝑃 = 𝑝𝑗𝑅 = 𝑝𝑗𝑃 = 𝑝𝑗𝑆 = Τ1 3
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R P S

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

Uj

j
i

Uj Uj

Ui

Ui

Ui



Other symmetric 2x2 games

1. 𝐶, 𝐶 ≻𝑖 𝐶, 𝐷 ≻𝑖 𝐷, 𝐶 ≻𝑖 𝐷, 𝐷  cooperation dominates

2. 𝐶, 𝐶 ≻𝑖 𝐶, 𝐷 ≻𝑖 𝐷, 𝐷 ≻𝑖 𝐷, 𝐶  cooperation dominates

3. 𝐶, 𝐶 ≻𝑖 𝐷, 𝐶 ≻𝑖 𝐶, 𝐷 ≻𝑖 𝐷, 𝐷  

4. 𝐶, 𝐶 ≻𝑖 𝐷, 𝐶 ≻𝑖 𝐷, 𝐷 ≻𝑖 𝐶, 𝐷  stag hunt

5. 𝐶, 𝐶 ≻𝑖 𝐷, 𝐷 ≻𝑖 𝐶, 𝐷 ≻𝑖 𝐷, 𝐶  

6. 𝐶, 𝐶 ≻𝑖 𝐶, 𝐷 ≻𝑖 𝐷, 𝐶 ≻𝑖 𝐶, 𝐷

7. 𝐶, 𝐷 ≻𝑖 𝐶, 𝐶 ≻𝑖 𝐷, 𝐶 ≻𝑖 𝐷, 𝐷

8. 𝐶, 𝐷 ≻𝑖 𝐶, 𝐶 ≻𝑖 𝐷, 𝐷 ≻𝑖 𝐷, 𝐶

9. 𝐶, 𝐷 ≻𝑖 𝐷, 𝐶 ≻𝑖 𝐶, 𝐶 ≻𝑖 𝐷, 𝐷

10. 𝐶, 𝐷 ≻𝑖 𝐷, 𝐶 ≻𝑖 𝐷, 𝐷 ≻𝑖 𝐶, 𝐶

11. 𝐶, 𝐷 ≻𝑖 𝐷, 𝐷 ≻𝑖 𝐶, 𝐶 ≻𝑖 𝐷, 𝐶

12. 𝐶, 𝐷 ≻𝑖 𝐷, 𝐷 ≻𝑖 𝐷, 𝐶 ≻𝑖 𝐶, 𝐶
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Other symmetric 2x2 games

13. 𝐷, 𝐶 ≻𝑖 𝐶, 𝐶 ≻𝑖 𝐶, 𝐷 ≻𝑖 𝐷, 𝐷  game of chicken

14. 𝐷, 𝐶 ≻𝑖 𝐶, 𝐶 ≻𝑖 𝐷, 𝐷 ≻𝑖 𝐶, 𝐷  prisoner’s dilemma

15. 𝐷, 𝐶 ≻𝑖 𝐶, 𝐷 ≻𝑖 𝐶, 𝐶 ≻𝑖 𝐷, 𝐷  

16. 𝐷, 𝐶 ≻𝑖 𝐶, 𝐷 ≻𝑖 𝐶, 𝐶 ≻𝑖 𝐶, 𝐶

17. 𝐷, 𝐶 ≻𝑖 𝐷, 𝐷 ≻𝑖 𝐶, 𝐶 ≻𝑖 𝐶, 𝐷  

18. 𝐷, 𝐶 ≻𝑖 𝐷, 𝐷 ≻𝑖 𝐶, 𝐷 ≻𝑖 𝐶, 𝐶

19. 𝐷, 𝐷 ≻𝑖 𝐶, 𝐶 ≻𝑖 𝐶, 𝐷 ≻𝑖 𝐷, 𝐶

20. 𝐷, 𝐷 ≻𝑖 𝐶, 𝐶 ≻𝑖 𝐷, 𝐶 ≻𝑖 𝐶, 𝐷

21. 𝐷, 𝐷 ≻𝑖 𝐶, 𝐷 ≻𝑖 𝐶, 𝐶 ≻𝑖 𝐷, 𝐶

22. 𝐷, 𝐷 ≻𝑖 𝐶, 𝐷 ≻𝑖 𝐷, 𝐶 ≻𝑖 𝐶, 𝐶

23. 𝐷, 𝐷 ≻𝑖 𝐷, 𝐶 ≻𝑖 𝐶, 𝐶 ≻𝑖 𝐶, 𝐷  defection dominates

24. 𝐷, 𝐷 ≻𝑖 𝐷, 𝐶 ≻𝑖 𝐶, 𝐷 ≻𝑖 𝐶, 𝐶  defection dominates
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The stag hunt

Payoff matrix:

You and a friend plan to apperar with ridiculous haircut on last 

school day. [Rousseau, 1775]
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i  
j D C

D 1,1 * 2,0

C 0,2 3,3 *



Game of chicken

Payoff matrix:

You and an opponent drive cars toward the edge of a cliff, first 

to turn is a chicken. 𝐷 is drive, 𝐶 is turn.
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i  
j D C

D 0,0 3,1 *

C 1,3 * 2,2



Competitive interactions

An iteraction is said to be strictly competitive among agent 𝑖 
and agent 𝑗 when 

 

 𝜔 ≻𝑖 𝜔′ if and only if  𝜔′ ≻𝑗 𝜔

for outcome 𝜔 and 𝜔′.
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Zero-sum interactions

Zero-sum games are formally described as

 

 𝑢𝑖 𝜔 + 𝑢𝑗 𝜔 = 0 for all 𝜔 ∈ Ω

where 𝑢𝑖 𝜔  is utility of agent 𝑖 of outcome 𝜔

Relation to real-world applications is questionable. 

[Zagare,1984]
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In conclusion

Non-cooperative game theory raises the question of «what is 

cooperation?» in biology, sociology, economics, computer 

science…

• How does cooperation emerge?

• How is cooperation maintained?

… under the threat of opportunism.
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Summary lecture 8 – Non-cooperative game theory*

• Classification of game theory

• Utility of self-interested agents

• Strategic interaction and strategic games

• Solution concepts (SW, PE, DS, Nash pure and mixed)

• Prisoner’s dilemma and the iterated PD

• Program equilibria

• What is cooperation?

*Wooldridge, 2009: chapter 11



Midterm evaluation TEK5010/9010

• Continue doing – do more of (Fortsett med - gjør mer av):

• Improve – do less of (Forbedre - gjør mindre av):

• I have learnt most from (Dette har jeg lært/hatt utbytte av):

• What is missing (Dette savner jeg):

Send your comments by email to hjmoen@its.uio.no
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