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Image function

I
i

2D signal where f(z,y) gives the intensity at position (x,y)
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Digital Image

0 0 0 2558255 0 0 0 0 0

0 0 0 255 | 2585 | 170 0 0 0 0
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Discrete (sampled and quantized) version of the (continuous) image function f(x,y)
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Image Processing

® Point operators

® [mage filtering in spatial domain
— Linear filters
— Non-linear filters

® [mage filtering in frequency domain
— Fourier transform

fli, gl = gli, J]
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Point Operators

® Pixel transforms
— Brightness adjustment
— Contrast adjustment

® Colour transforms

® Histogram equalization

gli, g1 = h(fl, 7))

(Pixel-by-pixel transformation)

gli, j]
20 10 6
8 10 2
2 2 14

gli, j] = 2fl3, ]

(Each pixel multiplied by 2)
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Pixel transforms - example

Original image Processed image

T
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Histogram equalization
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Image filtering

® Image filters in the spatial domain:
 Filtering is a mathematical operation on a grid of numbers
« Smoothing, sharpening (enhancing the image)

» Feature extraction (measuring texture, finding edges, distinctive points and
patterns).

® Image filters in the frequency domain:

* Filtering is a way to modify the (spatial) frequencies of images
* Noise removal, (re)sampling, image compression.
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Image filtering in spatial domain

Modify the pixels in an image based on some function of a local neighborhood of each pixel:

10 5 3 h

4 5 1 — 10

1 1 7/

Local image data Modified image data
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Linear filtering

Convolution or cross-correlation where each pixel in the filtered image is a linear combination of the
pixels in a local neighborhood in the original image:

101 5| 3 0/ 010
4161 » 0110 > 16
11118 0] 2 |1

Local image data Kernel Modified image data

The coefficients of the linear combination is contained in the “kernel” (filter mask).

TEKS5030



Cross-correlation

Let f be the image, h be the kernel (of size 2k+1 x 2k+1), and ¢
be the output image:

Z Zhuv i+ u,j + v

u=—kv=—=%k

This is called a cross-correlation operation:

g=h®}J
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Linear filtering
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gli,j) = > hlu, o] fli + u, 5 + 0]

TEKS030

12



Linear filtering
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Linear filtering
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Moving average filter (box filter)

Replaces each pixel with an average of
its neighborhood (smoothing effect)

gli, g1 =) hlu, vl f[i +u,j + 0]

U,V

9 x 9 kernel
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Sharpening filter

Enhances differences with
local average
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Convolution

Same as cross-correlation, except that the kernel is “flipped” (horizontally and vertically):

gli.il= S 3 hlusolfli —u,j— o]

u=—k v=—~k

This is called a convolution operation:

g=nhx*f

Convolution is commutative and associative (no difference between filter and image):

axb=>bxa ax(bxc)=(axb)*c

« Apply several filters, one after the other:

(((@*by) *bg) * bg) = a* (b1 * by *x b3)
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Gaussian filter (smoothing)
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Gaussian filtering

Original image o = 2 pixels o = 4 pixels o = 8 pixels
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Separable filters - example

The 2D Gaussian kernel can be expressed as a product of two 1D kernels:

1 x? + y? 1 2 1
Go(x,y) = 52 P | 5 = exp | —5 5 | X S exp

Discrete 3 x 3 approximation:

x
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2D convolution

Filter kernel

3 x 3 image window
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Result (center pixel only)
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1D convolution along rows and columns

Convolution along rows:

Convolution along remaining column:

*
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Edge detection
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Edges and image derivatives

* An edge is a place of rapid change of the
image intensity function

« Corresponds to extrema of the first
derivative of the image intensity function

« Discrete approximation to the image
derivatives:

g—;‘[-,ﬂ ~ flisj + 1] — fli, ]
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Image gradient:
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Gradient magnitude:

o= (5) + ()

Prewitt operator:
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Image gradient
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Sobel operator

Common approximation of the derivative of a
Gaussian:

x-direction y-direction
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Gradient magnitude

Sobel operator - example

x-direction y-direction
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Non-linear filtering - Median filter

A median filter operates over a neighborhood in the input image by selecting the median intensity:

10, 5] 3 Compute median
4 6] 1 > from > 4
1 1] 8 neighborhood
Local image data Modified image data

Other non-linear filters:

» Bilateral filters (outlier rejection)

» Anisotropic diffusion

» Morphological operations (on binary images)
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Median filtering - example

Image with Salt & Pepper noise
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Image after median filtering
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Morphological operations

® Non-linear filtering
® Typically used to clean up binary images

® Erosion: replace pixel value with minimum in
local neighborhood

® Dilation: replace pixel value with maximum in
local neighborhood

® Structuring element used to define the local

neighborhood:
0 1 0
1 1 1 A shape (in blue) and its morphological dilation (in
green) and erosion (in yellow) by a diamond-
0 1 0 shape structuring element.
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Morphological operations - Erosion

Structuring element (disk shaped) .
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Morphological operations - Dilation

Structuring element (disk shaped) ‘

s
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Opening = Erosion + Dilation
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Closing = Dilation + Erosion
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Filtering in frequency domain

Fourier (1807):

Any univariate function can be rewritten as
a weighted sum of sines and cosines of

different frequencies (true with some subtle
restrictions).

This leads to:
* Fourier Series

* Fourier Transform (continuous and discrete)
« Fast Fourier Transform (FFT)
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Jean Baptiste Joseph Fourier (1768-1830)
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Sum of sines

A T

Asin(wx + ¢) 4 Amplitude

The Fourier transform stores the magnitude and phase at
each frequency

4 I(w)

A=+/R(w)?2+1I(w)? ¢=tan R(w)

Amplitude: Phase: |

fO ) fO 3 fO Frequenc;/
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Two-dimensional Fourier transform

Continous transform:
Flonw) = [ [ flage i romdsay

Discrete transform:

~ (kmm+knn)
E :f[m,n]e_%] SN
n=0

1 M —1
Fllkms kal = 3737 2
m=0
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Fourier analysis in images

| - - -

Iry

Intensity images

!

h images . . -
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The Convolution Theorem

The Fourier transform of the convolution of two functions is the product of their
Fourier transforms:

Flg*h| = Flg|F[h]
Convolution in spatial domain is equivalent to multiplication in frequency domain:

g*h=F""[Fg|F[h]
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Example — Gaussian (low pass) filtering

Original image Fourier transform (absolute value)
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Example — Gaussian filtering

Fourier transform (absolute value)

Gaussian kernel (41 x41), 0 = 5

FFT
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Example — Gaussian filtering
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Example — Gaussian filtering

Fourier transform of filtered image

Inverse
FFT

—
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Filtered image
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Summary

Image Processing

® Point operators

® [mage filtering in spatial domain
— Linear filters
— Non-linear filters

® I[mage filtering in frequency domain
— Fourier transforms

— Gaussian (low pass) filtering

More information: Szeliski 3.1 — 3.4
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