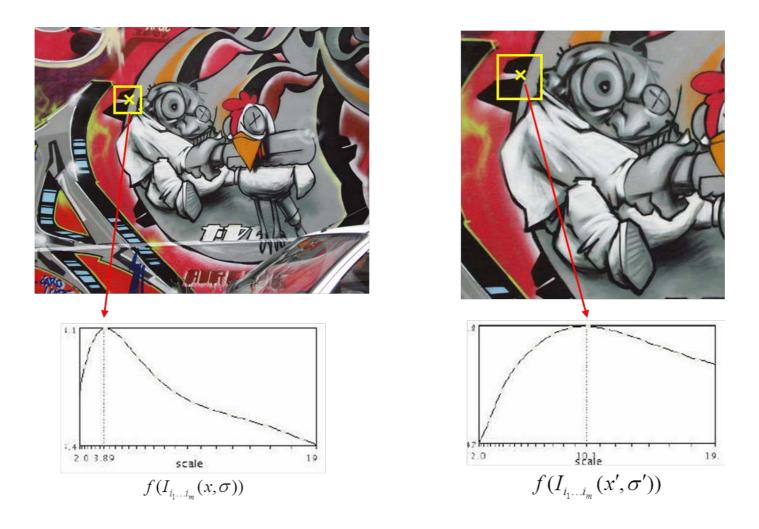


Lecture 3.2.2 Blob features

Trym Vegard Haavardsholm

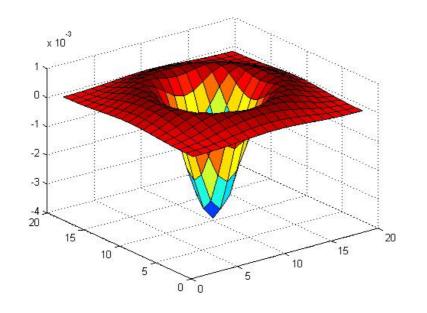
Slides from Svetlana Lazebnik, Grauman&Leibe, S. Seitz, James Hays and Noah Snavely

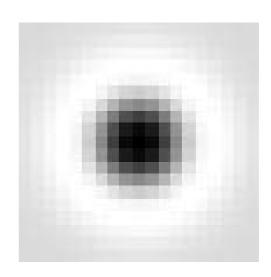
Automatic scale selection



Another common definition of f

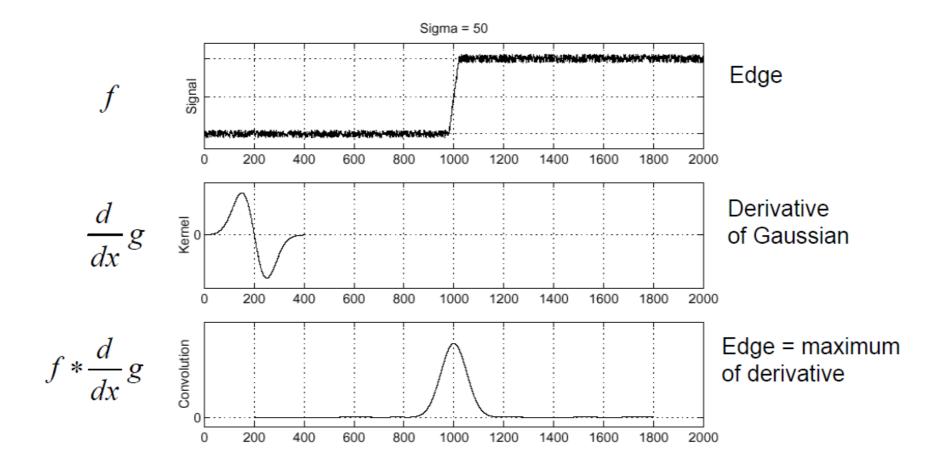
• The Laplacian of Gaussian (LoG)



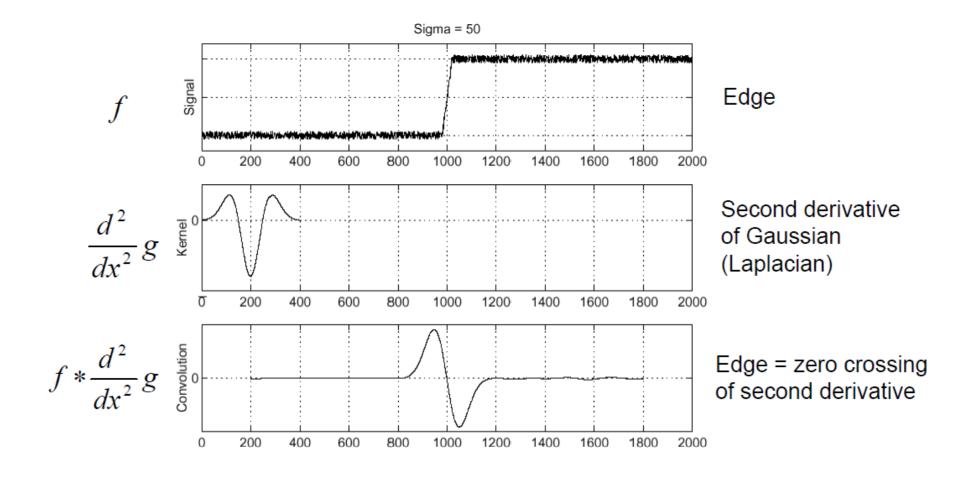


$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Edges and blobs



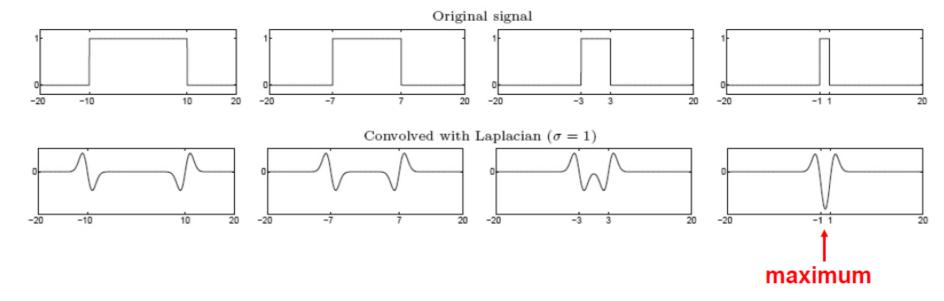
Edges and blobs



Edges and blobs

• Edge: Ripple

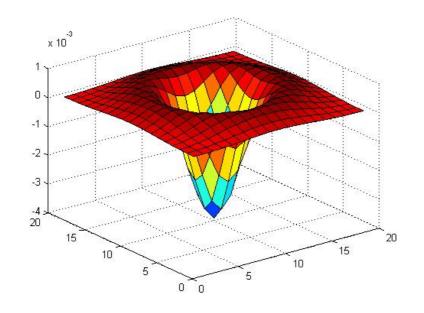
Blob: Superposition of two ripples

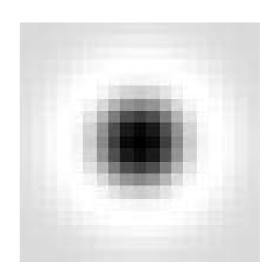


 The magnitude of the Laplacian response is maximum at the centre of the blob provided the scale of the Laplacian matches the scale of the blob

Laplacian of Gaussian

Normalize to make the response independant of scale

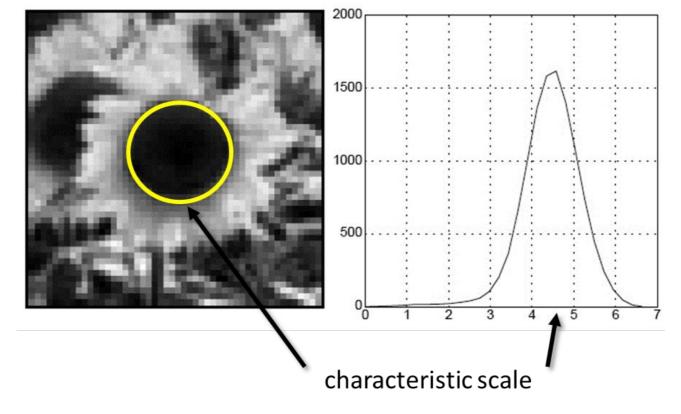




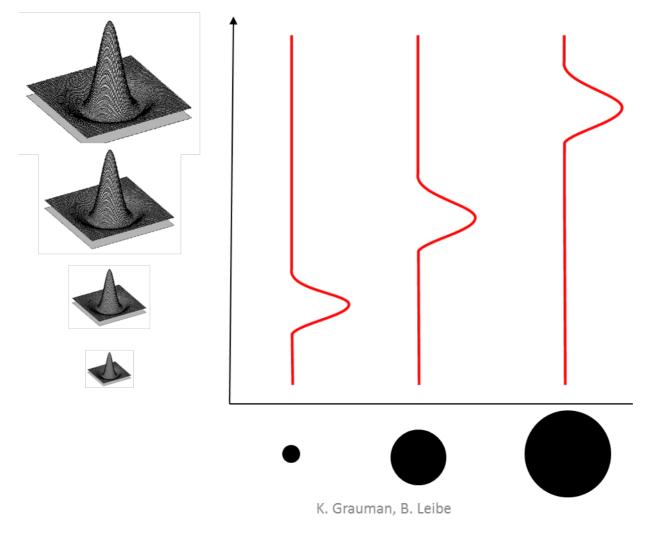
Scale-normalized:
$$\nabla_{\text{norm}}^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$

Characteristic scale

• We define the characteristic scale as the scale that produces peak of Laplacian response

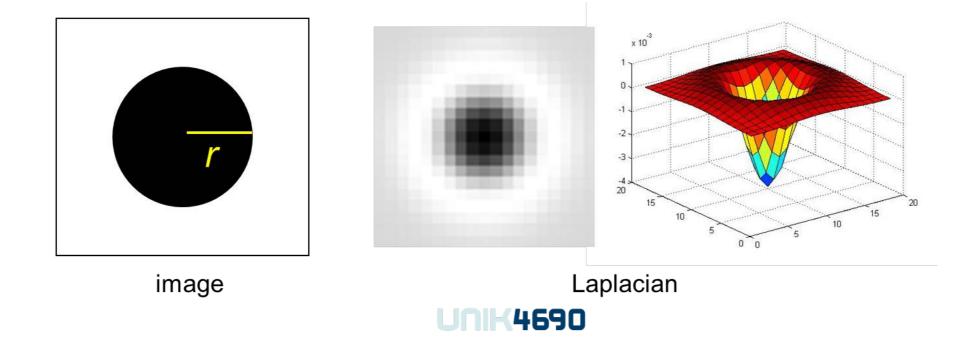


Characteristic scale



Scale selection

 At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?

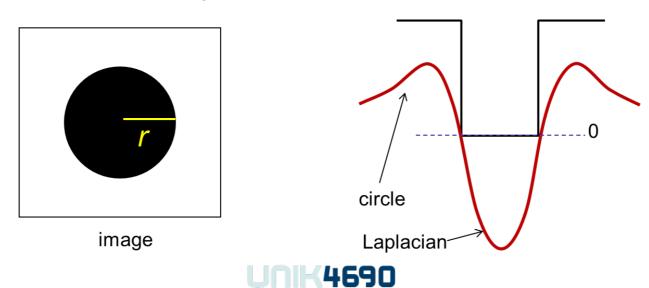


Scale selection

- To get maximum response, the zeros of the Laplacian have to be aligned with the circle
- The Laplacian is given by (up to scale):

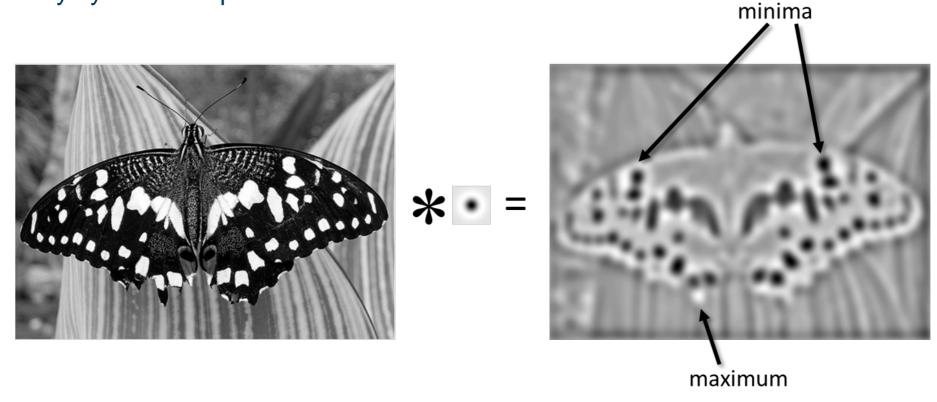
$$(x^2 + y^2 - 2\sigma^2) e^{-(x^2 + y^2)/2\sigma^2}$$

• Therefore, the maximum response occurs at $\sigma = r/\sqrt{2}$.



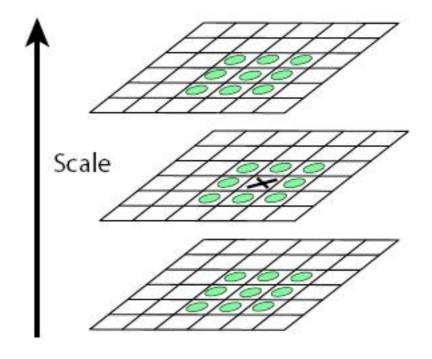
Laplacian of Gaussian

Circularly symmetric operator for blob detection in 2D



Find maxima and minima of LoG operator in space and scale

- Convolve the image with scale-normalized LoG at several scales
- Find maxima of squared LoG response in scale-space



Example

sigma = 2

sigma = 2.5018

sigma = 3.1296

sigma = 3.9149

sigma = 4.8972

sigma = 6.126

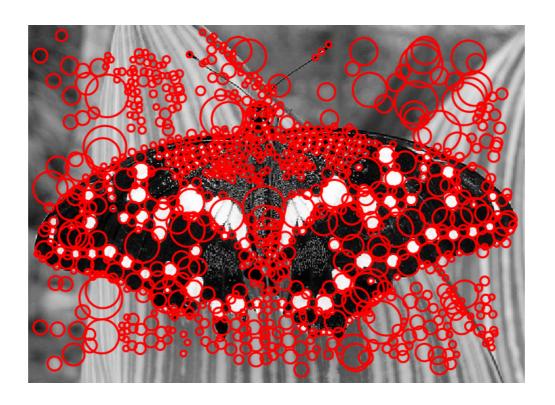
sigma = 7.6631

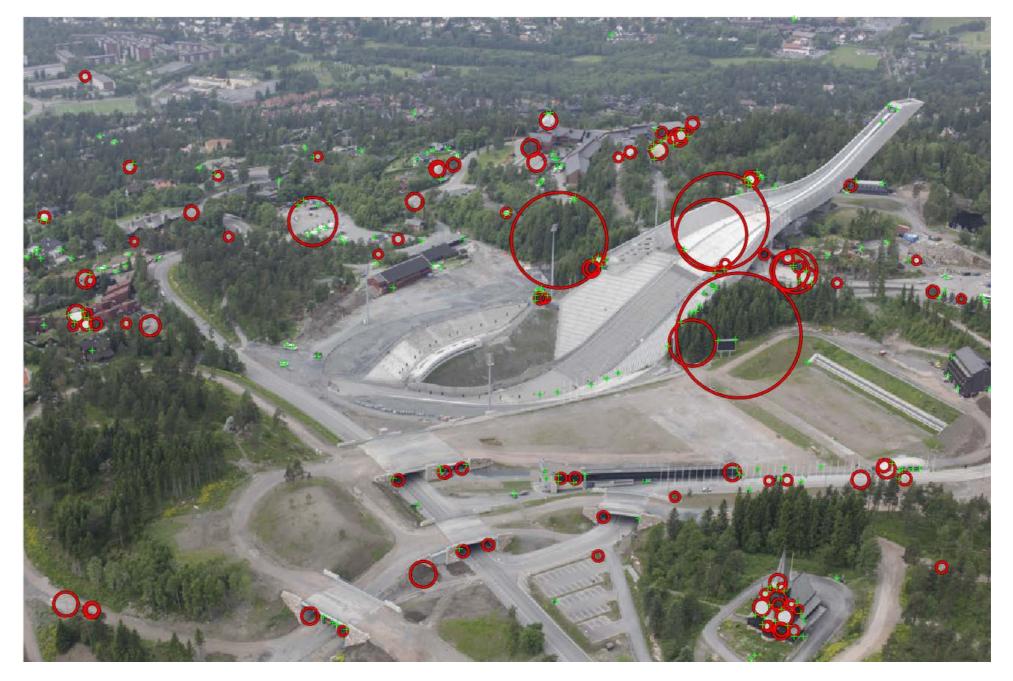
sigma = 9.5859

sigma = 11.9912

sigma = 15

Example: Detected blobs





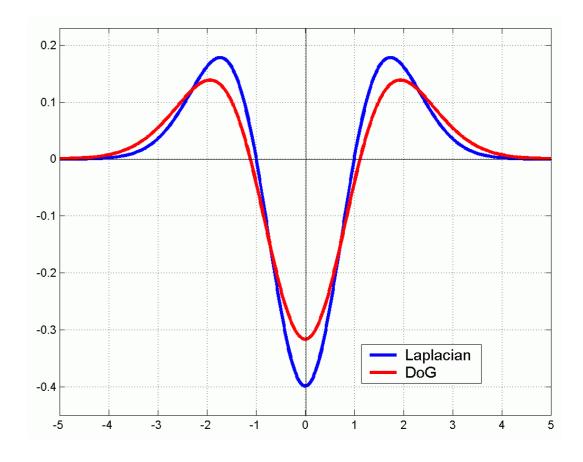
Efficient implementation

Approximating the Laplacian with a difference of Gaussians (DoG)

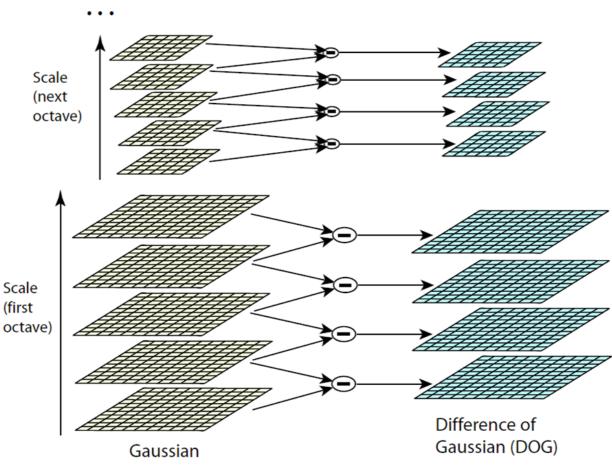
$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
 (Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)

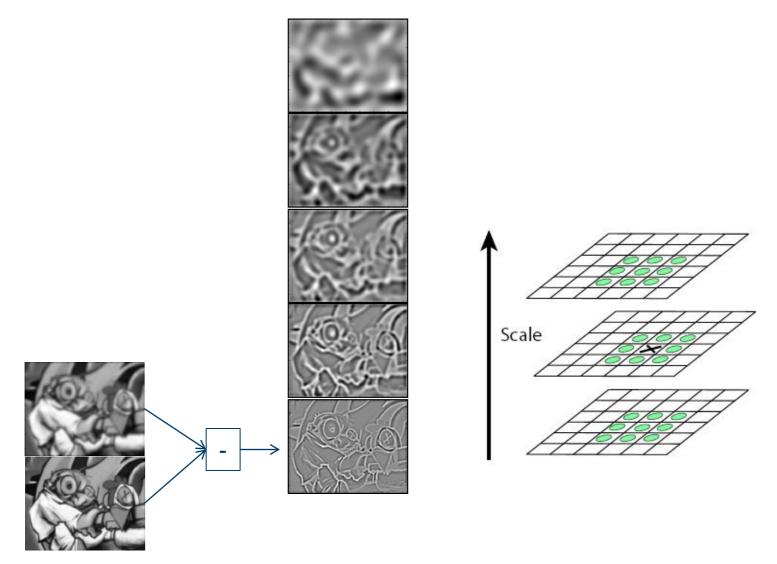


Efficient implementation



David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Difference of Gaussians (DoG)



Summary

- Corner detectors
 - Stable in space
 - Min eigenvalue, Harris
- Blob detectors
 - Stable in scale and space
 - LoG, DoG
- Combine methods!
- Further reading
 - David G. Lowe, "Distinctive image features from scale-invariant keypoints"
 - T. Lindeberg, <u>"Feature detection with automatic scale selection"</u>
- Lab next week:
 - Implement and test feature detectors!

