UiO : Department of Technology Systems
University of Oslo

Summary of TEK5030

06.06.2019

Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES

- Image formation
- Light, cameras, optics and color
- The perspective camera model
- Basic projective geometry
- Image processing
- Image filtering
- Image pyramids
- Laplace blending
- Feature detection
- Line features
- Local keypoint features
- Robust estimation with RANSAC
- Feature matching
- From keypoints to feature correspondences
- Feature descriptors
- Feature matching
- Estimating homographies from feature correspondences

$\{W\}$

(Cmglee)

$d\left(f_{A}, f_{B}\right)<T$

Lectures 2019

WORLD GEOMETRY AND 3D

- 3D pose representation
- Orientation in 3D
- Pose in 3D
- The perspective camera model revisited
- Single-View geometry
- Pose from a known 3D map
- An introduction to nonlinear least squares
- Optimization over poses
- Nonlinear pose estimation
- Stereo imaging
- Basic epipolar geometry
- Stereo imaging
- Stereo processing
- Two-view geometry
- Epipolar geometry
- Triangulation
- Triangulation by minimizing reprojection error
- Pose from epipolar geometry
- Multiple-view geometry
- Multiple-view geometry
- Structure from motion
- Multiple-view stereo
- Visual SLAM
- Introduction to Visual SLAM
- Map optimization
- ORB-SLAM

Lectures 2019

SCENE ANALYSIS

- Image analysis
- Image segmentation
- Image feature extraction
- Introduction to machine learning
- Object recognition
- Deep learning

Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES

- Image formation
- Light, cameras, optics and color
- The perspective camera model
- Basic projective geometry
- Image processing
- Image filtering
- Image pyramids
- Laplace blending
- Feature detection
- Line features
- Local keypoint features
- Robust estimation with RANSAC
- Feature matching
- From keypoints to feature correspondences
- Feature descriptors
- Feature matching
- Estimating homographies from feature correspondences

WORLD GEOMETRY AND 3D

- 3D pose representation
- Orientation in 3D
- Pose in 3D
- The perspective camera model revisited
- Single-View geometry
- Pose from a known 3D map
- An introduction to nonlinear least squares
- Optimization over poses
- Nonlinear pose estimation
- Stereo imaging
- Basic epipolar geometry
- Stereo imaging
- Two-view geometry
- Epipolar geometry
- Triangulation
- Triangulation by minimizing reprojection error
- Pose from epipolar geometry
- Multiple-view geometry
- Multiple-view geometry
- Structure from motion
- Multiple-view stereo
- Visual SLAM
- Introduction to Visual SLAM
- Map optimization
- ORB-SLAM
- Stereo processing

SCENE ANALYSIS

- Image analysis
- Image segmentation
- Image feature extraction
- Introduction to machine learning
- Object recognition
- Deep learning

Image formation

Light, cameras, optics and colour
Image formation:

- Illumination
- Cameras
- Optics
- Colour Sensing.

Image capture

CMOS image sensor (CMOSIS 48Mp)
(Artwork by Holly Fischer)

Depth of field - large aperture

Depth of field - small aperture

Colour Sensing in digital cameras - Bayer filter

The perspective camera model

The image is represented by a 2 D frame \mathcal{F}_{i} that spans the normalized image plane

The perspective camera model

Points in the normalized image plane can be described both as 2D and 3D points

- 3D points \mathbf{x}_{n} in \mathcal{F}_{c}
- 2D points \mathbf{u} in \mathcal{F}_{i}

The perspective camera model

The perspective camera model is composed by two transformations:

$$
\tilde{\mathbf{u}}=\left[\begin{array}{ccc}
f_{u} & s & c_{u} \\
0 & f_{v} & c_{v} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \tilde{\mathbf{x}}
$$

Inverting the perspective camera model

Remark on computations

Computing the image point $\mathbf{u}=[u, v]^{T}$ for a world point $\mathbf{x}=[x, y, z]^{T}$ can be split into three steps

$$
\begin{array}{cc}
\mathbf{x} & \mapsto \\
{\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]} & \mapsto \quad \tilde{\mathbf{x}}=\mathbf{K} \mathbf{\Pi}_{0} \tilde{\mathbf{x}} \quad \mapsto \\
{\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]} & {\left[\begin{array}{c}
\tilde{u} \\
\tilde{v} \\
\tilde{w}
\end{array}\right]} \\
\\
\text { Homogeneous coordinates! }
\end{array}
$$

The camera calibration matrix

$$
\mathbf{K}=\left[\begin{array}{ccc}
f_{u} & s & c_{u} \\
0 & f_{v} & c_{v} \\
0 & 0 & 1
\end{array}\right]
$$

- This is an affine transformation from the normalized image plane to the image

$$
\begin{aligned}
\tilde{\mathbf{u}} & =\mathbf{K} \tilde{\mathbf{x}}_{n} \\
{\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right] } & =\left[\begin{array}{ccc}
f_{u} & s & c_{u} \\
0 & f_{v} & c_{v} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
u & =f_{u} x+s y+c_{u} \\
v & =f_{v} y+c_{v}
\end{aligned}
$$

- The principal point, $\left(c_{u}, c_{v}\right)$ is where the optical axis intersects the image plane
- Often approximated by the center of the image
- The focal lengths f_{u} and f_{v} are scale factors between the normalized image plane and the image
- They are scaled versions of the physical focal length
- The skew parameter s can typically be ignored, so we usually set $s=0$
- It is required for cases when the detector array is not orthogonal to the optical axis

Non-ideal cameras

- No cameras fit the perspective camera model perfectly
- All cameras suffer from some kind of distortion
- If we want to use images for geometrical computations we need to take this distortion into account

- A distortion model allows us to undistort images (or individual points)
- Example model for radial distortion only

$$
\begin{aligned}
& x_{n}=x_{n}^{\prime}\left(1+k_{1} r^{\prime 2}+k_{2} r^{\prime 4}\right) \\
& y_{n}=y_{n}^{\prime}\left(1+k_{1} r^{\prime 2}+k_{2} r^{\prime 4}\right)
\end{aligned}
$$

where $r^{\prime 2}=x_{n}^{\prime 2}+y_{n}^{\prime 2}$

Linear transformations of the projective plane \mathbb{P}^{2}

Transformation	Matrix	\#DoF	Preserves	Visualization
Euclidean	$\left[\begin{array}{ll}\mathbf{R} & \mathbf{t} \\ \mathbf{0}^{T} & 1\end{array}\right]$	3	Lengths + all below	
Similarity	$\left[\begin{array}{cc}s \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{T} & 1\end{array}\right] \quad s \in \mathbb{R}$	4	Angles + all below	$\square \rightarrow \uparrow$
Affine	$\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1\end{array}\right]$	6	Parallelism, line at infinity + all below	$\square \rightarrow \xrightarrow{\natural}$
Homography	$\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]$	8	Straight lines	$\square \rightarrow \uparrow$

Linear transformations of the projective plane \mathbb{P}^{2}

- Perspective imaging of a flat surface can be described by a homography

Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES

- Image formation
- Light, cameras, optics and color
- The perspective camera model
- Basic projective geometry
- Image processing
- Image filtering
- Image pyramids
- Laplace blending
- Feature detection
- Line features
- Local keypoint features
- Robust estimation with RANSAC
- Feature matching
- From keypoints to feature correspondences
- Feature descriptors
- Feature matching
- Estimating homographies from feature correspondences

WORLD GEOMETRY AND 3D

- 3D pose representation
- Orientation in 3D
- Pose in 3D
- The perspective camera model revisited
- Single-View geometry
- Pose from a known 3D map
- An introduction to nonlinear least squares
- Optimization over poses
- Nonlinear pose estimation
- Stereo imaging
- Basic epipolar geometry
- Stereo imaging

Two-view geometry

- Epipolar geometry
- Triangulation
- Triangulation by minimizing reprojection error
- Pose from epipolar geometry

Multiple-view geometry

- Multiple-view geometry
- Structure from motion
- Multiple-view stereo
- Visual SLAM
- Introduction to Visual SLAM
- Map optimization
- ORB-SLAM
- Stereo processing

SCENE ANALYSIS

- Image analysis
- Image segmentation
- Image feature extraction
- Introduction to machine learning
- Object recognition
- Deep learning

Image processing

- Point operators (pixel-to-pixel)
- Adjustment of brightness, contrast and colour
- Histogram equalization
- Image filtering in spatial domain
- Mathematical operations on a local neighborhood
- Linear filters (convolution, cross-correlation)
- Non-linear filters
- Image enhancement (smoothing, sharpening)
- Feature extraction (edges, texture etc.)
- Image filtering in frequency domain
- Modification of spatial image frequencies
- Noise removal, (re)sampling, image compression
- 2D Fourier transform

Linear filtering (cross-correlation or convolution)

Filtering in frequency domain

Fourier (1807):
Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies (true with some subtle restrictions).

This leads to:

- Fourier Series
- Fourier Transform (continuous and discrete)
- Fast Fourier Transform (FFT)

Jean Baptiste Joseph Fourier (1768-1830)

Image Pyramids

- Downsampling (decimation)
- Upsampling (interpolation)
- Pyramids
- Gaussan Pyramids
- Laplacian Pyramids
- Applications
- Template matching (object detection)
- Detecting stable points of interest
- Image Registration
- Compression
- Image Blending
- ...

Laplacian pyramid

Laplacian pyramid

Collapsing the Laplacian pyramid:

$$
\text { rescale }\left(\text { rescale }\left(\text { rescale }\left(L_{3}\right)+L_{2}\right)+L_{1}\right)+L_{0}=
$$

Image blending

Image blending with Laplacian pyramids

Weighted sum for each level of the pyramid

Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES

- Image formation
- Light, cameras, optics and color
- The perspective camera model
- Basic projective geometry
- Image processing
- Image filtering
- Image pyramids
- Laplace blending
- Feature detection
- Line features
- Local keypoint features
- Robust estimation with RANSAC
- Feature matching
- From keypoints to feature correspondences
- Feature descriptors
- Feature matching
- Estimating homographies from feature correspondences

WORLD GEOMETRY AND 3D

- 3D pose representation
- Orientation in 3D
- Pose in 3D
- The perspective camera model revisited
- Single-View geometry
- Pose from a known 3D map
- An introduction to nonlinear least squares
- Optimization over poses
- Nonlinear pose estimation
- Stereo imaging
- Basic epipolar geometry
- Stereo imaging

Two-view geometry

- Epipolar geometry
- Triangulation
- Triangulation by minimizing reprojection error
- Pose from epipolar geometry
- Multiple-view geometry
- Multiple-view geometry
- Structure from motion
- Multiple-view stereo
- Visual SLAM
- Introduction to Visual SLAM
- Map optimization
- ORB-SLAM
- Stereo processing

SCENE ANALYSIS

- Image analysis
- Image segmentation
- Image feature extraction
- Introduction to machine learning
- Object recognition
- Deep learning

Feature detection

Line features:

- Edge detectors
- Image derivatives
- Thinning and thresholding
- Line detection with the Hough transform

Thinning and thresholding

- Detection of local maxima (i.e. suppression of non-maxima)
- Thresholding

Binary image with isolated edges (single pixels at discrete locations along edge contours)

Edge enhanced image (Sobel)

Edge image (Canny)

Line detection - Hough transform

The set of all lines going through a given point corresponds to a sinusoidal curve in the (ρ, θ) plane.

Two or more points on a straight line will give rise to sinusoids intersecting at the point (ρ, θ) for that line.

The Hough transform can be generalized to other shapes.

Example

Example (2)

Feature detection

Local keypoint features

- Corner detectors
- Stable in space
- Min eigenvalue, Harris
- Blob detectors
- Stable in scale and space
- LoG, DoG

Characteristics of good features

- Repeatability
- Efficiency
- Distinctiveness
- Locality

Local measure of feature distinctiveness

- Consider a small window of pixels around a feature
- How does the window change when you shift it?

"Flat" region:
No change in all directions

"Edge":
No change along edge

Simplifying the measure even further

- Consider a horizontal "slice" of $E(u, v)$:

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]=\text { const }
$$

- This is the equation of an ellipse
- Describe the surface using the eigenvalues of M

Corner detection summary

- Compute the gradient at each point in the image using derivatives of Gaussians
- Create the second moment matrix M from the entries in the gradient
- Compute the eigenvalues
- Find points with large response ($\lambda_{\text {min }}>$ threshold)
- Choose those points where $\lambda_{\text {min }}$ is a local maximum as features

Harris detector properties

- Scaling

All points will be classified as edges

Corner location is not covariant to scaling!

LoG blob detector

- Convolve the image with scale-normalized LoG at several scales
- Find maxima of squared LoG response in scale-space
- Approximate with Difference of Gaussians (DoG)

TEK5030

Feature detection

Robust estimation with RANSAC

- RANSAC
- A robust iterative method for estimating the parameters of a mathematical model from a set of observed data containing outliers
- Separates the observed data into "inliers" and "outliers"
- Very useful if we want to use better, but less robust, estimation methods

RANSAC

Objective

Robustly fit a model $\boldsymbol{y}=f(\boldsymbol{x} ; \boldsymbol{\alpha})$ to a data set $S=\left\{\boldsymbol{x}_{i}\right\}$

Algorithm

1. Determine a test model $\boldsymbol{y}=f\left(\boldsymbol{x} ; \boldsymbol{\alpha}_{t s t}\right)$ from n random data points $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right\}$
2. Check how well each individual data point in S fits with the test model

- Data points within a distance t of the model constitute a set of inliers $S_{t s t} \subseteq S$
- Data points outside a distance t of the model are outliers

3. If $S_{t s t}$ is the largest set of inliers encountered so far, we keep this model
$-\quad$ Set $\boldsymbol{\alpha}=\boldsymbol{\alpha}_{t s t}$ and $S_{I N}=S_{t s t}$
4. Repeat steps $1-3$ until N models have been tested

RANSAC

Comments

- Number of iterations required to achieve confidence p when testing random models from n-tuples of data elements from a dataset with inlier probability ω

$$
N=\frac{\log (1-p)}{\log \left(1-\omega^{n}\right)}
$$

- Typical desired level of confidence

$$
p=0.99
$$

- Inlier probability ω is typically unknown, but can be estimated per iteration

$$
\omega=\frac{\# \text { max estimated inliers }}{\# \text { data elements }}
$$

- Instead of operating with a fixed and larger than necessary N we can update N for each iteration
- Adaptive RANSAC!
n

N	0.9	0.8	0.7	0.6	0.5
2	3	5	7	11	17
3	4	7	11	19	35
4	5	9	17	34	72
5	6	12	26	57	146
6	7	16	37	97	293
7	8	20	54	163	588
8	9	26	78	272	1177

Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES

- Image formation
- Light, cameras, optics and color
- The perspective camera model
- Basic projective geometry
- Image processing
- Image filtering
- Image pyramids
- Laplace blending
- Feature detection
- Line features
- Local keypoint features
- Robust estimation with RANSAC
- Feature matching

WORLD GEOMETRY AND 3D

- 3D pose representation
- Orientation in 3D
- Pose in 3D
- The perspective camera model revisited
- Single-View geometry
- Pose from a known 3D map
- An introduction to nonlinear least squares
- Optimization over poses
- Nonlinear pose estimation
- Stereo imaging
- Basic epipolar geometry
- Stereo imaging

Two-view geometry

- Epipolar geometry
- Triangulation
- Triangulation by minimizing reprojection error
- Pose from epipolar geometry

Multiple-view geometry

- Multiple-view geometry
- Structure from motion
- Multiple-view stereo
- Visual SLAM
- Introduction to Visual SLAM
- Map optimization
- ORB-SLAM
- Stereo processing
- From keypoints to feature correspondences
- Feature descriptors
- Feature matching
- Estimating homographies from feature correspondences

SCENE ANALYSIS

- Image analysis
- Image segmentation
- Image feature extraction
- Introduction to machine learning
- Object recognition
- Deep learning

Feature matching
 Feature descriptors and matching

- Matching keypoints
- Comparing local patches in canonical scale and orientation
- Feature descriptors
- Robust, distinctive and efficient
- Descriptor types
- HoG descriptors
- Binary descriptors
- Putative matching

a

10

- Closest match, distance ratio, cross check

Feature matching

From keypoints to feature correspondences

Patch at detected position, scale, orientation

SIFT descriptor

- Extract a 16×16 patch around detected keypoint
- Compute the gradients and apply a Gaussian weighting function
- Divide the window into a 4×4 grid of cells
- Compute gradient direction histograms over 8 directions in each cell
- Concatenate the histograms to obtain a 128 dimensional feature vector
- Normalize to unit length

Binary descriptors

- Extremely efficient construction and comparison
- Based on pairwise intensity comparisons
- Sampling pattern around keypoint
- Set of sampling pairs
- Feature descriptor vector is a binary string:

BRISK sampling pairs

Estimating homographies from feature correspondences

- Perspective images are sometimes perfectly related by a homography
- Rotating camera
- Planar scene
- Point-correspondences $\widetilde{\mathbf{u}}_{i} \leftrightarrow \widetilde{\mathbf{u}}_{i}^{\prime}$ can be established automatically between two such images
- Wrong correspondences are common
- The homography can be estimated from the point correspondences
- Need at least 4
- Robust estimation techniques are recommended

Estimating homographies from feature correspondences

- RANSAC estimation of homography $\mathbf{H} \widetilde{\mathbf{u}}=\widetilde{\mathbf{u}}^{\prime}$
- Direct Linear Transform (DLT) on 4 random correspondences $\widetilde{\mathbf{u}}_{i} \leftrightarrow \widetilde{\mathbf{u}}_{i}^{\prime}$
- Inliers have a small reprojection error

$$
\epsilon_{i}=d\left(\mathbf{H} \mathbf{u}_{i}, \mathbf{u}_{i}^{\prime}\right)+d\left(\mathbf{u}_{i}, \mathbf{H}^{-1} \mathbf{u}_{i}^{\prime}\right)
$$

- The RANSAC estimated homography is random
- Only estimated from 4 correspondences!
- A "better" homography can be estimated based on all the inlier correspondences
- Normalized DLT
- Iterative methods
- Using the homography we can warp one image into the coordinate frame of the other

Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES

- Image formation
- Light, cameras, optics and color
- The perspective camera model
- Basic projective geometry
- Image processing
- Image filtering
- Image pyramids
- Laplace blending
- Feature detection
- Line features
- Local keypoint features
- Robust estimation with RANSAC
- Feature matching
- From keypoints to feature correspondences
- Feature descriptors
- Feature matching
- Estimating homographies from feature correspondences

WORLD GEOMETRY AND 3D

- 3D pose representation
- Orientation in 3D
- Pose in 3D
- The perspective camera model revisited
- Single-View geometry
- Pose from a known 3D map
- An introduction to nonlinear least squares
- Optimization over poses
- Nonlinear pose estimation
- Stereo imaging
- Basic epipolar geometry
- Stereo imaging

Two-view geometry

- Epipolar geometry
- Triangulation
- Triangulation by minimizing reprojection error
- Pose from epipolar geometry
- Multiple-view geometry
- Multiple-view geometry
- Structure from motion
- Multiple-view stereo
- Visual SLAM
- Introduction to Visual SLAM
- Map optimization
- ORB-SLAM
- Stereo processing

SCENE ANALYSIS

- Image analysis
- Image segmentation
- Image feature extraction
- Introduction to machine learning
- Object recognition
- Deep learning

Orientation - Several representations

- Orientation of a frame \mathcal{F}_{b} relative to a frame \mathcal{F}_{a} has several representations

- Rotation matrix $\mathbf{R} \in S O$ (3)
- Euler angles $\boldsymbol{\theta}=\left[\theta_{1}, \theta_{2}, \theta_{3}\right]^{T}$
- Axis-angle $(\mathbf{v}, \phi)=\left\{\left[v_{1}, v_{2}, v_{3}\right]^{T}, \phi\right\}$

Main representation for us!
Minimal representation
We will not us this
We will use this indirectly

- Important properties
- Inverse
- Composition
- Action on points

$$
\begin{array}{|c|}
\mathbf{R}_{b a}=\mathbf{R}_{a b}^{-1} \\
\hline \mathbf{R}_{a c}=\mathbf{R}_{a b} \mathbf{R}_{b c} \\
\hline \mathbf{x}^{b}=\mathbf{R}_{b a} \mathbf{x}^{a} \\
\hline
\end{array}
$$

$$
\begin{gathered}
\mathbf{W}_{1}^{c T} \\
\mathbf{W}_{2}^{c T} \\
\mathbf{W}_{3}^{c T}
\end{gathered}
$$

$$
\mathbf{c}_{1}^{w} \quad \mathbf{c}_{2}^{w} \quad \mathbf{c}_{3}^{w}
$$

Pose

- The pose of the camera frame \mathcal{F}_{c} with respect to the world frame \mathcal{F}_{w} can be represented by the Euclidean transformation matrix

$$
\mathbf{T}_{w c}=\left[\begin{array}{cc}
\mathbf{R}_{w c} & \mathbf{t}_{w c}^{w} \\
\mathbf{0}^{T} & 1
\end{array}\right] \in S E(3)
$$

where $\mathbf{R}_{w c} \in S O(3)$ is a rotation matrix and $\mathbf{t}_{w c}^{w} \in \mathbb{R}^{3}$ is a translation vector given in world coordinates
NOTATION
$\mathbf{T}_{a b}=$ The pose of \mathcal{F}_{b} relative to \mathcal{F}_{a}
$\mathbf{R}_{a b}=$ The orientation of \mathcal{F}_{b} relative to \mathcal{F}_{a}

$\mathbf{t}_{a b}^{c}=$| The translation of \mathcal{F}_{b} relative to \mathcal{F}_{a} |
| :--- |
| given in \mathcal{F}_{c} coordinates |

Pose - Inverse

- The opposite pose, the pose of \mathcal{F}_{w} with respect to \mathcal{F}_{c}, is given by the inverse transformation

$$
\mathbf{T}_{c w}=\mathbf{T}_{w c}^{-1}
$$

- One can show that

$$
\mathbf{T}_{c w}=\left[\begin{array}{cc}
\mathbf{R}_{w c} & \mathbf{t}_{w c}^{w} \\
\mathbf{0}^{T} & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\mathbf{R}_{w c}^{T} & -\mathbf{R}_{w c}^{T} \mathbf{t}_{w c}^{w} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

- Hence $\mathbf{R}_{c w}=\mathbf{R}_{w c}^{T}$ and $\mathbf{t}_{c w}^{c}=-\mathbf{R}_{w c}^{T} \mathbf{t}_{w c}^{w}$

Pose - Composition

We can chain together consecutive poses by compounding transformation matrices

$$
\mathbf{T}_{a c}=\mathbf{T}_{a b} \mathbf{T}_{b c}
$$

Note

The indexes are always pairwise equal

Pose - Action on points

- The matrix $\mathbf{T}_{c w}$ represents the pose of \mathcal{F}_{w} relative to \mathcal{F}_{c}, but it is also a point transformation from \mathcal{F}_{w} to \mathcal{F}_{c}
- A point \mathbf{x}^{w} in world coordinates can be transformed to camera coordinates by

$$
\begin{aligned}
\tilde{\mathbf{x}}^{c} & =\mathbf{T}_{c w} \tilde{\mathbf{x}}^{w} \\
\mathbf{x}^{c} & =\mathbf{R}_{c w} \mathbf{x}^{w}+\mathbf{t}_{c w}^{c}
\end{aligned}
$$

Note

The indexes are always pairwise equal

Example - Camera on a vehicle in the world

A point \mathbf{x} has a known position relative to a camera mounted on a vehicle

The vehicle has a known pose relative to the world

The camera has a known pose relative to the vehicle

Find expressions for \mathbf{x}^{v} and \mathbf{x}^{w}

Example - Camera on a vehicle in the world

A point \mathbf{x} has a known position relative to a camera mounted on a vehicle \mathbf{x}^{c}

The vehicle has a known pose relative to the world $\mathbf{T}_{w v}$

The camera has a known pose relative to the vehicle $\mathbf{T}_{v c}$

Find expressions for \mathbf{x}^{v} and \mathbf{x}^{w}

Example - Camera on a vehicle in the world

A point \mathbf{x} has a known position relative to a camera mounted on a vehicle \mathbf{x}^{c}

The vehicle has a known pose relative to the world $\mathbf{T}_{w v}$

The camera has a known pose relative to the vehicle $\mathbf{T}_{v c}$

Find expressions for \mathbf{x}^{v} and \mathbf{x}^{w}

$$
\tilde{\mathbf{x}}^{v}=\mathbf{T}_{v c} \tilde{\mathbf{x}}^{c}
$$

Example - Camera on a vehicle in the world

A point \mathbf{x} has a known position relative to a camera mounted on a vehicle \mathbf{x}^{c}

The vehicle has a known pose relative to the world $\mathbf{T}_{w v}$

The camera has a known pose relative to the vehicle $\mathbf{T}_{v c}$

Find expressions for \mathbf{x}^{v} and \mathbf{x}^{w}

$$
\begin{aligned}
& \tilde{\mathbf{x}}^{v}=\mathbf{T}_{v c} \tilde{\mathbf{x}}^{c} \\
& \tilde{\mathbf{x}}^{w}=\mathbf{T}_{w v} \mathbf{T}_{v c} \tilde{\mathbf{x}}^{c}
\end{aligned}
$$

The perspective camera model revisited

- The perspective camera model when we consider 3D points in a frame \mathcal{F}_{w} instead of the camera frame \mathcal{F}_{c}

$$
\tilde{\mathbf{u}}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R}_{c w} & \mathbf{t}_{c w}^{c}
\end{array}\right] \tilde{\mathbf{x}}^{w}
$$

$$
\tilde{\tilde{\mathbf{u}}}=\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
f_{u} & s & c_{u} \\
0 & f_{v} & c_{v} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R}_{c w} & \mathbf{t}_{c w}^{c} \\
\mathbf{0} & 1
\end{array}\right] \tilde{\mathbf{x}}^{w}} \\
\mathbf{K} & \mathbf{\Pi}_{0} & \mathbf{T}_{c w}
\end{array}\right.
$$

Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES

- Image formation
- Light, cameras, optics and color
- The perspective camera model
- Basic projective geometry
- Image processing
- Image filtering
- Image pyramids
- Laplace blending
- Feature detection
- Line features
- Local keypoint features
- Robust estimation with RANSAC
- Feature matching
- From keypoints to feature correspondences
- Feature descriptors
- Feature matching
- Estimating homographies from feature correspondences

WORLD GEOMETRY AND 3D

- 3D pose representation
- Orientation in 3D
- Pose in 3D
- The perspective camera model revisited
- Single-View geometry
- Pose from a known 3D map
- An introduction to nonlinear least squares
- Optimization over poses
- Nonlinear pose estimation
- Stereo imaging
- Basic epipolar geometry
- Stereo imaging
- Stereo processing
- Two-view geometry
- Epipolar geometry
- Triangulation
- Triangulation by minimizing reprojection error
- Pose from epipolar geometry
- Multiple-view geometry
- Multiple-view geometry
- Structure from motion
- Multiple-view stereo
- Visual SLAM
- Introduction to Visual SLAM
- Map optimization
- ORB-SLAM

SCENE ANALYSIS

- Image analysis
- Image segmentation
- Image feature extraction
- Introduction to machine learning
- Object recognition
- Deep learning

Pose from a known 3D map

- Homography-based method

For a calibrated camera, we have a relation between the camera pose and the homography between the world plane and the image!

$$
\mathbf{H}_{i \Pi}=\mathbf{K}\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{t}\right] \quad \mathbf{T}_{c w}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

- Indirect methods based on minimizing geometric error

$$
\mathbf{T}_{c w}^{*}=\underset{\mathbf{T}_{c w}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{c w} \tilde{\mathbf{x}}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

How can we solve the indirect tracking problem?

Minimize geometric error with nonlinear least squares!

$$
\mathbf{T}_{c w}^{*}=\underset{\mathbf{T}_{c w}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{c w} \tilde{\mathbf{x}}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

Nonlinear least squares

We can find the MAP estimate of our unknown states given measurements

$$
X^{\text {MAP }}=\underset{X}{\operatorname{argmax}} p(X \mid Z)
$$

by representing it as a nonlinear least squares problem

$$
X^{*}=\underset{X}{\operatorname{argmin}} \sum_{i=1}^{m}\left\|h_{i}\left(X_{i}\right)-\mathbf{z}_{i}\right\|_{\Sigma_{i}}^{2}
$$

Choose a suitable inital estimate X^{0}
$\mathbf{A}, \mathbf{b} \leftarrow$ Linearize at X^{t}

Nonlinear least squares

We can find the MAP estimate of our unknown states given measurements

$$
X^{M A P}=\underset{X}{\operatorname{argmax}} p(X \mid Z)
$$

by representing it as a nonlinear least squares problem

$$
X^{*}=\underset{X}{\operatorname{argmin}} \sum_{i=1}^{m}\left\|h_{i}\left(X_{i}\right)-\mathbf{z}_{i}\right\|_{\Sigma_{i}}^{2}
$$

Choose a suitable inital estimate X^{0}

Example:

Range-based localization

Linearized problem at \mathbf{x}^{0} :

$$
\begin{aligned}
& \boldsymbol{\delta}^{*}=\underset{\boldsymbol{\delta}}{\operatorname{argmin}}\|\mathbf{A} \boldsymbol{\delta}-\mathbf{b}\|^{2} \\
& \mathbf{A}=\left[\begin{array}{cc}
0.15 & 0.99 \\
0.20 & 0.98 \\
-0.11 & 0.99 \\
-0.33 & 0.94 \\
0 & 1.00
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
-1.38 \\
-0.29 \\
-0.59 \\
-0.65 \\
0.62
\end{array}\right]
\end{aligned}
$$

Solution to the normal equations $\mathbf{A}^{T} \mathbf{A} \boldsymbol{\delta}^{*}=\mathbf{A}^{T} \mathbf{b}$:

$$
\boldsymbol{\delta}^{*}=\left[\begin{array}{l}
-0.12 \\
-0.47
\end{array}\right] \quad \mathbf{x}^{1}=\mathbf{x}^{0}+\boldsymbol{\delta}^{*}=\left[\begin{array}{l}
1.68 \\
3.03
\end{array}\right]
$$

Nonlinear least squares

We can find the MAP estimate of our unknown states given measurements

$$
X^{M A P}=\underset{X}{\operatorname{argmax}} p(X \mid Z)
$$

by representing it as a nonlinear least squares problem

$$
X^{*}=\underset{X}{\operatorname{argmin}} \sum_{i=1}^{m}\left\|h_{i}\left(X_{i}\right)-\mathbf{z}_{i}\right\|_{\Sigma_{i}}^{2}
$$

Choose a suitable inital estimate X^{0}

- Gauss-Newton
- Levenberg-Marquardt

Example:
 Range-based localization

Levenberg-Marquardt optimization

Nonlinear least squares

We can find the MAP estimate of our unknown states given measurements

$$
X^{\text {MAP }}=\underset{X}{\operatorname{argmax}} p(X \mid Z)
$$

by representing it as a nonlinear least squares problem

$$
X^{*}=\underset{X}{\operatorname{argmin}} \sum_{i=1}^{m}\left\|h_{i}\left(X_{i}\right)-\mathbf{z}_{i}\right\|_{\Sigma_{i}}^{2}
$$

Choose a suitable inital estimate X^{0}

- Uncertainty for MAP estimate by approximating Hessian

Optimizing over poses

- Updates on poses as perturbations in a vector space using Lie algebra

$$
\mathbf{T}=\exp \left(\xi^{\wedge}\right) \overline{\mathbf{T}}
$$

$$
\mathfrak{s e}(3)=\left\{\boldsymbol{\Xi}=\boldsymbol{\xi}^{\wedge} \in \mathbb{R}^{4 \times 4} \mid \boldsymbol{\xi} \in \mathbb{R}^{6}\right\}
$$

- Jacobians for these perturbations

The indirect tracking method

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

$$
\mathbf{T}_{c w}^{*}=\underset{\mathbf{T}_{c w}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{c w} \tilde{\mathbf{x}}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

Gauss-Newton optimization

Given a good initial estimate $\mathbf{T}_{w c}^{0}$.
For $t=0,1, \ldots, t^{\max }$
$\mathbf{A}, \mathbf{b} \leftarrow$ Linearize at $\mathbf{T}_{w c}^{t}$
$\xi_{\Delta}^{*} \leftarrow$ Solve the linearized problem with $\left(\mathbf{A}^{T} \mathbf{A}\right) \xi_{\Delta}^{*}=\mathbf{A}^{T} \mathbf{b}$
$\mathbf{T}_{w c}^{t+1} \leftarrow \mathbf{T}_{w c}^{t} \exp \left(\xi_{\Delta}^{*}\right)$

Gauss-Newton optimization

Given a good initial estimate $\mathbf{T}_{w c}^{0}$.
For $t=0,1, \ldots, t^{\max }$
$\mathbf{A}, \mathbf{b} \leftarrow$ Linearize at $\mathbf{T}_{w c}^{t}$
$\xi_{\Delta}^{*} \leftarrow$ Solve the linearized problem with $\left(\mathbf{A}^{T} \mathbf{A}\right) \xi_{\Delta}^{*}=\mathbf{A}^{T} \mathbf{b}$
$\mathbf{T}_{w c}^{t+1} \leftarrow \mathbf{T}_{w c}^{t} \exp \left(\xi_{\Delta}^{*}\right)$

Gauss-Newton optimization

Given a good initial estimate $\mathbf{T}_{w c}^{0}$.
For $t=0,1, \ldots, t^{\max }$
$\mathbf{A}, \mathbf{b} \leftarrow$ Linearize at $\mathbf{T}_{w c}^{t}$
$\xi_{\Delta}^{*} \leftarrow$ Solve the linearized problem with $\left(\mathbf{A}^{T} \mathbf{A}\right) \xi_{\Delta}^{*}=\mathbf{A}^{T} \mathbf{b}$
$\mathbf{T}_{w c}^{t+1} \leftarrow \mathbf{T}_{w c}^{t} \exp \left(\xi_{\Delta}^{*}\right)$

n-Point Pose Problem (PnP)

- Typically fast non-iterative methods
- Minimal in number of points
- Accuracy comparable to iterative methods
- Good for initial estimates
- Examples:
- P3P, EPnP
- P4Pf
- Estimate pose and focal length
- P6P
- Estimates \mathbf{P} with DLT
- R6P
- Estimate pose with rolling shutter

Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES

- Image formation
- Light, cameras, optics and color
- The perspective camera model
- Basic projective geometry
- Image processing
- Image filtering
- Image pyramids
- Laplace blending
- Feature detection
- Line features
- Local keypoint features
- Robust estimation with RANSAC
- Feature matching
- From keypoints to feature correspondences
- Feature descriptors
- Feature matching
- Estimating homographies from feature correspondences

WORLD GEOMETRY AND 3D

- 3D pose representation

- Orientation in 3D
- Pose in 3D
- The perspective camera model revisited
- Single-View geometry
- Pose from a known 3D map
- An introduction to nonlinear least squares
- Optimization over poses
- Nonlinear pose estimation
- Stereo imaging
- Basic epipolar geometry
- Stereo imaging
- Stereo processing
- Two-view geometry
- Epipolar geometry
- Triangulation
- Triangulation by minimizing reprojection error
- Pose from epipolar geometry

Multiple-view geometry

- Multiple-view geometry
- Structure from motion
- Multiple-view stereo
- Visual SLAM
- Introduction to Visual SLAM
- Map optimization
- ORB-SLAM
\qquad

SCENE ANALYSIS

- Image analysis
- Image segmentation
- Image feature extraction
- Introduction to machine learning
- Object recognition
- Deep learning

Basic epipolar geometry

- The epipolar plane is the plane containing \mathbf{x} and the two camera centers of \mathcal{F}_{a} and \mathcal{F}_{b}
- The baseline is the line joining \mathcal{F}_{a} and \mathcal{F}_{b}
- The epipolar lines are where the epipolar plane intersect the image planes
- The epipoles are where the baseline intersects the two image planes
- Epipoles and epipolar lines can be represented in the normalized image plane as well as in the image

Stereo imaging

Stereo imaging

Stereo geometry

$$
{ }^{L} \boldsymbol{P}=(X, Y, Z)
$$

- Parallel identical cameras
- Translated along x-axis

Stereo geometry

- Parallel identical cameras
- Translated along x-axis
- Horizontal epipolar lines
- Corresponding points lie along the same row in the two images

Stereo geometry

$$
{ }^{L} \boldsymbol{P}=(X, Y, Z)
$$

- Parallel identical cameras
- Translated along x-axis
- Horizontal epipolar lines
- Corresponding points lie along the same row in the two images
- Depth from disparity

$$
Z=f \frac{b_{x}}{d}
$$

Stereo geometry

Stereo rectification

- Reproject image planes onto a common plane parallel to the line between the camera centers
- The epipolar lines are horizontal after this transformation
- Two homographies
- C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Stereo imaging

Stereo processing

- Stereo processing
- Sparse vs dense matching
- DSI
- Typical failures
- Removing failures vs smoothness

Stereo processing

- Sparse stereo
- Extract keypoints
- Match keypoints along the same row
- Compute 3D from disparity

- Dense stereo
- Try to match all pixels along rows
- Compute disparity image by finding the best disparity for each pixel
- Refine and clean disparity image
- Compute dense 3D point cloud or surface from disparity

Dense stereo matching

- For a patch in the left image
- Compare with patches along the same row in the right image
- Select patch with highest score
- Repeat for all pixels in the left image

Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES

- Image formation
- Light, cameras, optics and color
- The perspective camera model
- Basic projective geometry
- Image processing
- Image filtering
- Image pyramids
- Laplace blending
- Feature detection
- Line features
- Local keypoint features
- Robust estimation with RANSAC
- Feature matching
- From keypoints to feature correspondences
- Feature descriptors
- Feature matching
- Estimating homographies from feature correspondences

WORLD GEOMETRY AND 3D

- 3D pose representation
- Orientation in 3D
- Pose in 3D
- The perspective camera model revisited
- Single-View geometry
- Pose from a known 3D map
- An introduction to nonlinear least squares
- Optimization over poses
- Nonlinear pose estimation
- Stereo imaging
- Basic epipolar geometry
- Stereo imaging

Two-view geometry

- Epipolar geometry
- Triangulation
- Triangulation by minimizing reprojection error
- Pose from epipolar geometry

Multiple-view geometry

- Multiple-view geometry
- Structure from motion
- Multiple-view stereo
- Visual SLAM
- Introduction to Visual SLAM
- Map optimization
- ORB-SLAM
- Stereo processing

SCENE ANALYSIS

- Image analysis
- Image segmentation
- Image feature extraction
- Introduction to machine learning
- Object recognition
- Deep learning

Representing the epipolar geometry

- The essential matrix \mathbf{E} and the fundamental matrix \mathbf{F} represent the epipolar geometry

$$
\left(\tilde{\mathbf{x}}_{n}^{b b}\right)^{T} \mathbf{E}_{b a} \tilde{\mathbf{x}}_{n}^{a}=0 \quad\left(\tilde{\mathbf{u}}^{\prime b}\right)^{T} \mathbf{F}_{b a} \tilde{\mathbf{u}}^{a}=0
$$

- E and \mathbf{F} can be estimated from point correspondences
$-\quad \mathbf{F} \leftarrow$ RANSAC, 7-pt or 8-pt
$-\mathbf{E} \leftarrow$ RANSAC, 5-pt
- E and F maps points to epipolar lines

- The essential matrix is related directly to the relative pose between the two cameras

$$
\mathbf{E}_{b a}=\left(\mathbf{t}_{b a}^{b}\right)^{\wedge} \mathbf{R}_{b a}
$$

$$
\begin{aligned}
\mathbf{F}_{b a} & =\mathbf{K}_{b}^{-T} \mathbf{E}_{b a} \mathbf{K}_{a}^{-1} \\
\mathbf{F}_{a b} & =\mathbf{K}_{a}^{-T} \mathbf{E}_{a b} \mathbf{K}_{b}^{-1}
\end{aligned}
$$

Example

$i m g_{a}$
$i m g_{b}$

Linear triangulation by minimizing the algebraic error

Assume that we know the camera projection matrices $\mathbf{P}_{a}, \mathbf{P}_{b}$ and a 2D correspondence $\mathbf{u}^{a} \leftrightarrow \mathbf{u}^{\prime b}$ for a 3D point \mathbf{x}

Each perspective camera model gives rise to two equations on the three entries of \mathbf{x}

$\tilde{\mathbf{u}}^{a}=\mathbf{P}_{a} \tilde{\mathbf{x}}$

$$
\left[\begin{array}{c}
v^{a} \mathbf{p}_{a}^{3 T}-\mathbf{p}_{a}^{2 T} \\
\mathbf{p}_{a}^{1 T}-u^{a} \mathbf{p}_{a}^{3 T}
\end{array}\right] \tilde{\mathbf{x}}=\mathbf{0}
$$

$$
\left[\begin{array}{l}
v^{\prime b} \mathbf{p}_{b}^{3 T}-\mathbf{p}_{b}^{2 T} \\
\mathbf{p}_{b}^{1 T}-u^{\prime \prime} \mathbf{p}_{b}^{3 T}
\end{array} \tilde{\mathbf{x}}^{(2)}=\right.
$$

Combining these equations gives us an overdetermined homogenous system of linear equations that we can solve with SVD to find the 3D point \mathbf{x} that minimize the algebraic error

$$
\varepsilon=\|\mathbf{A} \tilde{\mathbf{x}}\|
$$

in a linear least squares sense

$$
\begin{aligned}
& {\left[\begin{array}{c}
v^{a} \mathbf{p}_{a}^{3 T}-\mathbf{p}_{a}^{2 T} \\
\mathbf{p}_{a}^{1 T}-u^{a} \mathbf{p}_{a}^{3 T} \\
v^{\prime 3} \mathbf{p}_{b}^{3 T}-\mathbf{p}_{b}^{2 T} \\
\mathbf{p}_{b}^{1 T}-u^{\prime b} \mathbf{p}_{b}^{3 T}
\end{array}\right]} \\
& \\
& \mathbf{A} \tilde{\mathbf{x}}=\mathbf{0} \\
& \hline
\end{aligned}
$$

Triangulation by minimizing the reprojection error

If we denote the camera projections by π_{a} and π_{b}, then the reprojection error ε is given by

$$
\begin{aligned}
\varepsilon & =\varepsilon_{a}{ }^{2}+\varepsilon_{b}{ }^{2} \\
& =\left\|\pi_{a}\left(\mathbf{T}_{a w} \tilde{\mathbf{x}}^{w}\right)-\mathbf{u}^{a}\right\|^{2}+\left\|\pi_{b}\left(\mathbf{T}_{b w} \tilde{\mathbf{x}}^{w}\right)-\mathbf{u}^{b}\right\|^{2}
\end{aligned}
$$

Estimating $\tilde{\mathbf{x}}^{w}$ by minimizing ε is a non-linear optimization problem, which needs an initial estimate

Pose estimation by minimizing reprojection error

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

$$
\mathbf{T}_{c w}^{*}=\underset{\mathbf{T}_{c w}}{\operatorname{argmin}} \sum_{i}\left\|\pi\left(\mathbf{T}_{c w} \tilde{\mathbf{x}}_{i}^{w}\right)-\mathbf{u}_{i}\right\|^{2}
$$

Triangulation by minimizing reprojection error

Minimize geometric error over the world points
This is also sometimes called Structure-Only Bundle Adjustment

$$
\mathbf{x}_{j}^{w^{*}}=\underset{\mathbf{x}_{j}^{w^{*}}}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|\pi_{i}\left(\mathbf{T}_{c w_{i}} \tilde{\mathbf{x}}_{j}^{w}\right)-\mathbf{u}_{j}^{i}\right\|^{2}
$$

Two-view geometry

Pose from epipolar geometry

- Non-planar case
- Estimate epipolar geometry
- Estimate relative pose from E
- Planar case
- Estimate homography
- Estimate relative pose from H

Pose from epipolar geometry

There are four different poses that satisfy the equation $\mathbf{E}_{b a}=\left(\mathbf{t}_{b a}^{b}\right)^{\wedge} \mathbf{R}_{b a}$

The figure illustrates how this might look like for the case when $\mathbf{T}_{b a, 1}$ is the correct pose

$$
\mathbf{T}_{b a, i} \text { is the pose of } \mathcal{F}_{a, i} \text { relative to } \mathcal{F}_{b}
$$

There is no way of predicting the correct pose out of the four, but in general only one of them corresponds to \mathbf{x} being in front of both cameras

This constraint is known as the chirality constraint and it is tested by triangulation of at least one 3D point
$\left\|\mathbf{t}_{b a}^{b}\right\|$ can not be found from $\mathbf{E}_{b a}$ (homogeneous matrix)

Pose from epipolar geometry

Pose between two calibrated cameras

1. Establish robust correspondences $\mathbf{u}_{i}^{a} \leftrightarrow \mathbf{u}_{i}^{\prime b}$ between images
2. Determine coorspondences $\mathbf{x}_{n, i}^{a} \leftrightarrow \mathbf{x}_{n, i}^{\prime b}$ using that $\tilde{\mathbf{x}}_{n}=\mathbf{K}^{-1} \widetilde{\mathbf{u}}$
3. Estimate the essential matrix $\mathbf{E}_{b a}$ from correspondences $\mathbf{x}_{n, i}^{a} \leftrightarrow \mathbf{x}_{n, i}^{b}$
4. Compute poses $\mathbf{T}_{b a, 1}, \ldots, \mathbf{T}_{b a, 4}$ from $\mathbf{E}_{b a}$
5. For each pose, determine at least one 3D point \mathbf{x} by triangulation and select the pose that satisfies the chirality constraint

$$
\left\|t_{b a}^{b}\right\| \text { remains unknown! }
$$

Planar scene

One can prove that if

$$
\mathbf{T}_{b a}=\left[\begin{array}{cc}
\mathbf{R}_{b a} & \mathbf{t}_{b a}^{b} \\
\mathbf{0} & 1
\end{array}\right]
$$

then

$$
\mathbf{H}_{b a}=\mathbf{K}_{b}\left(\mathbf{R}_{b a}-\mathbf{t}_{b a}^{b}\left(\mathbf{n}^{a}\right)^{T} / d\right) \mathbf{K}_{a}^{-1}
$$

It is possible to estimate

$$
\left(\mathbf{R}_{b a}, \mathbf{n}^{a}, \frac{1}{d} \mathbf{t}_{b a}^{b}\right)
$$

from a known homography

- Four solutions

Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES

- Image formation
- Light, cameras, optics and color
- The perspective camera model
- Basic projective geometry
- Image processing
- Image filtering
- Image pyramids
- Laplace blending
- Feature detection
- Line features
- Local keypoint features
- Robust estimation with RANSAC
- Feature matching
- From keypoints to feature correspondences
- Feature descriptors
- Feature matching
- Estimating homographies from feature correspondences

WORLD GEOMETRY AND 3D

- 3D pose representation

- Orientation in 3D
- Pose in 3D
- The perspective camera model revisited
- Single-View geometry
- Pose from a known 3D map
- An introduction to nonlinear least squares
- Optimization over poses
- Nonlinear pose estimation
- Stereo imaging
- Basic epipolar geometry
- Stereo imaging
- Stereo processing

Two-view geometry

- Epipolar geometry
- Triangulation
- Triangulation by minimizing reprojection error
- Pose from epipolar geometry
- Multiple-view geometry
- Multiple-view geometry
- Structure from motion
- Multiple-view stereo
- Visual SLAM
- Introduction to Visual SLAM
- Map optimization
- ORB-SLAM

SCENE ANALYSIS

- Image analysis
- Image segmentation
- Image feature extraction
- Introduction to machine learning
- Object recognition
- Deep learning

Multiple-view geometry

- Multiple-view geometry
- Correspondences
- Two-view vs Three-view
- Fundamental matrix vs Trifocal tensor

Multiple-view geometry

Three views

- Given three overlapping images, we can establish (or evaluate) point correspondences using the pairwise epipolar constraints

$$
\widetilde{\mathbf{u}}^{3}=\left(\mathbf{F}_{3,1} \widetilde{\mathbf{u}}^{1}\right) \times\left(\mathbf{F}_{3,2} \widetilde{\mathbf{u}}^{2}\right)
$$

- However, this fails for points in the plane defined by the three camera centers - the trifocal plane - since the epipolar lines then will coincide
- The trifocal tensor allows point transfer also for points in the trifocal plane

$$
\widetilde{\mathbf{u}}^{3}=\left(\mathbf{F}_{3,1} \widetilde{\mathbf{u}}^{1}\right) \times\left(\mathbf{F}_{3,2} \widetilde{\mathbf{u}}^{2}\right)
$$

Example

Point transfer based on epipolar constraints

Example

Point transfer based on epipolar constraints

Multiple-view geometry

Multiple-view stereo

- Multi-view stereo
- Plane-sweep
- Volumetric stereo
- Surface expansion
- Surface reconstruction

Plane sweep

Reference camera Camera k

- Sweep planes at different depths

$\boldsymbol{u}=\boldsymbol{K}_{\text {ref }}[I \mid \mathbf{0}] \boldsymbol{X}$
$\boldsymbol{u}^{\boldsymbol{\prime}}=\boldsymbol{K}_{k}\left[R_{k} \mid \boldsymbol{t}_{k}\right] \boldsymbol{X}$

Robert Collins, A Space-Sweep Approach to True Multi-Image Matching, CVPR 1996.
D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang and M. Pollefeys, Real-Time Plane-Sweeping Stereo with Multiple Sweeping Directions, CVPR 2007

TEK5030

Plane sweep

- Sweep planes at different depths

Reference camera Camera k

$$
\boldsymbol{u}=\boldsymbol{K}_{\text {ref }}[I \mid \mathbf{0}] \boldsymbol{X} \quad \boldsymbol{u}^{\prime}=\boldsymbol{K}_{k}\left[R_{k} \mid \boldsymbol{t}_{k}\right] \boldsymbol{X}
$$

Plane sweep

Reference camera Camera k

- Sweep planes at different depths

$\boldsymbol{u}=\boldsymbol{K}_{\text {ref }}[I \mid \mathbf{0}] \boldsymbol{X}$ $\boldsymbol{u}^{\prime}=\boldsymbol{K}_{k}\left[R_{k} \mid \boldsymbol{t}_{k}\right] \boldsymbol{X}$

Robert Collins, A Space-Sweep Approach to True Multi-Image Matching, CVPR 1996.
D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang and M. Pollefeys, Real-Time Plane-Sweeping Stereo with Multiple Sweeping Directions, CVPR 2007

TEK5030

Plane sweep and ambiguities

- Multiple views can resolve ambiguities in difficult areas!

Plane sweep through oriented planes

- Fronto-parallel

$$
\begin{aligned}
& \boldsymbol{n}_{m}=\left[\begin{array}{lll}
0 & 0 & -1
\end{array}\right]^{T} \\
& Z_{m}(u, v)=d_{m}
\end{aligned}
$$

- Other plane orientations

$$
Z_{m}(u, v)=\frac{-d_{m}}{\left[\begin{array}{lll}
u & v & 1
\end{array}\right] K_{r e f}^{-T} \boldsymbol{n}_{m}}
$$

Plane sweep with ground normal

$d_{m}=200$ meter below reference camera

Plane sweep with ground normal

$d_{m}=261$ meter below reference camera

Plane sweep with ground normal

$d_{m}=298$ meter below reference camera

Plane sweep with ground normal

Red:

Green:

Blue:

$d_{m}=471$ meter below reference camera

Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES

- Image formation
- Light, cameras, optics and color
- The perspective camera model
- Basic projective geometry
- Image processing
- Image filtering
- Image pyramids
- Laplace blending
- Feature detection
- Line features
- Local keypoint features
- Robust estimation with RANSAC
- Feature matching
- From keypoints to feature correspondences
- Feature descriptors
- Feature matching
- Estimating homographies from feature correspondences

WORLD GEOMETRY AND 3D

- 3D pose representation

- Orientation in 3D
- Pose in 3D
- The perspective camera model revisited
- Single-View geometry
- Pose from a known 3D map
- An introduction to nonlinear least squares
- Optimization over poses
- Nonlinear pose estimation
- Stereo imaging
- Basic epipolar geometry
- Stereo imaging
- Stereo processing
- Two-view geometry
- Epipolar geometry
- Triangulation
- Triangulation by minimizing reprojection error
- Pose from epipolar geometry
- Multiple-view geometry
- Multiple-view geometry
- Structure from motion
- Multiple-view stereo
- Visual SLAM
- Introduction to Visual SLAM
- Map optimization
- ORB-SLAM

SCENE ANALYSIS

- Image analysis
- Image segmentation
- Image feature extraction
- Introduction to machine learning
- Object recognition
- Deep learning

What is Visual SLAM?

- Visual simultaneous localization and mapping
- Localization (tracking)
- Localization within the map = tracking the map in image frames
- Mapping
- Continuously expanding a map while exploring the environment

How do we track a map?

How do we build a map?

Monocular Visual SLAM

TEK5030

Monocular Visual SLAM

Monocular Visual SLAM

Loop closure correction

Monocular Visual SLAM

TEK5030

Components of VSLAM

- Short-term tracking
- Pose estimation given the map
- Keyframe proposals
- Long-term tracking
- Visual place recognition
- Loop closure detection over keyframes
- Mapping
- Optimizing the map over keyframes

Lowry, S. et al. (2016). Visual Place Recognition: A Survey. IEEE Transactions on Robotics, 32(1), 1-19.

Components of VSLAMM VO

- Short-term tracking
- Pose estimation given the map
- Keyframe proposals
- Long-term tracking
- Visual place resegnition
- Loop closure detection over keyframes
- Mapping
- Optimizing the map over keyframes

Front end

Back end

Lowry, S. et al. (2016). Visual Place Recognition: A Survey. IEEE Transactions on Robotics, 32(1), 1-19.

Pose and structure estimation by minimizing reprojection error

Minimize geometric error over the camera poses and world points
This is also sometimes called Full Bundle Adjustment

Example

TEK5030

Linearized least-squares

Prior on first pose and distance between first two points

MAP inference for nonlinear factor graphs

MAP inference for factor graphs:

$$
\begin{aligned}
X^{M A P} & =\underset{X}{\operatorname{argmax}} \phi(X) \\
& =\underset{X}{\operatorname{argmax}} \prod_{i} \phi_{i}\left(X_{i}\right)
\end{aligned}
$$

Let us assume that all factors are of the form

$$
\phi_{i}\left(X_{i}\right) \propto \exp \left\{-\frac{1}{2}\left\|h_{i}\left(X_{i}\right)-z_{i}\right\|_{\Sigma_{i}}^{2}\right\}
$$

Taking the negative log and dropping the constant factor allows us instead to minimize a sum of nonlinear least-squares:

$$
X^{M A P}=\underset{X}{\operatorname{argmin}} \sum_{i}\left\|h_{i}\left(X_{i}\right)-z_{i}\right\|_{\Sigma_{i}}^{2}
$$

The sparse Jacobian and its factor graph

- The key in modern SLAM is to exploit sparsity
- Factor graphs represent the sparse block structure in the resulting sparse Jacobian \mathbf{A}.

ORB-SLAM 2

Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES

- Image formation
- Light, cameras, optics and color
- The perspective camera model
- Basic projective geometry
- Image processing
- Image filtering
- Image pyramids
- Laplace blending
- Feature detection
- Line features
- Local keypoint features
- Robust estimation with RANSAC
- Feature matching
- From keypoints to feature correspondences
- Feature descriptors
- Feature matching
- Estimating homographies from feature correspondences

WORLD GEOMETRY AND 3D

- 3D pose representation
- Orientation in 3D
- Pose in 3D
- The perspective camera model revisited
- Single-View geometry
- Pose from a known 3D map
- An introduction to nonlinear least squares
- Optimization over poses
- Nonlinear pose estimation
- Stereo imaging
- Basic epipolar geometry
- Stereo imaging
- Two-view geometry
- Epipolar geometry
- Triangulation
- Triangulation by minimizing reprojection error
- Pose from epipolar geometry
- Multiple-view geometry
- Multiple-view geometry
- Structure from motion
- Multiple-view stereo

Visual SLAM

- Introduction to Visual SLAM
- Map optimization
- ORB-SLAM
- Stereo processing

SCENE ANALYSIS

- Image analysis
- Image segmentation
- Image feature extraction
- Introduction to machine learning
- Object recognition
- Deep learning

Image Analysis

Image Segmentation:

- Thresholding techniques
- Clustering methods for segmentation
- Morphological operations.

Image feature extraction:

- Feature extraction
- Feature selection.

Introduction to Machine Learning:

- Pattern classification
- Training of classifiers (supervised learning)
- Parametric and non-parametric methods
- Discriminant functions
- Dimensionality reduction.

Image Segmentation

Methods:

- Active contours (Snakes, Scissors, Level Sets)
- Split and merge (Watershed, Divisive \& agglomerative clustering, Graph-based segmentation)
- Gray level thresholding
- K-means (parametric clustering)
- Mean shift (non-parametric clustering)
- Normalized cuts
- Graph cuts.

Feature Extraction

The goal is to generate features that exhibit high information-packing properties:

- Extract the information from the raw data that is most relevant for discrimination between the classes
- Extract features with low within-class variability and high between class variability

Feature types (regional features)

- Colour features
- Shape features
- Histogram (texture) features:
- Mean gray level
- Variance
- Skewness
- Kurtosis
- Entropy
- ...

Introduction to Machine learning

Discrimination between classes (pattern recognition, classification)

Classifiers and training methods

- Bayes classifier
- Nearest-neighbors and K-nearest-neighbors
- Parzen windows
- Linear and higher order discriminant functions
- Neural nets
- Support Vector Machines (SVM)
- Decision trees
- Random forest

Lectures 2019

IMAGE FORMATION, PROCESSING AND FEATURES

- Image formation
- Light, cameras, optics and color
- The perspective camera model
- Basic projective geometry
- Image processing
- Image filtering
- Image pyramids
- Laplace blending
- Feature detection
- Line features
- Local keypoint features
- Robust estimation with RANSAC
- Feature matching
- From keypoints to feature correspondences
- Feature descriptors
- Feature matching
- Estimating homographies from feature correspondences

WORLD GEOMETRY AND 3D

- 3D pose representation

- Orientation in 3D
- Pose in 3D
- The perspective camera model revisited
- Single-View geometry
- Pose from a known 3D map
- An introduction to nonlinear least squares
- Optimization over poses
- Nonlinear pose estimation
- Stereo imaging
- Basic epipolar geometry
- Stereo imaging
- Stereo processing
- Two-view geometry
- Epipolar geometry
- Triangulation
- Triangulation by minimizing reprojection error
- Pose from epipolar geometry

Multiple-view geometry

- Multiple-view geometry
- Structure from motion
- Multiple-view stereo
- Visual SLAM
- Introduction to Visual SLAM
- Map optimization
- ORB-SLAM

SCENE ANALYSIS

- Image analysis
- Image segmentation
- Image feature extraction
- Introduction to machine learning
- Object recognition
- Deep learning

Detection and recognition with deep learning

Introduction to deep learning:

- Deep learning
- Artificial neural networks
- Convolutional neural networks (CNN)

Deep learning

Deep Learning for Object Recognition

Millions of images

Millions of parameters
\Rightarrow «Ship»

Thousands of classes

