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Local measure of feature distinctiveness  

• Consider a small window of pixels around a feature 
• How does the window change when you shift it? 
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“Flat” region: 
No change in all directions 

“Edge”: 
No change along edge 

“Corner”: 
Change in all directions 



Local measure of feature distinctiveness  
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• Change in appearance of window w(x,y) for the shift [u,v]: 
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Local measure of feature distinctiveness  
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• Change in appearance of window w(x,y) for the shift [u,v]: 
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Examples Holmenkollen 
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Examples Holmenkollen 
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Examples Holmenkollen 
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Simplifying the measure 

• Local first order Taylor Series expansion of I(x,y): 
 
 
 

• Local quadratic approximation of E(u,v): 
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Simplifying the measure 

• Local quadratic approximation of the surface E(u,v): 
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Interpreting the second moment matrix 
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Interpreting the second moment matrix 
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Examples Holmenkollen 
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Examples Holmenkollen 
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Examples Holmenkollen 
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Simplifying the measure even further 
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• Consider a horizontal “slice” of E(u,v): 
 
 
 
 

• This is the equation of an ellipse 
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Visualization of second moment matrices 
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Visualization of second moment matrices 
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Simplifying the measure even further 
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• Consider a horizontal “slice” of E(u,v): 
 
 
 
 

• This is the equation of an ellipse 
– Describe the surface using 

the eigenvalues of M 
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The eigenvalues and eigenvectors of M 

• The eigenvalues: 
 
 
 
 
 

• Once you know λ, you find the eigenvectors x by solving 
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The eigenvalues and eigenvectors of M 

• Define shift directions with the smallest and largest change in error 
 
 

• xmax = direction of largest increase in E 
• λmax = amount of increase in direction xmax 
• xmin = direction of smallest increase in E  
• λmin = amount of increase in direction xmin 
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Local measure of feature distinctiveness  

• How are λmax, xmax, λmin, xmin relevant for feature detection? 
– What is our feature scoring function? 
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Local measure of feature distinctiveness  

• How are λmax, xmax, λmin, xmin relevant for feature detection? 
– What is our feature scoring function? 

• Want E(u,v) to be large for small shifts in all directions 
– the minimum of E(u,v) should be large, over all unit vectors [u v] 
– this minimum is given by the smaller eigenvalue (λmin) of M 
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Interpreting the eigenvalues 
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Corner detection summary 

• Compute the gradient at each point in the image using derivatives of Gaussians 
• Create the second moment matrix M from the entries in the gradient 
• Compute the eigenvalues 
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Corner detection summary 

• Compute the gradient at each point in the image using derivatives of Gaussians 
• Create the second moment matrix M from the entries in the gradient 
• Compute the eigenvalues 
• Find points with large response (λmin > threshold) 
• Choose those points where λmin is a local maximum as features 
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The Harris operator 

• An alternative to λmin: 
 
 
 
 
 
 

• Very similar to λmin but less expensive (no square root) 
• Called the “Harris Corner Detector” or “Harris Operator” 
• Lots of other detectors, this is one of the most popular 
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The Harris operator 
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Examples Holmenkollen 
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λmin = 0.4 



Examples Holmenkollen 
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λmin = 1.2 



Examples Holmenkollen 
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λmin = 272 



Holmenkollen example 
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Invariance and covariance 

• We want corner locations to be invariant to photometric transformations 
and covariant to geometric transformations 
 
– Invariance: image is transformed and corner locations do not change 
– Covariance: if we have two transformed versions of the same image, 

features should be detected in corresponding locations 
 

33 



Harris detector properties 

• Affine intensity change 
 

 
 

• Only derivatives are used => invariance to intensity shift I → I + b 
• Intensity scaling: I → a I 
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Harris detector properties 

• Image translation 
 
 
 
 
 
 
 
 
 

• Derivatives and window function are shift-invariant 
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Harris detector properties 

• Image rotation 
 
 
 
 

 
 
 
 
 

• Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same 
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Harris detector properties 

• Scaling 
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Scale robust corner detection 

• Find scale that gives local maximum of score f 
– In both position and scale 
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Automatic scale selection 
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Automatic scale selection 
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Automatic scale selection 
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Automatic scale selection 
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Automatic scale selection 
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Automatic scale selection 
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Automatic scale selection 
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Next 

• Blob detector: stable in space and scale 
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