
TEK5030 Deep learning lab 
 
The ​code​ for this exercise can be found at 
https://gitlab.com/sigmund.rolfsjord/unik4690_deep_learning_lab 
 
To download the dataset and weights from gitlab you have to do: 

 
git lfs install 

 
If you cloned the repository before you installed lfs you also have to run: 

 
git lfs get 

 
For this exercise you need python installed. If you don’t have python you can install it here: 
https://docs.conda.io/en/latest/miniconda.html 
 
You also need the python packages: ​opencv-python, torch, torchvision​. 
They can be installed by running: 
 

pip install -r requirements.txt 
 
from the base folder, or running: 
 

pip install opencv-python torch torchvision 
 
from anywhere. More information on how to install torch can be found here 
https://pytorch.org/get-started/locally/​. Here you can choose among different versions of 
CUDA or operating systems. 
 
This lab is a set of exercises to learn the basics for training and running deep neural 
networks with python and ​pytorch​. The lab is split in three exercises: 
EX1_simple_network.py, EX2_finetune.py and EX3_live_training.py. 
 
Go through the exercise files and solve the comments marked with TODO. 

EX1_simple_network.py 
In this exercise you should implement the ​SimpleNet​ class, to run a small network for 
classification of the ​cifar10​ dataset. The ​cifar10​ dataset consist of very small images from 10 
different categories. 
 
The ​forward​ method is called every time you run your network. This function should 
transform your input image, through a series of convolutions, into a vector of scores for each 
class. 

https://gitlab.com/sigmund.rolfsjord/unik4690_deep_learning_lab
https://docs.conda.io/en/latest/miniconda.html
https://pytorch.org/get-started/locally/
https://pytorch.org/


 
 

 
It is important to remember that you cannot initialize your layers in the forward method, since 
then you will create new weight for each run and not learn anything. Use the __init__ method 
to initialize your layers. 
 
Try to visualize how some the output of your layers, with cv2.imshow. Visualize both the 
image and the convolution result side by side, and investigate what the different layers does. 
 
To fetch the images from torch you can do: x.data.cpu().numpy() 

EX2_finetune.py 
In this exercises you are still supposed to classify the ​cifar10​ dataset, but you should 
leverage that someone already trained a network to classify ImageNet. With: 
 
self.base_model = models.resnet18(True) 
 
you can download a pretrained network. For fast training you should only train the last layer 
of you network. You can either add a last layer after the output of your base network, or you 
can swap out self.base_model.fc, with the network you want. The model parameters are 
looped through and requires_grad set to ​False​. This ensures that you don’t spend 
computational resources on calculating unnecessary gradients. 
 
Make sure you initialize your optimizers with only the parameters you want to train. 
 
Since the network initially are trained with 224x224 sized images, we will probably get better 
result by still using this size. We therefore resize our image appropriately. We also divide our 
image by 255, to get closer to the image type, we trained with. 

EX3_live_training.py 
In this exercise you should finetune a network with training images generated live from a 
web-camera. 



 
We have already implemented a class named LiveDataset, where we can add images and 
extract training batches. 
 
Create a training loop that adds images to the dataset, and train the last layer of the network 
to learn the classes we input. 
 

Additional fun! 
I also added some examples of how to run live classification and detection in: 
run_detection_live.py​ and ​run_live.py​. 
 
 


