# UiO Department of Technology Systems University of Oslo

# Introduction to TEK5030 - Computer Vision

16.01.2020

Trym Vegard Haavardsholm (<a href="mailto:trym.haavardsholm@its.uio.no">trym.haavardsholm@its.uio.no</a>)
Idar Dyrdal (<a href="mailto:trym.haavardsholm@its.uio.no">trym.haavardsholm@its.uio.no</a>)
Thomas Opsahl (<a href="mailto:thomasoo@its.uio.no">thomasoo@its.uio.no</a>)



#### **Computer vision**

The study of how a <u>machine</u> can <u>interpret and understand its surroundings</u> from <u>images</u>



#### **Computer vision**

The study of how a <u>machine</u> can <u>interpret and understand its surroundings</u> from <u>images</u>

"Enabling computers to see"



#### **Computer vision**

The study of how a <u>machine</u> can <u>interpret and understand its surroundings</u> from <u>images</u>

"Enabling computers to see"

Aka: Robotic Vision



#### **Today**

- A quick introduction to computer vision
- About the course
- Lab:
  - Processing live video streams with OpenCV!

#### «An image is worth more than a thousand words»



#### «An image is worth more than a thousand words»

How can we extract this information?













## It is easy to calculate with images!





# It is easy to calculate with images!





## The difference between neighboring pixels



## The difference between neighboring pixels



#### **Horizontal differences**



#### **Vertical differences**



# **Edges and corners**



# **Significant corners**



# **Significant corners**



# **Significant corners**



# **Example: Coregistering images**



#### **Extracting geometric information from images**



# Visual navigation



#### 3D reconstruction from images



#### A detailed 3D surface in colors!



## Recognize the shape of a ship





**TEK5030** 





Many millions of learned parameters



Many millions of learned parameters



33

Millions

of labels

Many millions of learned parameters



Many millions of learned parameters



# Image search in Google Photo





# Image search in Google Photo



### Reuse of learned representations

Download a model learned from millions of examples



## Reuse of learned representations in new applications





## Reuse of learned representations in new applications





## **About the course**

## A quick round of presentations

- Full name
- Study
- Relevant background?
- Why take the course?



#### **Learning outcome**

#### After completing TEK5030:

- you will have a fundamental overview of the field of computer vision.
- you will know about, and understand how you can apply fundamental computer vision tools and methods.
- you will understand how some important tools and methods work in detail.
- you will be able to implement algorithms that solves basic computer vision problems.
- you will have experience with using the OpenCV library to build computer vision systems.

#### **Learning outcome**

#### After completing TEK9030:

- you will have a fundamental overview of the field of computer vision.
- you will know about, and understand how you can apply fundamental computer vision tools and methods.
- you will understand how some important tools and methods work in detail.
- you will be able to implement algorithms that solves basic computer vision problems.
- you will have experience with using the OpenCV library to build computer vision systems.
- you will have a deeper understanding of selected topics.

#### «Flipped classroom»

- Purpose
  - Get as much as possible out of a day at Kjeller
- Online
  - Prerecorded lectures each week
- Thursdays 09:15-12:00
  - ~20 min lecture summary and questions
  - ~2.5 hours programming lab
- Mandatory student project (Approved/not approved)
  - Big project of you own choice, preferably in groups
- 4 hour written examination



```
int main()

cv::VideoCapture input_stream(0);

if (!input_stream.isOpened())

std::cerr << "Could not open camera\n";
    return EXIT_FAILURE;
}

const std::string window title = "Lab 0: Introduction to OpenCV";
cv::namedWindow(window_title, cv::WINDOW_NORMAL);

cv::Mat frame;

while(true)
{
    input_stream >> frame;
    if (frame.empty())
    { break; }
}
    cv::imshow("cam", frame);
    if (cv::waitKey(15) >= 0)
    { break; }
}

return EXIT_SUCCESS;
}
```

#### **Course information**

- We use canvas: <a href="https://canvas.uio.no/">https://canvas.uio.no/</a>
- Course plan
- Teaching materials
  - Lecture videos
  - Lecture slides
  - Lab exercises
- Questions and discussions
- Project delivieries



#### **Student projects**

- Develop a working computer vision system that does something interesting
  - Big: More than a month
  - Approved/Not approved
- Project topic of your own choice
- Preferably in groups of up to 3 persons







### **Student projects**

- Develop a working computer vision system that does something interesting
  - Big: More than a month
  - Approved/Not approved
- Project topic of your own choice
- Preferably in groups of up to 3 persons









#### **Student projects**

- Great freedom of choice
  - Platform, programming language, tools, ...
- Project period:
  - 19.04: Submission of written project proposals
  - 23.04: Feedback on project proposals
  - 28.05: Project presentations
  - 29.05: Submission of project report
- We will be present to guide the projects during the lecture days
- The lecture room will be available the rest of the weeks as well

#### **Course feedback**

- Give us feedback along the way!
  - We are open to adjusting the plans

 Please fill out and deliver the course evaluation form after the course!

Questions?