

Lecture 3.2.1 Corner features

Trym Vegard Haavardsholm

Slides from Rick Szeliski, S. Seitz. Svetlana Lazebnik, Derek Hoiem, Grauman&Leibe, James Hayes and Noah Snavely

- Consider a small window of pixels around a feature
- How does the window change when you shift it?

"Flat" region: No change in all directions

"Edge": No change along edge

"Corner": Change in all directions

• Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

• Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Window function
$$w(x,y) = 0$$
 or 1 in window, 0 outside Gaussian

Simplifying the measure

• Local first order Taylor Series expansion of I(x,y):

$$I(x+u, y+v) \approx I(x, y) + I_x u + I_y v$$

• Local quadratic approximation of E(u,v):

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

$$\approx \sum_{x,y} w(x,y) [I_{x}u + I_{y}v]^{2}$$

$$\approx Au^{2} + 2Buv + Cv^{2}$$

Simplifying the measure

• Local quadratic approximation of the surface E(u,v):

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{x,y} w(x,y) I_x^2$$

$$B = \sum_{x,y} w(x,y) I_x I_y$$

$$C = \sum_{x,y} w(x,y) I_y^2$$

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$= \sum_{x,y} w(x,y) [I_x & I_y] \begin{bmatrix} I_x \\ I_y \end{bmatrix}$$

Interpreting the second moment matrix

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{x,y} w(x,y) I_x^2$$

$$B = \sum_{x,y} w(x,y) I_x I_y$$

$$C = \sum_{x,y} w(x,y) I_y^2$$

Horizontal edge:
$$I_x=0$$

$$M = \begin{bmatrix} 0 & 0 \\ 0 & C \end{bmatrix}$$

Interpreting the second moment matrix

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{x,y} w(x,y) I_x^2$$

$$B = \sum_{x,y} w(x,y) I_x I_y$$

$$C = \sum_{x,y} w(x,y) I_y^2$$

Vertical edge:
$$I_y=0$$

$$M = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}$$

Simplifying the measure even further

• Consider a horizontal "slice" of E(u,v):

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = const$$

• This is the equation of an ellipse

Visualization of second moment matrices

Visualization of second moment matrices

Simplifying the measure even further

Consider a horizontal "slice" of E(u,v):

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{vmatrix} u \\ v \end{vmatrix} = const$$

- This is the equation of an ellipse
 - Describe the surface using the eigenvalues of M

The eigenvalues and eigenvectors of M

• The eigenvalues:

$$\lambda = \frac{1}{2} \left[(A+C) \pm \sqrt{4B^2 + (A-C)^2} \right]$$

• Once you know λ , you find the eigenvectors **x** by solving

$$\begin{bmatrix} A - \lambda & B \\ B & C - \lambda \end{bmatrix} \mathbf{x} = 0$$

The eigenvalues and eigenvectors of M

Define shift directions with the smallest and largest change in error

- \mathbf{x}_{max} = direction of largest increase in E
- λ_{max} = amount of increase in direction \mathbf{x}_{max}
- \mathbf{x}_{min} = direction of smallest increase in E
- λ_{\min} = amount of increase in direction \mathbf{x}_{\min}

- How are λ_{max} , \mathbf{x}_{max} , λ_{min} , \mathbf{x}_{min} relevant for feature detection?
 - What is our feature scoring function?

- How are λ_{max} , \mathbf{x}_{max} , λ_{min} , \mathbf{x}_{min} relevant for feature detection?
 - What is our feature scoring function?
- Want E(u,v) to be large for small shifts in all directions
 - the minimum of E(u,v) should be large, over all unit vectors [u,v]
 - this minimum is given by the smaller eigenvalue (λ_{min}) of M

Interpreting the eigenvalues

Corner detection summary

- Compute the gradient at each point in the image using derivatives of Gaussians
- Create the second moment matrix M from the entries in the gradient
- Compute the eigenvalues

Corner detection summary

- Compute the gradient at each point in the image using derivatives of Gaussians
- Create the second moment matrix M from the entries in the gradient
- Compute the eigenvalues
- Find points with large response (λ_{min} > threshold)
- Choose those points where λ_{min} is a local maximum as features

The Harris operator

An alternative to λ_{min}:

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} = \frac{\det(M)}{\operatorname{trace}(M)}$$

- Very similar to λ_{min} but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Lots of other detectors, this is one of the most popular

The Harris operator

 $\lambda_{\min} = 1.2$

Holmenkollen example

Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations

Affine intensity change

$$I \rightarrow a I + b$$

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$

Partially invariant to affine intensity change

Image translation

Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

• Scaling

Corner

All points will be classified as edges

Corner location is not covariant to scaling!

Scale robust corner detection

- Find scale that gives local maximum of score f
 - In both position and scale

Next

Blob detector: stable in space and scale

