UiQO ¢ Department of Technology Systems

University of Oslo

Summary of TEK5030

06.06.2019

TEKS5030



Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES
. Image formation
— Light, cameras, optics and color
— The perspective camera model
— Basic projective geometry
. Image processing
— Image filtering
— Image pyramids
— Laplace blending
. Feature detection
— Line features
— Local keypoint features
— Robust estimation with RANSAC
. Feature matching
— From keypoints to feature correspondences
— Feature descriptors
— Feature matching

— Estimating homographies from feature
correspondences

| Level 4
Blurand % 1/16 resolution

subsample ’ Level 3
Blur and 1/8 resolution

subsample ' _~3 Level 2
3 1/4 resolution

Blur and

subsample ’
N Level 1
Blur and > 1/2 resolution
subsample

Level 0
§ Original
P X image

(Cmglee)

TEKS5030

d(fi.fz)<T



LeCtu res 201 9 WORLD GEOMETRY AND 3D
« 3D pose representation *  Two-view geometry
X —  Orientation in 3D — Epipolar geometry
— Posein 3D — Triangulation
—  The perspective camera model — Triangulation by minimizing
Epipolar line | 5@ Epipoiar plane x' | Epipolar line revisited reprojection error
}\ /\ . Single-View geometry — Pose from epipolar geometry
Fa ef‘:\ baseline /eh 7, —  Pose from a known 3D map *  Multiple-view geometry
ool Eoinole —  Anintroduction to nonlinear least — Multiple-view geometry
squares —  Structure from motion
—  Optimization over poses — Multiple-view stereo
— Nonlinear pose estimation . Visual SLAM
. Stereo imaging — Introduction to Visual SLAM
— Basic epipolar geometry — Map optimization
— Stereo imaging — ORB-SLAM
—  Stereo processing
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SCENE ANALYSIS
. Image analysis

— Image segmentation

— Image feature extraction

— Introduction to machine learning
. Object recognition

— Deep learning
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Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES
. Image formation
— Light, cameras, optics and color
— The perspective camera model
— Basic projective geometry
. Image processing
— Image filtering
— Image pyramids
— Laplace blending
. Feature detection
— Line features
— Local keypoint features
— Robust estimation with RANSAC
. Feature matching
— From keypoints to feature correspondences
— Feature descriptors
— Feature matching

— Estimating homographies from feature
correspondences

WORLD GEOMETRY AND 3D

. 3D pose representation y
—  Orientation in 3D
— Posein 3D

— The perspective camera model
revisited

. Single-View geometry
— Pose from a known 3D map y

— An introduction to nonlinear least
squares

—  Optimization over poses

— Nonlinear pose estimation .
. Stereo imaging

— Basic epipolar geometry

— Stereo imaging

—  Stereo processing

Two-view geometry
— Epipolar geometry
— Triangulation
— Triangulation by minimizing
reprojection error
— Pose from epipolar geometry
Multiple-view geometry
— Multiple-view geometry
—  Structure from motion
— Multiple-view stereo
Visual SLAM
— Introduction to Visual SLAM
— Map optimization
— ORB-SLAM

SCENE ANALYSIS
. Image analysis

— Image segmentation

— Image feature extraction

— Introduction to machine learning
. Object recognition

— Deep learning
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Image formation
Light, cameras, optics and colour

Image formation:
* |lllumination

« Cameras

» Optics

» Colour Sensing.
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Image capture
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Depth of field — large aperture
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Credit: Fir0002/Flagstaffotos

Large aperture I:|'> Narrow depth of field
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Depth of field — small aperture

Depth of field

Small aperture I:|'> Large depth of field

Too small aperture will lead to diffraction and loss of sharpness
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Colour Sensing in digital cameras - Bayer filter

"

Undersampled (incomplete) colour information

(Credit: Cburnett)
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The perspective camera model

Normalized image plane

The image is represented by a 2D frame F; that spans the normalized image plane

TEKS5030
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The perspective camera model

Normalized image plane

E u

Points in the normalized image plane can be described both as 2D and 3D points
— 3D points x,, in F,
— 2D points u in F;

TEK5030 2



The perspective camera model

Normalized image plane

f, s ¢ |1 0 0 O
u=0 f ¢ ||0 1 0 O|x
0 0 0 0 1T 0]
K I,
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Inverting the perspective camera model
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Remark on computations

Computing the image point u = [u, v]? for a world point x = [x,y, z]" can be split into three steps

X —» X = u=KIIX — u
R X R [
T v
Y ~ u w
v =| .
Z - Vv Vv
Z w —
- 1 - LW

Homogeneous coordinates!
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The camera calibration matrix

o s ¢,
K=0 f ¢ « The principal point, (c,, c,,) is where the optical
0 O" ’ axis intersects the image plane
L . — Often approximated by the center of the image
« Thisis an al_‘fine transformation_from the + The focal lengths f, and f, are scale factors
normalized image plane to the image between the normalized image plane and the
_ B image
u= Kxn — They are scaled versions of the physical focal length
u f, s ¢,
vi=l0 f ¢ |y  The skew parameter s can typically be ignored, so
1 o o 111 we usually sets =0
- T - - — ltis required for cases when the detector array is not
u=fx+sy+c, orthogonal to the optical axis
v=fy+c,
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Non-ideal cameras

No cameras fit the perspective camera model
perfectly
— All cameras suffer from some kind of distortion

If we want to use images for geometrical
computations we need to take this distortion into
account

A distortion model allows us to undistort images
(or individual points)
— Example model for radial distortion only

o 12 14
X, =X, (1+k1r +k,r ) .
n

, ., Where r=x*+y
y =y (1 +kr'+ k' )

TEKS5030
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Linear transformations of the projective plane P?

Transformation Matrix #DoF | Preserves Visualization
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Linear transformations of the projective plane P?

Perspective imaging of a flat surface can be described by a homography

~ surface ~ image
Hx 7 = @™

Flat surface with a 2D
coordinate frame
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IMAGE FORMATION, PROCESSING AND FEATURES
. Image formation
— Light, cameras, optics and color
— The perspective camera model
— Basic projective geometry
. Image processing
— Image filtering
— Image pyramids
— Laplace blending
. Feature detection
— Line features
— Local keypoint features
— Robust estimation with RANSAC
. Feature matching
— From keypoints to feature correspondences
— Feature descriptors
— Feature matching

— Estimating homographies from feature
correspondences

WORLD GEOMETRY AND 3D

. 3D pose representation y
—  Orientation in 3D
— Posein 3D

— The perspective camera model
revisited

. Single-View geometry
— Pose from a known 3D map y

— An introduction to nonlinear least
squares

—  Optimization over poses

— Nonlinear pose estimation .
. Stereo imaging

— Basic epipolar geometry

— Stereo imaging

—  Stereo processing

Two-view geometry
— Epipolar geometry
— Triangulation
— Triangulation by minimizing
reprojection error
— Pose from epipolar geometry
Multiple-view geometry
— Multiple-view geometry
—  Structure from motion
— Multiple-view stereo
Visual SLAM
— Introduction to Visual SLAM
— Map optimization
— ORB-SLAM

SCENE ANALYSIS
. Image analysis

— Image segmentation

— Image feature extraction

— Introduction to machine learning
. Object recognition

— Deep learning
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Image processing

» Point operators (pixel-to-pixel)
- Adjustment of brightness, contrast and colour
- Histogram equalization

« Image filtering in spatial domain
- Mathematical operations on a local neighborhood
- Linear filters (convolution, cross-correlation)
- Non-linear filters
- Image enhancement (smoothing, sharpening)
- Feature extraction (edges, texture etc.)

« Image filtering in frequency domain
- Modification of spatial image frequencies
- Noise removal, (re)sampling, image compression
- 2D Fourier transform

TEKS5030



Linear filtering (cross-correlation or convolution)
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Filtering in frequency domain

Fourier (1807):

Any univariate function can be rewritten as
a weighted sum of sines and cosines of

different frequencies (true with some subtle
restrictions).

This leads to:
* Fourier Series

* Fourier Transform (continuous and
discrete)

« Fast Fourier Transform (FFT)

TEKS5030

Jean Baptiste Joseph Fourier (1768-1830)
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Image Pyramids

o Downsampling (decimation)
o Upsampling (interpolation)

o Pyramids
— Gaussan Pyramids
— Laplacian Pyramids

o Applications
— Template matching (object detection)
— Detecting stable points of interest
— Image Registration
— Compression
— Image Blending

TEKS5030
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Gaussian Pyramid

Downsample
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Laplacian pyramid

L3 - Gg
L, = G, —rescale(G;)
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Laplacian pyramid

L3 = G3
L, = G, —rescale(G;)

L, = Gy —rescale(G5)

Lo = Gy —rescale(Gq)

Collapsing the Laplacian pyramid:

rescale(rescale(rescale(L3) + Ly) + L) + Ly =

TEKS5030 o



Image blending

D

TEKS5030
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Image blending with Laplacian pyramids

Weighted sum for each level of the pyramid

| AXA
L, 1-G

L, G L
Laplacian Gaussian Laplacian Flipped Laplacian
of Img 1 of mask of Img 2 mask blend

TEK5030 20
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— The perspective camera model
— Basic projective geometry
. Image processing
— Image filtering
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— Robust estimation with RANSAC
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Feature detection

Line features:

 Edge detectors
* Image derivatives
« Thinning and thresholding

« Line detection with the Hough transform

TEKS5030
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Thinning and thresholding

« Detection of local maxima (i.e.
suppression of non-maxima)

* Thresholding

N

Binary image with isolated edges
(single pixels at discrete locations
along edge contours)

Edge enhanced image (Sobel) Edge image (Canny)

TEK5030 %



Line detection - Hough transform

The set of all lines going through a given point

corresponds to a sinusoidal curve in the (p, 8)
plane.

Two or more points on a straight line will give
rise to sinusoids intersecting at the point (p, 6)
for that line.

TEKS5030

p=2xcosb+ ysinb

The Hough transform can be
generalized to other shapes.
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Example

Original

TEKS5030

Edge image (Canny)
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Example (2)
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Feature detection
Local keypoint features

« Corner detectors
— Stable in space
— Min eigenvalue, Harris

» Blob detectors
— Stable in scale and space
— LoG, DoG

TEKS5030
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Characteristics of good features

Repeatability Efficiency
Distinctiveness Locality

TEKS5030



Local measure of feature distinctiveness

« Consider a small window of pixels around a feature
« How does the window change when you shift it?

X
N,
“Flat” region: “Edge”:
No change in all directions No change along edge

TEKS5030

“Corner”;
Change in all directions
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Simplifying the measure even further

« Consider a horizontal “slice” of E(u,v):

E(u,v)~ [u V]M = const

A

» This is the equation of an ellipse A

— Describe the surface using direction of the
' fastest change
the eigenvalues of M

. eigenvalues of M

max® ‘vYmin

direction of the
slowest change

TEK5030 %



Corner detection summary

« Compute the gradient at each point in the image using derivatives of Gaussians
« Create the second moment matrix M from the entries in the gradient

« Compute the eigenvalues

» Find points with large response (A, > threshold)

* Choose those points where A, is a local maximum as features

)\min

TEKS5030
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Harris detector properties

« Scaling

o \
A
Corner
All points will
be classified
as edges

Corner location is not covariant to scaling!

TEKS5030
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LoG blob detector

« Convolve the image with scale-normalized LoG at several scales
* Find maxima of squared LoG response in scale-space

« Approximate with Difference of Gaussians (DoG)

W il T Y i B

A =
Pl = = iy

42
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Feature detection
Robust estimation with RANSAC

« RANSAC

— Arobust iterative method for estimating the parameters of a mathematical model from a set of
observed data containing outliers

— Separates the observed data into “inliers” and “outliers”
— Very useful if we want to use better, but less robust, estimation methods

TEKS5030
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RANSAC

Objective
Robustly fit a model y = f(x; a) to a data set S = {x;}

Algorithm

1. Determine a test model y = f(x; a;s;) from n random data points {x,, x,, ...

2. Check how well each individual data point in S fits with the test model
— Data points within a distance t of the model constitute a set of inliers S;;; € S
— Data points outside a distance t of the model are outliers

3. |If Si5 is the largest set of inliers encountered so far, we keep this model
— Set a = atst and SIN = StSt

4. Repeat steps 1-3 until N models have been tested

TEKS5030
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RANSAC

Comments * Instead of operating with a fixed and larger than

Number of iterations required to achieve
confidence p when testing random models from
n-tuples of data elements from a dataset with
inlier probability w

_ _log(1-p)
log(1—-w™)

Typical desired level of confidence
p = 0.99

Inlier probability w is typically unknown, but can
be estimated per iteration

#max estimated inliers

a) =
#data elements

TEKS5030

W
N |09]08|07] 06|05
2 3 ) 7 11 | 17
3 4 7 11 | 19 | 35
4 5 9 17 | 34 | 72
5 6 12 | 26 | 57 |146
6 7 16 | 37 | 97 |293
7 8 20 | 54 |163 |588
8 9 26 | 78 (272 {1177

necessary N we can update N for each iteration
— Adaptive RANSAC!
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Feature matching
Feature descriptors and matching

Matching keypoints
— Comparing local patches in canonical scale and orientation

Feature descriptors
— Robust, distinctive and efficient

Descriptor types
— HoG descriptors
— Binary descriptors

Putative matching
— Closest match, distance ratio, cross check

TEK5030 4



Feature matching
From keypoints to feature correspondences

1. Detect a set of distinct feature points
2. Define a patch around each point

3. Extract and normalize the patch

4. Compute a local descriptor

5.  Match local descriptors

d(f./5)<T

TEK5030 4



Patch at detected position, scale, orientation

- ke

TEKS5030
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SIFT descriptor

« Extract a 16x16 patch around detected keypoint

« Compute the gradients and apply a Gaussian weighting function

« Divide the window into a 4x4 grid of cells

« Compute gradient direction histograms over 8 directions in each cell

« Concatenate the histograms to obtain a 128 dimensional feature vector
« Normalize to unit length

TEKS5030
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Binary descriptors

Extremely efficient construction and comparison

Based on pairwise intensity comparisons
— Sampling pattern around keypoint
— Set of sampling pairs
— Feature descriptor vector is a binary string:

F=Y 2T(R)

0<asN

r(r,)=

L if 1(B") > 1(P)

0 otherwise

Matching using Hamming distance:

L= ) XOR(F,,F,)

0<a<N

TEKS5030
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Estimating homographies from feature correspondences

« Perspective images are sometimes perfectly
related by a homography

— Rotating camera
— Planar scene

« Point-correspondences 1i; < U; can be
established automatically between two such
Images

- Wrong correspondences are common H

 The homography can be estimated from the
point correspondences

— Need at least 4
— Robust estimation techniques are recommended Planar scene

TEKS5030



Estimating homographies from feature correspondences

RANSAC estimation of homography Hu = '

— Direct Linear Transform (DLT) on 4 random
correspondences Ui; © U;

— Inliers have a small reprojection error
€; = d(Hu;,u'y) + d(u, Hu'y)

« The RANSAC estimated homography is random
— Only estimated from 4 correspondences!

« A"better” homography can be estimated based
on all the inlier correspondences

— Normalized DLT
— |terative methods

« Using the homography we can warp one image
into the coordinate frame of the other

TEK5030 >
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Orientation — Several representations

» Orientation of a frame F,, relative to a frame F, has several
representations

— Rotation matrix R € SO(3) Main representation for us!
— Euler angles 8 = [64,0,,05]T Minimal representation
— Axis-angle (v, ¢) = {[vy, v,,v3]7, ¢} We will not us this

— Unit quaternion q = q; + gq,i + q3j + g4k We will use this indirectly

» Important properties

— -1
— Inverse Ryqa = Ry}
— Composition R,. = Ry Ry,
— Action on points x? = Ry x* - 0T

wc
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Pose

* The pose of the camera frame F, with respect to the world frame
F,, can be represented by the Euclidean transformation matrix

RWC tXc
T, :{ M }ESE(??)

where R, € SO(3) is a rotation matrix and t¥. € R3 is a
translation vector given in world coordinates

NOTATION
T,, = The pose of F, relative to F,
R, = The orientation of F, relative to F,

t:, = The translation of F, relative to F,
given in F, coordinates

TEKS5030
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Pose — Inverse

» The opposite pose, the pose of F,, with respect to F,, is given by
the inverse transformation

T =T

cw wc

 One can show that

T _ RWC‘ tZC ) _ Rfvc _Ractxc
- 0" 1 0’ 1

 HenceR,, = R’I\/:/c and tg,, = _R’I\/:/ctwc

57
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Pose — Composition

We can chain together consecutive poses by

compounding transformation matrices

T =T,T,

ac ~ “ab

Note
The indexes are always pairwise equal

SaA SC
- TabTch
,\/ Q source
frame

destination

intermediate
frame

frame

TEKS5030

58



Pose — Action on points

« The matrix T, represents the pose of F,, relative to
F,, but it is also a point transformation from F,, to F.

* Apoint x" in world coordinates can be transformed
to camera coordinates by

x' =T x"

cw

c __ \ c
X —Rcwx +t

Note
The indexes are always pairwise equal

X% =T, %"

N

destination source
frame frame

TEKS5030
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Example — Camera on a vehicle in the world

A point x has a known position relative to
a camera mounted on a vehicle

The vehicle has a known pose relative to
the world

The camera has a known pose relative to
the vehicle

Find expressions for x¥ and x%

Venhicle

TEKS5030
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Example — Camera on a vehicle in the world

A point x has a known position relative to o
a camera mounted on a vehicle x¢

The vehicle has a known pose relative to Camera
the world T,,,,

The camera has a known pose relative to
the vehicle T,

Find expressions for x¥ and x%

Vehicle

TEKS5030
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Example — Camera on a vehicle in the world

A point x has a known position relative to
a camera mounted on a vehicle x¢

The vehicle has a known pose relative to
the world T,,,

The camera has a known pose relative to
the vehicle T,

Find expressions for x¥ and x%

%V =T, .X°

Camera
F.
TUC
‘ : >
vodd T,
\ 4
Vehicle
World

TEK5030 >



Example — Camera on a vehicle in the world

A point x has a known position relative to o
a camera mounted on a vehicle x¢

The vehicle has a known pose relative to Camera
the world T,,,,

The camera has a known pose relative to
the vehicle T,

Find expressions for x¥ and x%

SV _ SC s> -
X" =TyX g Y L |

S Tv

X" =T, T,X* Vehicle

TEK5030 o



The perspective camera model revisited

Normalized image plane

Fi u
>
L :FC
y\f
« The perspective camera model when we consider Ploge of Fy
3D points in a frame F,, instead of the camera ) N ) relative to 7
frame F; foos et oo 0 0] .
ﬁ:KI:Rcw tiw]iw u=|0 ](v C, O 1 0 O |: OCW iw:|~w
0 0 10 0 1 0
K HO Tcw

64
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Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES
. Image formation
— Light, cameras, optics and color
— The perspective camera model
— Basic projective geometry
. Image processing
— Image filtering
— Image pyramids
— Laplace blending
. Feature detection
— Line features
— Local keypoint features
— Robust estimation with RANSAC
. Feature matching
— From keypoints to feature correspondences
— Feature descriptors
— Feature matching

— Estimating homographies from feature
correspondences

WORLD GEOMETRY AND 3D

. 3D pose representation y
—  Orientation in 3D
— Posein 3D

— The perspective camera model
revisited

. Single-View geometry
— Pose from a known 3D map y

— An introduction to nonlinear least
squares

—  Optimization over poses

— Nonlinear pose estimation .
. Stereo imaging

— Basic epipolar geometry

— Stereo imaging

—  Stereo processing

Two-view geometry
— Epipolar geometry
— Triangulation
— Triangulation by minimizing
reprojection error
— Pose from epipolar geometry
Multiple-view geometry
— Multiple-view geometry
—  Structure from motion
— Multiple-view stereo
Visual SLAM
— Introduction to Visual SLAM
— Map optimization
— ORB-SLAM

SCENE ANALYSIS
. Image analysis

— Image segmentation

— Image feature extraction

— Introduction to machine learning
. Object recognition

— Deep learning
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Pose from a known 3D map 7,

 Homography-based method

For a calibrated camera,
we have a relation between the camera pose
and the homography between the world plane and the image!

R t
H,, =K]|r,r,,t] Tm:{0 J

* Indirect methods based on minimizing geometric error

cw i

2
* . ~W
T, —argmmzuﬁ(T X )—uiH
Tew i
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How can we solve the indirect tracking problem?

Minimize geometric error with nonlinear least squares!

TEKS5030
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Nonlinear least squares

We can find the MAP estimate
of our unknown states given measurements

X" = argmax p(X | Z)
X

by representing it as
a nonlinear least squares problem

X' = argmin i ”hl (Xz) —Z, ”;
X i=l1 |

TEKS5030

Choose a suitable inital estimate X"
A,b < Linearize at X'

A" < Solve argmin”AA —b||2
A

X X' +A"
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Nonlinear least squares

We can find the MAP estimate
of our unknown states given measurements

X" = argmax p(X | Z)
X

by representing it as
a nonlinear least squares problem

X' = argmin i”h’ (Xz) —Z, ”i
X i=1 |

TEKS5030

Choose a suitable inital estimate X"

A,b < Linearize at X'

Jacobians
Covariance
weighting

A" < Solve argmin”AA —b||2
A

X X' +A"
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Example:
Range-based localization

Linearized problem at x°:

0 = argmin||A6 —b||2
0

C0.15 0.99] —1.38]
0.20 0.98 ~0.29
A=|-0.11 099 b=|-0.59
~0.33  0.94 ~0.65
0 1.00 ] | 0.62 |

Solution to the normal equations A" A" = A'b:

=012 o TLes
6 = X =X —|—6 =
—-0.47 3.03

TEK5030 "



Nonlinear least squares

We can find the MAP estimate
of our unknown states given measurements Choose a suitable inital estimate X"

X" = argmax p(X | Z)
3 A,b < Linearize at X'
by representing it as

a nonlinear least squares problem
2

m A" < Solve argmin“AA _b”
X" =argmin Y ||(X)~z,], A
X i=1 |

X X' +A"

« (Gauss-Newton
* Levenberg-Marquardt

TEKS5030



Example:
Range-based localization

Levenberg—Marquardt optimization

------ Gauss-Newton
——— Levenberg-Marquardt

TEKS5030



Nonlinear least squares

We can find the MAP estimate
of our unknown states given measurements Choose a suitable inital estimate X"

X" = argmax p(X | Z)
3 A|b < Linearize at X"

by representing it as

a nonlinear least squares problem

. A" < Solve argmin”AA —b||2

X" =argmin2||hi(Xi)—zi||i A
X = i

X X' +A"

* Uncertainty for MAP estimate
by approximating Hessian

73
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Optimizing over poses

Updates on poses as perturbations in a vector space using Lie algebra
T =exp(&")T se(3) = {E=¢" e R™ | £ e R’}

Jacobians for these perturbations

0 (exp(é‘,A )T) D x
oS

O(exp(E)T)®x  sT@x
OX OX

=[L, AT®x]']
£=0

TEKS5030
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The indirect tracking method

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

* . =AM
T. =argmin ZH%(TCWX S)—u,
Tew i

TEKS5030
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Gauss-Newton optimization

Given a good initial estimate T,

Fort=0,1,..,t"%*
A,b < Linearize at T,
&, < Solve the linearized problem with (ATA)QZ =A'b

T, < T, exp(§))

TEKS5030
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Gauss-Newton optimization

Given a good initial estimate T,

Fort=0,1,..,t"%*
A,b < Linearize at T,
&, < Solve the linearized problem with (ATA)QZ =A'b

T T, exp(e)) J

TEK5030 "



Gauss-Newton optimization

Given a good initial estimate T,

Fort=0,1,..,t"%*
A,b < Linearize at T,
&, < Solve the linearized problem with (ATA)QZ =A'b

T T, exp(e)) J

TEK5030 &



n-Point Pose Problem (PnP)

« Typically fast non-iterative methods

* Minimal in number of points

« Accuracy comparable to iterative methods
* Good for initial estimates

 Examples:
— P3P, EPnP
— P4Pf
« Estimate pose and focal length
— PGP
« Estimates P with DLT
— R6P
« Estimate pose with rolling shutter

TEK5030 "
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Basic epipolar geometry

| | Epipolar plane b Eoivotar |
Epipolar line x4 X n pipolar line

F, b

el baseline en Fy
Epipole Epipole

« The epipolar plane is the plane containing x and the two camera centers of F, and F,,

 The baseline is the line joining F, and F,

« The epipolar lines are where the epipolar plane intersect the image planes

 The epipoles are where the baseline intersects the two image planes

« Epipoles and epipolar lines can be represented in the normalized image plane as well as in the image

TEK5030 o



Stereo imaging
Stereo imaging

Stereo imaging

Horizontal epipolar lines
Disparity

3D from disparity
Stereo rectification

TEKS5030

lp=Wx,v,2)
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Stereo geometry

®
-7

Lp = (X,Y,7)

« Parallel identical cameras
— Translated along x-axis

TEKS5030
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Stereo geometry

®
-7

Lp = (X,Y,7)

 Parallel identical cameras

— Translated along x-axis

« Horizontal epipolar lines

TEKS5030

— Corresponding points lie along
the same row in the two images
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Stereo geometry

~<
~<
-
-

Lp = (X,Y,7)

TEKS5030

Parallel identical cameras

— Translated along x-axis

Horizontal epipolar lines

— Corresponding points lie along
the same row in the two images

Depth from disparity

Baseline

Depth
7 = fb_x
d
Disparity

85



Stereo geometry

~<
~<
-
-

Lp = (X,Y,7)

TEKS5030

Parallel identical cameras

— Translated along x-axis

Horizontal epipolar lines

— Corresponding points lie along
the same row in the two images

3D from disparity

Baseline

Depth bx bx
Z:f; XZXLE Y=y,

Disparity

b

-

d

86



Stereo rectification

 Reproject image planes onto a
common plane parallel to the line
between the camera centers

p * The epipolar lines are horizontal after
’ this transformation

\\ «  Two homographies

« C.Loop and Z. Zhang. Computing
Rectifying Homographies for Stereo Vision.
IEEE Conf. Computer Vision and Pattern
Recognition, 1999.

TEK5030 o7



Stereo imaging
Stereo processing

« Stereo processing
— Sparse vs dense matching
— DSl
— Typical failures
— Removing failures vs smoothness

TEKS5030
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Stereo processing

68355 ' 896

' - 4. ' 9‘6 “i 22316-(
» Sparse stereo | ., O R i

— Extract keypoints
— Match keypoints along the same row
— Compute 3D from disparity

e e S
‘.ﬁﬁgye 1863 it
469 v 4

434
434 416
48 4181815

[
44819 % 415 41912
403 o j

409
395

* Dense stereo
— Try to match all pixels along rows
— Compute disparity image by finding the best disparity for each pixel
— Refine and clean disparity image
— Compute dense 3D point cloud or surface from disparity

TEK5030 %



Dense stereo matching

For a patch in the left image

— Compare with patches along
the same row in the right image

— Select patch with highest score

Repeat for all pixels in the left image

Similarity

-100 -200 -300

TEKS5030
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0
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Representing the epipolar geometry

The essential matrix E and the fundamental matrix F

represent the epipolar geometry e X b _ g ga
L N n — Bpadn
(%) E, & =0 (@) F,a =0 \ S
n ba™*n ba T x4 R ’ - X'g
] ) R Eba \\\‘\.
 E and F can be estimated from point F, > F
correspondences ’
— F < RANSAC, 7-pt or 8-pt K K

— E < RANSAC, 5-pt @ b '’ = F, i

 E and F maps points to epipolar lines -

« The essential matrix is related directly to the relative
pose between the two cameras

E, = (tia )A R,,

F, =K,'E, K

ba ~

F,=K'E_K,'

ab

TEK5030 %



Example

TEKS5030
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Linear triangulation by minimizing the algebraic error

~1h

Assume that we know the camera projection ) . "

matrices P,, P, and a 2D correspondence . Po 1 ”,b

u® & u'? for a 3D point x Pa ¥ Vl )
p

. . . U U
Each perspective camera model gives rise to two P o
equations on the three entries of x P}T’a _pgr}zzo [" P ‘bpgr}gzo
p, —u'p p, —u"p,
Combining these equations gives us an
overdetermined homogenous system of linear vap3T p?’ T
equations that we can solve with SVD to find the R
3D point x that minimize the algebraic error P, —u'P, =0
V"’piT P,

£ =|A%| ol —utpT |

in a linear least squares sense Ax=0

TEKS5030
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Triangulation by minimizing the reprojection error

If we denote the camera projections by m, and
my, then the reprojection error ¢ is given by

) 2
s=¢&, +¢,

Estimating X" by minimizing ¢ is a non-linear
optimization problem, which needs an initial
estimate Fp

2 2

oW a
T, (Tawx )—u

+\

ow b
7T, (wax )—u

TEKS5030
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Pose estimation by minimizing reprojection error

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

2

% _ . ~ W .
T. =argmin ZH?Z’(TCWXZ. )—u,
Tew i

I

TEK5030 %



Triangulation by minimizing reprojection error

Minimize geometric error over the world points
This is also sometimes called Structure-Only Bundle Adjustment

. 112
wx . Swy i |
X; =argmin Z Z H 7(T,, X7)—u,
Xj i J

TEK5030 o



Two-view geometry
Pose from epipolar geometry

 Non-planar case
— Estimate epipolar geometry
— Estimate relative pose from E

« Planar case
— Estimate homography
— Estimate relative pose from H

TEKS5030
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Pose from epipolar geometry

There are four different poses that satisfy the equation
b A
Epqg = (tba) Rpa

The figure illustrates how this might look like for the case
when Ty, 4 is the correct pose

T, ; is the pose of F, ; relative to F,,

There is no way of predicting the correct pose out of the
four, but in general only one of them corresponds to x
being in front of both cameras

This constraint is known as the chirality constraint and
it is tested by triangulation of at least one 3D point

||th || can not be found from E,, (homogeneous matrix)

TEKS5030

Reference
camera

Fp
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Pose from epipolar geometry

Pose between two calibrated cameras

1. Establish robust correspondences ué < u'?

between images
b .
2. Determine coorspondences x;,; < X', ; using
that X, = K~ 1u
3. Estimate the essential matrix E,, from
correspondences X, ; < X', b
4. Compute poses Ty, 1,..-, Tba,4 from E,,

5. For each pose, determine at least one 3D
point x by triangulation and select the pose
that satisfies the chirality constraint

||the|| remains unknown!

100
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Planar scene

One can prove that if

R,, tb
T =[ ba ba]
ba 0 1
then

Hyo = Kp(Rpq — the ()T /d)K;?

It is possible to estimate (Rba, n“,%tga)

from a known homography

— Four solutions

Hba
u®e Fan g
A
K, Ky
F, Fp
) > K '/‘
\\ b /I
V oo Xn ‘n®
d
A v Xl'[
n

TEKS5030
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IMAGE FORMATION, PROCESSING AND FEATURES
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Multiple-view geometry

e Multiple-view geometry
« Correspondences

— Two-view vs Three-view
— Fundamental matrix vs Trifocal tensor

103
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Multiple-view geometry

Three views

« Given three overlapping images, we can

establish (or evaluate) point correspondences

using the pairwise epipolar constraints
ﬁg — (Fgllﬁl) X (Fglzﬁz)

« However, this fails for points in the plane
defined by the three camera centers — the
trifocal plane — since the epipolar lines then will

coincide

« The trifocal tensor allows point transfer also for
points in the trifocal plane

TEKS5030

=

3 = (Fg,lﬁl) X (F&zﬁz)

~2 -7
F3,2u m’/

Al

7 3
e u
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Example
Point transfer based on epipolar constraints

Uncertainty in feature points transfer
to uncertainty in the epipolar lines

Hence the reliability of the predicted
point depends on the angle between
the epipolar lines

A large angle is good! ey N

TEKS030
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Example
Point transfer based on epipolar constraints

Uncertainty in feature points transfer
to uncertainty in the epipolar lines

Hence the reliability of the predicted
point depends on the angle between
the epipolar lines

A small angle is bad! Sy N

TEKS030
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Multiple-view geometry
Multiple-view stereo

 Multi-view stereo

— Plane-sweep : T [ O R H’J\
H". r ?

— Volumetric stereo
— Surface expansion

 Surface reconstruction

107
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Plane sweep Reference camera Camera k

u = K..f[I |0]X u' = Kyg[Ry | t]X
« Sweep planes at different depths H
= - . - 4 e \ T __ql
gl T A A
Kyef Ky
Pref S
£ ‘7 —> G Py
/ v x\\b\ é‘i" /
dm-1
Tnm—l
v ‘\ I’

Robert Collins, A Space-Sweep Approach to True Multi-Image Matching, CVPR 1996.
D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang and M. Pollefeys, Real-Time Plane-Sweeping Stereo with Multiple Sweeping Directions, CVPR 2007
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http://www.ri.cmu.edu/pub_files/pub1/collins_robert_1996_1/collins_robert_1996_1.pdf
https://www.inf.ethz.ch/personal/pomarc/pubs/GallupCVPR07.pdf

Plane sweep Reference camera Camera k

u = K..[I | 0]X u' = Ky [Ry | t]X
« Sweep planes at different depths H
» - N - T T 5 i s . T >
FE A T e
- A A

Kyef Ky

Pref S
F--- ‘7 —> G Py

Robert Collins, A Space-Sweep Approach to True Multi-Image Matching, CVPR 1996.
D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang and M. Pollefeys, Real-Time Plane-Sweeping Stereo with Multiple Sweeping Directions, CVPR 2007
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http://www.ri.cmu.edu/pub_files/pub1/collins_robert_1996_1/collins_robert_1996_1.pdf
https://www.inf.ethz.ch/personal/pomarc/pubs/GallupCVPR07.pdf

Plane sweep

Sweep planes at different depths

Reference camera

u= Kref[l | 0]X

H

>

Camera k

u' = Ki[Ry | t;]X

dm+1 .

Robert Collins, A Space-Sweep Approach to True Multi-lmage Matching, CVPR 1996.

D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang and M. Pollefeys, Real-Time Plane-Sweeping Stereo with Multiple Sweeping Directions, CVPR 2007

TEKS5030
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http://www.ri.cmu.edu/pub_files/pub1/collins_robert_1996_1/collins_robert_1996_1.pdf
https://www.inf.ethz.ch/personal/pomarc/pubs/GallupCVPR07.pdf

Plane sweep and ambiguities -
« Multiple views can resolve ambiguities

in difficult areas! 29 |

g g |

:

?

Depth (m)
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Plane sweep through oriented planes  Rreference camera Camera k

u= K[l |0]X u' = Ki[Ry |t ]X
* Fronto-parallel H
T U o > g u'
n_ = [O 0 —1]
Z (u,v)=d

« Other plane orientations

—d
Z, (u,v) = :
n(t7) [u % I]K_Tn

ref ""m

Robert Collins, A Space-Sweep Approach to True Multi-lmage Matching, CVPR 1996.
D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang and M. Pollefeys, Real-Time Plane-Sweeping Stereo with Multiple Sweeping Directions, CVPR 2007
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http://www.ri.cmu.edu/pub_files/pub1/collins_robert_1996_1/collins_robert_1996_1.pdf
https://www.inf.ethz.ch/personal/pomarc/pubs/GallupCVPR07.pdf

Plane sweep with ground normal

“="790 meter

m = 200 meter below reference camera
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Plane sweep with ground normal

d,, = 261 meter below reference camera
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Plane sweep with ground normal

d,, = 298 meter below reference camera
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Plane sweep with ground normal

77 =2969 meter”

“ ‘-’:_ =

7= 1967“me_ter ‘

d,, = 471 meter below reference camera
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What is Visual SLAM?

« Visual simultaneous localization and mapping

» Localization (tracking)

— Localization within the map =
tracking the map in image frames

* Mapping
— Continuously expanding a map
while exploring the environment

TEKS5030



How do we track a map?
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How do we build a map?
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Monocular Visual SLAM

N A
bbbb 2 / Drift
.:..°.. 0.7
P
—_—
SRR Ea
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Monocular Visual SLAM

BBy
L
0/0.
Loop closure detection R
v “e
SR
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Monocular Visual SLAM

Loop closure correction

V.'- . .
Vg 9D
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Monocular Visual SLAM
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Components of VSLAM

« Short-term tracking
— Pose estimation given the map
— Keyframe proposals

« Long-term tracking
— Visual place recognition
— Loop closure detection over keyframes

Lowry, S. et al. (2016). Visual Place Recognition: A Survey.

. IEEE Transactions on Robotics, 32(1), 1-19.
* Mapping
— Optimizing the map over keyframes
— Data fusion
X1 . @ . X3
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Components of VSEAM VO

« Short-term tracking
— Pose estimation given the map
— Keyframe proposals

* Mapping
— Optimizing the map over keyframes
— Data fusion

TEKS5030

Lowry, S. et al. (2016). Visual Place Recognition: A Survey.

IEEE Transactions on Robotics, 32(1), 1-19.
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Pose and structure estimation by minimizing reprojection error

Minimize geometric error over the camera poses and world points
This is also sometimes called Full Bundle Adjustment

Y
* wk | . ~W I
{Tcw,. X } = argmin Z Z Hﬂi(Tcwin )—u,
T Xj i

J
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Example

0
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Example

0
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Example

0
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Example

0
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Example

0
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Linearized least-squares

Prior on first pose and distance between first two points

~ _ bll
Fll Gll b12
FIZ GIZ e ]
S b,
F13 G13 E_} —1 g prior v
A F21 G21 A 62 b b21 bg{mor — ln(TwclTwa )
- - 1 - rior w w
K, G,, 3 b,, bd@rwr =d, _sz — X H
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MAP inference for nonlinear factor graphs

MAP inference for factor graphs: ID

XM = argmax ¢(X)
X

= argmaxHQ.(Xi)
i i X1 * /xz\
Let us assume that all factors are of the form Y

¢1(Xz) oC exp{_%”hi(Xi)_Zi”;}

Taking the negative log and dropping the constant factor
allows us instead to minimize a sum of nonlinear least-squares:
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The sparse Jacobian and its factor graph

« The key in modern SLAM is to exploit sparsity
« Factor graphs represent the sparse block structure in the resulting sparse Jacobian A.
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ORB-SLAM 2
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R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE Trans. Robot., pp. 1-8, 2017.
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Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES
. Image formation
— Light, cameras, optics and color
— The perspective camera model
— Basic projective geometry
. Image processing
— Image filtering
— Image pyramids
— Laplace blending
. Feature detection
— Line features
— Local keypoint features
— Robust estimation with RANSAC
. Feature matching
— From keypoints to feature correspondences
— Feature descriptors
— Feature matching

— Estimating homographies from feature
correspondences

WORLD GEOMETRY AND 3D
. 3D pose representation

—  Orientation in 3D

— Posein 3D

— The perspective camera model
revisited

. Single-View geometry
— Pose from a known 3D map

— An introduction to nonlinear least
squares

—  Optimization over poses

— Nonlinear pose estimation
. Stereo imaging

— Basic epipolar geometry

— Stereo imaging

—  Stereo processing

Two-view geometry
— Epipolar geometry
— Triangulation
— Triangulation by minimizing
reprojection error
— Pose from epipolar geometry
Multiple-view geometry
— Multiple-view geometry
—  Structure from motion
— Multiple-view stereo
Visual SLAM
— Introduction to Visual SLAM
— Map optimization
— ORB-SLAM

SCENE ANALYSIS
. Image analysis

— Image segmentation

— Image feature extraction

— Introduction to machine learning
. Object recognition

— Deep learning
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Image Analysis

Image Segmentation:

« Thresholding techniques

» Clustering methods for segmentation
« Morphological operations.

_ Perimeter (P)
Image feature extraction:

 Feature extraction

« Feature selection. Area (A)

Introduction to Machine Learning:

« Pattern classification

» Training of classifiers (supervised learning)
« Parametric and non-parametric methods

« Discriminant functions

« Dimensionality reduction.
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Image Segmentation

Methods:

« Active contours (Snakes, Scissors, Level
Sets)

« Split and merge (Watershed, Divisive &
agglomerative clustering, Graph-based
segmentation)

Gray level thresholding

K-means (parametric clustering)
Mean shift (non-parametric clustering)
Normalized cuts

Graph cuts.
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Feature Extraction o 1'
The goal is to generate features that exhibit high information-packing L2
properties:
x = |13

« Extract the information from the raw data that is most relevant for

discrimination between the classes
« Extract features with low within-class variability and high between T4

class variability -
« Discard redundant information. Perimeter (P)
« The information in an image f[i,j] must be reduced to enable \

reliable classification (generalization)
+ A 64x64 image > 4096-dimensional feature space! Area (A)
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Feature types (regional features)

» Colour features
» Shape features
» Histogram (texture) features:
— Mean gray level
— Variance
— Skewness
— Kurtosis
— Entropy
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Introduction to Machine learning

Discrimination between classes (pattern recognition, classification)

Class labels

Supervised learning

Classifier
(trained)

Training set Feature extractor

(e.g. images) (hand made)

Machine learning
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Classifiers and training methods

« Bayes classifier

* Nearest-neighbors and K-nearest-neighbors

« Parzen windows

« Linear and higher order discriminant functions
* Neural nets

« Support Vector Machines (SVM)

« Decision trees

« Random forest
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Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES
. Image formation
— Light, cameras, optics and color
— The perspective camera model
— Basic projective geometry
. Image processing
— Image filtering
— Image pyramids
— Laplace blending
. Feature detection
— Line features
— Local keypoint features
— Robust estimation with RANSAC
. Feature matching
— From keypoints to feature correspondences
— Feature descriptors
— Feature matching

— Estimating homographies from feature
correspondences

WORLD GEOMETRY AND 3D

. 3D pose representation y
—  Orientation in 3D
— Posein 3D

— The perspective camera model
revisited

. Single-View geometry
— Pose from a known 3D map y

— An introduction to nonlinear least
squares

—  Optimization over poses

— Nonlinear pose estimation .
. Stereo imaging

— Basic epipolar geometry

— Stereo imaging

—  Stereo processing

Two-view geometry
— Epipolar geometry
— Triangulation
— Triangulation by minimizing
reprojection error
— Pose from epipolar geometry
Multiple-view geometry
— Multiple-view geometry
—  Structure from motion
— Multiple-view stereo
Visual SLAM
— Introduction to Visual SLAM
— Map optimization
— ORB-SLAM

SCENE ANALYSIS
. Image analysis

— Image segmentation

— Image feature extraction

— Introduction to machine learning
. Object recognition

— Deep learning
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Detection and recognition with deep learning

Introduction to deep learning:
* Deep learning Class labels
 Atrtificial neural networks

« Convolutional neural networks (CNN)

Feature extractor Classifier
(trained) (trained)

Training set

(e.g. images)

Deep learning
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Deep Learning for Object Recognition
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Millions of images Millions of parameters Thousands of classes

TEK5030 140



	Summary of TEK5030
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Image formation�Light, cameras, optics and colour
	Image capture
	Depth of field – large aperture
	Depth of field – small aperture
	Colour Sensing in digital cameras - Bayer filter
	The perspective camera model
	The perspective camera model
	The perspective camera model
	Inverting the perspective camera model
	Remark on computations
	The camera calibration matrix
	Non-ideal cameras
	Linear transformations of the projective plane  ℙ 2 
	Linear transformations of the projective plane  ℙ 2 
	Slide Number 20
	Image processing
	Linear filtering (cross-correlation or convolution)
	Filtering in frequency domain
	Image Pyramids
	Gaussian Pyramid
	Laplacian pyramid
	Laplacian pyramid
	Image blending
	Image blending with Laplacian pyramids
	Slide Number 30
	Feature detection
	Thinning and thresholding
	Line detection - Hough transform
	Example
	Example (2)
	Feature detection�Local keypoint features
	Characteristics of good features
	Local measure of feature distinctiveness 
	Simplifying the measure even further
	Corner detection summary
	Harris detector properties
	LoG blob detector
	Feature detection�Robust estimation with RANSAC
	RANSAC
	RANSAC
	Slide Number 46
	Feature matching�Feature descriptors and matching
	Feature matching�From keypoints to feature correspondences
	Patch at detected position, scale, orientation
	SIFT descriptor
	Binary descriptors
	Estimating homographies from feature correspondences
	Estimating homographies from feature correspondences
	Slide Number 54
	Orientation – Several representations
	Pose
	Pose – Inverse
	Pose – Composition
	Pose – Action on points
	Example – Camera on a vehicle in the world
	Example – Camera on a vehicle in the world
	Example – Camera on a vehicle in the world
	Example – Camera on a vehicle in the world
	The perspective camera model revisited
	Slide Number 65
	Pose from a known 3D map
	How can we solve the indirect tracking problem?
	Nonlinear least squares
	Nonlinear least squares
	Example:�Range-based localization
	Nonlinear least squares
	Example:�Range-based localization
	Nonlinear least squares
	Optimizing over poses
	The indirect tracking method
	Gauss-Newton optimization
	Gauss-Newton optimization
	Gauss-Newton optimization
	n-Point Pose Problem (PnP)
	Slide Number 80
	Slide Number 81
	Stereo imaging�Stereo imaging
	Stereo geometry
	Stereo geometry
	Stereo geometry
	Stereo geometry
	Stereo rectification
	Stereo imaging�Stereo processing
	Stereo processing
	Dense stereo matching
	Slide Number 91
	Representing the epipolar geometry
	Example
	Linear triangulation by minimizing the algebraic error
	Triangulation by minimizing the reprojection error
	Pose estimation by minimizing reprojection error
	Triangulation by minimizing reprojection error
	Two-view geometry�Pose from epipolar geometry
	Pose from epipolar geometry
	Pose from epipolar geometry
	Planar scene
	Slide Number 102
	Multiple-view geometry
	Multiple-view geometry
	Example�Point transfer based on epipolar constraints
	Example�Point transfer based on epipolar constraints
	Multiple-view geometry�Multiple-view stereo
	Plane sweep
	Plane sweep
	Plane sweep
	Plane sweep and ambiguities
	Plane sweep through oriented planes
	Plane sweep with ground normal
	Plane sweep with ground normal
	Plane sweep with ground normal
	Plane sweep with ground normal
	Slide Number 117
	What is Visual SLAM?
	How do we track a map?
	How do we build a map?
	Monocular Visual SLAM
	Monocular Visual SLAM
	Monocular Visual SLAM
	Monocular Visual SLAM
	Components of VSLAM
	Components of VSLAM VO
	Pose and structure estimation by minimizing reprojection error
	Example
	Example
	Example
	Example
	Example
	Linearized least-squares
	MAP inference for nonlinear factor graphs
	The sparse Jacobian and its factor graph
	ORB-SLAM 2
	Slide Number 137
	Image Analysis
	Image Segmentation
	Feature Extraction
	Feature types (regional features)
	Introduction to Machine learning
	Classifiers and training methods
	Slide Number 144
	Detection and recognition with deep learning 
	Deep Learning for Object Recognition

