UiO Department of Technology Systems University of Oslo

Lecture 2.1 Image filtering

Idar Dyrdal

Image function

2D signal where f(x,y) gives the **intensity** at position (x,y)

Digital Image

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	255	255	0	0	0	0	0
0	0	0	255	255	170	0	0	0	0
0	0	255	170	170	255	0	0	0	0
0	0	255	170	170	85	85	0	0	0
0	170	170	255	85	85	170	170	0	0
0	0	85	85	170	170	170	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Discrete (sampled and quantized) version of the (continuous) image function f(x,y)

Image Processing

- Point operators
- Image filtering in spatial domain
 - Linear filters
 - Non-linear filters
- Image filtering in frequency domain
 - Fourier transform

$$f[i,j] \to g[i,j]$$

Point Operators

- Pixel transforms
 - Brightness adjustment
 - Contrast adjustment
 - **–** ...
- Colour transforms
- Histogram equalization
- •...

$$g[i,j] = h(f[i,j])$$
(Pixel-by-pixel transformation)

$$g[i,j] = 2f[i,j]$$

(Each pixel multiplied by 2)

Pixel transforms - example

Original image

f[i,j]

Processed image

$$g[i,j] = \sqrt{f[i,j]}$$

Histogram equalization

Image filtering

Image filters in the spatial domain:

- Filtering is a mathematical operation on a grid of numbers
- Smoothing, sharpening (enhancing the image)
- Feature extraction (measuring texture, finding edges, distinctive points and patterns).

Image filters in the frequency domain:

- Filtering is a way to modify the (spatial) frequencies of images
- Noise removal, (re)sampling, image compression.

Image filtering in spatial domain

Modify the pixels in an image based on some function of a local neighborhood of each pixel:

10	5	3
4	5	1
1	1	7

	10	

Local image data

Modified image data

Convolution or **cross-correlation** where each pixel in the filtered image is a linear combination of the pixels in a local neighborhood in the original image:

The coefficients of the linear combination is contained in the "kernel" (filter mask).

Cross-correlation

Let f be the image, h be the kernel (of size $2k+1 \times 2k+1$), and g be the output image:

$$g[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} h[u,v]f[i+u,j+v]$$

This is called a **cross-correlation** operation:

$$g = h \otimes f$$

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

$$h \otimes \frac{1}{9} \frac{1}{1} \frac{1}{1} \frac{1}{1} =$$

$$g[i,j] = \sum_{u,v} h[u,v]f[i+u,j+v]$$

TEK5030

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	0	0	0	0	0
0	0	0	90	90	90	0	0	0	0
0	0	90	90	90	90	0	0	0	0
0	0	90	90	90	90	90	0	0	0
0	90	90	90	90	90	90	90	0	0
0	0	90	90	90	90	90	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	10	20	20	10	0	0	0	0
0	0	20	40	50	30	10	0	0	0
0	10	40	70	80	50	20	0	0	0
0	20	50	80	90	70	40	10		

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	0	0	0	0	0
0	0	0	90	90	90	0	0	0	0
0	0	90	90	90	90	0	0	0	0
0	0	90	90	90	90	90	0	0	0
0	90	90	90	90	90	90	90	0	0
0	0	90	90	90	90	90	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	10	20	20	10	0	0	0	0
0	0	20	40	50	30	10	0	0	0
0	10	40	70	80	50	20	0	0	0
0	20	50	80	90	70	40	10	0	0
0	40	70	90	90	80	60	30	10	0
10	40	70	90	90	90	70	40	10	0
0	30	50	60	60	60	50	30	10	0
0	10	20	30	30	30	20	10	0	0
0	0	0	0	0	0	0	0	0	0

Moving average filter (box filter)

3 x 3 kernel

1	Τ.
$\frac{1}{0}$ 1 1	1
9 1 1	1

Replaces each pixel with an average of its neighborhood (smoothing effect)

$$g[i,j] = \sum_{u,v} h[u,v]f[i+u,j+v]$$

9 x 9 kernel

Sharpening filter

Enhances differences with local average

0	0	0	
0	2	0	-
0	0	0	

Convolution

Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically):

$$g[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} h[u,v]f[i-u,j-v]$$

This is called a convolution operation:

$$g = h * f$$

• Convolution is **commutative** and **associative** (no difference between filter and image):

$$a * b = b * a$$
 $a * (b * c) = (a * b) * c$

Apply several filters, one after the other:

$$(((a*b_1)*b_2)*b_3) = a*(b_1*b_2*b_3)$$

Gaussian filter (smoothing)

$$100 \times 100, \sigma = 10$$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\left(\frac{x^2 + y^2}{2\sigma^2}\right)}$$

Gaussian filtering

Original image

 $\sigma = 2$ pixels

 $\sigma = 4$ pixels

 $\sigma = 8$ pixels

Separable filters - example

The 2D Gaussian kernel can be expressed as a product of two 1D kernels:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right) \times \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{y^2}{2\sigma^2}\right)$$

Discrete 3 x 3 approximation:

1	2	1		1				
2	4	2	=	2	×	1	2	1
1	2	1		1				

More efficient to perform two 1D convolutions compared to a single 2D convolution!

2D convolution

Filter kernel

1	2	2
1	4	4
3	3	5

3 x 3 image window

Result (center pixel only)

1D convolution along rows and columns

Convolution along rows:

Convolution along remaining column:

1		7			
2	*	13	=	47	
1		14			

Edge detection

Edges and image derivatives

- An edge is a place of rapid change of the image intensity function
- Corresponds to extrema of the first derivative of the image intensity function
- Discrete approximation to the image derivatives:

$$\frac{\partial f}{\partial x}[i,j] \approx f[i+1,j] - f[i,j]$$

$$\frac{\partial f}{\partial y}[i,j] \approx f[i,j+1] - f[i,j]$$

Image gradient:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

Gradient magnitude:

$$||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Prewitt operator:

$$G_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Image gradient

f

 $\frac{\partial f}{\partial x}$

 $||\nabla f||$

 $\frac{\partial f}{\partial y}$

Derivative of Gaussians

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-(\frac{u^2+v^2}{2\sigma^2})}$$

Sobel operator

Common approximation of the derivative of a Gaussian:

-1	0	1
-2	0	2
-1	0	1

x-direction

-1	-2	-1
0	0	0
1	2	1

y-direction

Sobel operator - example

x-direction

y-direction

Gradient magnitude

Non-linear filtering - Median filter

A **median filter** operates over a neighborhood in the input image by selecting the median intensity:

Other non-linear filters:

- Bilateral filters (outlier rejection)
- Anisotropic diffusion
- Morphological operations (on binary images)
- ...

Median filtering - example

Image with Salt & Pepper noise

Image after median filtering

Morphological operations

- Non-linear filtering
- Typically used to clean up binary images
- Erosion: replace pixel value with minimum in local neighborhood
- Dilation: replace pixel value with maximum in local neighborhood
- Structuring element used to define the local neighborhood:

0	1	0
1	1	1
0	1	0

A shape (in blue) and its morphological dilation (in green) and erosion (in yellow) by a diamond-shape structuring element.

Morphological operations - Erosion

Structuring element (disk shaped)

Morphological operations - Dilation

Structuring element (disk shaped)

Opening = Erosion + Dilation

Closing = Dilation + Erosion

Filtering in frequency domain

Fourier (1807):

Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies (true with some subtle restrictions).

This leads to:

- Fourier Series
- Fourier Transform (continuous and discrete)
- Fast Fourier Transform (FFT)

Jean Baptiste Joseph Fourier (1768-1830)

Sum of sines

$$A\sin(\omega x + \phi)$$

The Fourier transform stores the magnitude and phase at each frequency

Amplitude:

$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2}$$

Phase:

$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2}$$
 $\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$

Two-dimensional Fourier transform

Continous transform:

$$F(\omega_x, \omega_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j(\omega_x x + \omega_y y)} dx dy$$

Discrete transform:

$$F[k_m,k_n] = rac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m,n] e^{-2\pi j rac{(k_m m + k_n n)}{MN}}$$

Fourier analysis in images

Intensity images Fourier images

The Convolution Theorem

The Fourier transform of the convolution of two functions is the product of their Fourier transforms:

$$F[g * h] = F[g]F[h]$$

Convolution in spatial domain is equivalent to multiplication in frequency domain:

$$g * h = F^{-1}[F[g]F[h]]$$

Example – Gaussian (low pass) filtering

Original image Fourier transform (absolute value) FFT

Example – Gaussian filtering

Example – Gaussian filtering

Example – Gaussian filtering

Summary

Image Processing

- Point operators
- Image filtering in spatial domain
 - Linear filters
 - Non-linear filters
- Image filtering in frequency domain
 - Fourier transforms
 - Gaussian (low pass) filtering

More information: Szeliski 3.1 - 3.4

