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Highlights lecture 9 – Voting*

• How do we aggregate individual preferences into social 

choice?

• Different voting procedures

• Arrow’s theorem and desirable properties

• Strategic manipulation and Gibbard-Satterthwaite theorem

*Wooldridge, 2009: chapter 12
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Making group decisions

• Social choice theory, or voting theory, is about making group 

decisions (as opposed to individual decisions).

• Group decisions can be viewed as games because agents 

will take into account their own preferences as well as those 

of others in order to bring about their most preferred 

outcome.

• This leads to tactical voting and strategic manipulation of 

elections (or choice of group strategy).



Social choice theory

Basic setting:

where 𝐴𝑔    is the set of agents or voters in group

𝐴𝑔 = 𝑁 is number of agents 

 𝑁     is assumed to be finite and odd (to break 

      ties)
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𝐴𝑔 = 1,2, … , 𝑁



Social choice theory

The set of possible outcomes (or candidates)

where 𝜔𝑖  is a possible outcome

Ω = 𝑘 is number of possible outcomes

Ω = 2 is pairwise election

Ω > 2 is general election
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Ω = 𝜔1, 𝜔2, …



Social choice theory

Preference ordering of agents:

where 𝝕𝑖 is preference ordering (based on rank) of agent 𝑖

 𝜔𝑘 is one out of 𝑘 possible outcomes in Ω

and

 𝜔 ≻𝑖 𝜔′ means 𝜔 is preferred over 𝜔′ for agent 𝑖 in 𝝕𝑖 
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𝝕𝑖 = 𝜔3, 𝜔1, … , 𝜔𝑘



Social choice theory

Preference aggregation is the fundamental problem in social 

choice theory:

How do we combine the different agents’ preference ordering 

in order to derive a group decision?

Or more specific, how do we generate a social preference 

order over possible outcomes?
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Social choice theory
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Image: Figure 12.1, Wooldridge 2009



Social preference order

Social welfare function:

 

where Π Ω  is a preference ordering over outcomes

 𝑓       is a ranking producing a social preference order

and

 𝜔 ≻∗ 𝜔′ means 𝜔 ranked over 𝜔′ in the social outcome
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𝑓 ∶ Π Ω × ⋯ × Π Ω → Π Ω



Social preference order

Social choice function:

 

where Π Ω  is a preference ordering over outcomes

 𝑓       is one of the outcomes in Ω
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𝑓 ∶ Π Ω × ⋯ × Π Ω → Ω



Voting procedures

• Plurality

• Simple majority voting

• Sequential majority voting

• Borda count

• Slater ranking

• Dictatorship

• Second-order Copeland

…
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Plurality

Every voter submits their preference order and the winner is 

the outcome ranked first most times.

This is the simplest and best known voting procedure, 

e.g. marking a candidate on a ballot.

Plurality is straightforward to implement and easy to 

understand by the voters.

02.10.2023 13



Plurality

However, 

• Plurality is vulnerable to strategic manipulation and 

tactical voting

• and it reveals Condorcet’s paradox
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Condorcet’s paradox

Assume three voters 𝐴𝑔 = 1, 2, 3  having three possible 

outcomes Ω = 𝜔1, 𝜔2, 𝜔3  with preferences as follows:

Selcting 𝜔1means 2/3 of the voters would rather prefer 𝜔3, 

and same for goes for selecting 𝜔2 or 𝜔3.
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𝝕1 = 𝜔1, 𝜔2, 𝜔3 ⇔ 𝜔1 ≻1 𝜔2 ≻1 𝜔3

𝝕2 = 𝜔3, 𝜔1, 𝜔2 ⇔ 𝜔3 ≻2 𝜔1 ≻2 𝜔2

𝝕3 = 𝜔2, 𝜔3, 𝜔1 ⇔ 𝜔2 ≻3 𝜔3 ≻3 𝜔1



Condorcet’s paradox

There are scenarios in which no matter which outcome we 

choose, a majority of voters will be unhappy with the outcome.

It all depends on the preference ordering of the voters.
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Tactical voting

Is it possible for voters to produce a better outcome in the 

example by manipulating the representation of the their  

preferences?
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𝝕1 = 𝜔1, 𝜔2, 𝜔3 ⇔ 𝜔1 ≻1 𝜔2 ≻1 𝜔3

𝝕2 = 𝜔3, 𝜔1, 𝜔2 ⇔ 𝜔3 ≻2 𝜔1 ≻2 𝜔2

𝝕3 = 𝜔2, 𝜔3, 𝜔1 ⇔ 𝜔2 ≻3 𝜔3 ≻3 𝜔1



Tactical voting

Voter 3 can for instance manipulate the representation of its 

preferences by untruthfully say that 𝜔2 ≻3 𝜔3 → 𝜔3 ≻3 𝜔2.

  

Now, 𝜔3 is a more preferred choice than 𝜔1for voter 3 and 2!
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𝝕1 = 𝜔1, 𝜔2, 𝜔3 ⇔ 𝜔1 ≻1 𝜔2 ≻1 𝜔3

𝝕2 = 𝜔3, 𝜔1, 𝜔2 ⇔ 𝜔3 ≻2 𝜔1 ≻2 𝜔2

𝝕3
′ = 𝜔3, 𝜔2, 𝜔1 ⇔ 𝜔3 ≻3 𝜔2 ≻3 𝜔1

𝝕3 = 𝜔2, 𝜔3, 𝜔1 ⇔ 𝜔2 ≻3 𝜔3 ≻3 𝜔1



Simple majority voting

Simple majority voting is plurality with only two possible 

outcomes Ω = 2.

Not so easy to manipulate…

But in reality there are often more than 2 possible outcomes.
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Sequential majority election

A series of plurality elections in order to determine a winner.

Typically, a selection of pairwise elections (i.e. simple majority 

voting) based on

1. linear sequential elections or,

2. balanced binary tree election.
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Sequential majority election
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Linear sequential election:

Balanced binary tree election:

Image: Figure 12.2, Wooldridge 2009



Sequential majority election

Election agenda:

• The order of arranging sequential elections

• The outcome is generally sensitive to order, either by 

random selection or manipulated by electioneer.
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𝜔1, 𝜔2, 𝜔3 meaning 𝜔1 vs. 𝜔2, and then 𝜔1/𝜔2 vs. 𝜔3

𝜔2, 𝜔3, 𝜔1 meaning 𝜔2 vs. 𝜔3, and then 𝜔2/𝜔3 vs. 𝜔1



Majority graph

A directed graph constructed 

from voter preferences.

1. Nodes correspond to outcomes in Ω

2. Edges correspond to majority outcome between pairwise 

node elections
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Image: Figure 12.3, Wooldridge 2009



Majority graph

Properties:

1. Completeness

For any two outcomes 𝜔𝑖  and 𝜔𝑗, we must have either 

𝜔𝑖 defeat 𝜔𝑗 or 𝜔𝑗 defeat 𝜔𝑖

2. Asymmetry

If 𝜔𝑖 defeats 𝜔𝑗 then 𝜔𝑗 cannot defeat 𝜔𝑖

3. Irreflexivity

𝜔𝑖 will never defeat itself

02.10.2023 24



Majority graph

An outcome is a possible winner if there are some election 

agenda that results in that outcome to be the overall winner in 

a sequential majority election.

In a majority graph this is checked by evaluting the 

connectedness between nodes, i.e. is there a path from node 

𝜔𝑖  to any other node 𝜔𝑗 (‘the graph reachability problem’)?
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Condorcet winner

The Condorcet winner is the outcome that is the overall winner 

for all possible election agendas.

In a majority graph the Condorcet 

winner is the node that is connected 

from the node to every other node.
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Image: Figure 12.3, Wooldridge 2009



Dictatorship

A social welfare function is said to be a dictatorship if

where 𝝕𝑖 is the preference order of voter 𝑖

Consequently, in dictatorship, the social outcome is only 

dependent on voter 𝑖.
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𝑓 𝝕1, … , 𝝕𝑖 , … 𝝕𝑁 = 𝝕𝑖



Borda count

The Borda count (BC) for outcome 𝜔𝑗 is given by:

where Ω = 𝑘  is the number of possible outcomes 

 𝑁  is number of voters

 𝝕𝑖        is social preference order of voter 𝑖
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𝐵𝐶𝜔𝑗
= ෍

𝑖=1

𝑁

𝑘 − 𝑟𝑎𝑛𝑘 𝝕𝑖 𝜔𝑗



Borda count

Borda count take into account other information in the voter 

preference list than top rank.

The social outcome is the outcome with maximal Borda count.
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Slater ranking

Used for breaking cycles in majority graphs. The slater rank for 

a social ordering is how many edges must be ‘flipped’ in the 

cyclic majority graph to produce that particular social order.

The slater rule is to choose the social ordering that minimizes 

the disagreement between the majority graph and the social 

choice, i.e. the order with lowest slater rank number.

Computing the Slater rank is NP-hard.
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Slater ranking
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Image: Figure 12.3, Wooldridge 2009



Examples of slater count of different 

social choice ordering:

1. 𝜔1 ≻∗ 𝜔2 ≻∗ 𝜔3 ≻∗ 𝜔4

2. 𝜔1 ≻∗ 𝜔2 ≻∗ 𝜔4 ≻∗ 𝜔3

Slater ranking
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Image: Figure 12.3, Wooldridge 2009



Arrow’s theorem

Assuming voters have 3 or more distinct alternatives, 

there exist no ranked voting electoral system that can convert 

the ranked preferences of individuals into as social preference 

order while at the same time also meet a set of specific 

‘desirable’ criteria:

1. Unrestricted domain

2. Pareto efficiency

3. Independence of irrelevant alternatives (IIA)

4. Non-dictatorship
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Unrestricted domain

The unrestricted domain condition states that all preferences 

of all voters are allowed, 

meaning that the preference order of the voters should be 

complete and that the social preference order should be 

deterministic.
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Pareto efficiency

The Pareto condition states that there is no other outcome that 

makes one voter better off without making any other voter 

worse off, i.e. if all voters 𝜔 ≻ 𝜔′ ⇒ 𝜔 ≻∗ 𝜔′.

This condition i satisfied for Plurality, Borda and dictatorship 

but not for sequential majority election.
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Independence of irrelevant alternatives (IIA)

The social preference between outcome 𝜔 ≻∗ 𝜔′ depends only 

on the individual preferences between 𝜔 ≻ 𝜔′.

Meaning that the ranking of all the other outcomes, not 

changing the relative ranking of individual ranking of 𝜔 ≻ 𝜔′, 

should not affect the social ranking of 𝜔 ≻∗ 𝜔′.

Dictatorship satisfies this criterion, but Plurality, Borda and 

sequential majority election do not.
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Non-dictatorship

If the non-dictatorship condition is dropped as a criterion then 

the dictatorship satisfies Arrow’s theorem!
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Strategic manipulation

A social welfare function is manipulable if there exist 𝝕𝑖′

where 𝝕𝑖 is the preference order of voter 𝑖

Meaning that the social outcome could be improved for some 

voter 𝑖 by unilaterally misrepresenting 𝑖’s preference order.
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𝑓 𝝕1, … , 𝝕𝑖′, … 𝝕𝑁 ≻𝑖 𝑓 𝝕1, … , 𝝕𝑖 , … 𝝕𝑁



Gibbard-Satterthwaite theorem

Assuming voters have 3 or more distinct alternatives, 

according to the GS theorem, in general there exist no voting 

protocol, except for dictatorship, that is non-manipulable.

However,

1. strategic manipulation might be hard to compute, 

e.g. Second-order Copeland.

2. also, uncertainties could make manipulation strategies 

more difficult to obtain.
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Highlights lecture 9 – Voting*

• How do we aggregate individual preferences into social 

choice?

• Different voting procedures:

– Plurality (Condorcet’s paradox)

– Sequential majority election (majority graph, Condorcet winner)

– Borda count

– Slater rule

• Arrow’s theorem and desirable properties

• Strategic manipulation and Gibbard-Satterthwaite theorem

*Wooldridge, 2009: chapter 12
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