UiO **Department of Technology Systems**

University of Oslo

Lecture 10.1 Introduction to Visual SLAM

Trym Vegard Haavardsholm

TEK5030

Simultaneous localization and mapping

Simultaneous localization and mapping

Simultaneous

- estimation of the state of a robot using on-board sensors
- construction of a map of the environment that the sensors are perceiving

Simultaneous localization and mapping

Simultaneous

- mapping: Continuously expanding and optimizing a consistent map while exploring the environment
- localization:

Localization within the map

Jing Dong "GTSAM 4.0 Tutorial" License CC BY-NC-SA 3.0

What is Visual SLAM?

Visual simultaneous localization and mapping

Simultaneous

- mapping:
 Continuously expanding
 and optimizing a consistent map
 while exploring the environment
- localization (tracking): Localization within the map (tracking the map in image frames)

TEK5030

Visual SLAM example

TEK5030

What is the map?

What is the map?

A model of the environment that lets us

- limit the localization error by recognizing previously visited areas
- (support other tasks, such as obstacle avoidance and path planning)

TEK5030

What is the map?

A model of the environment that lets us

- limit the localization error by recognizing previously visited areas
- (support other tasks, such as obstacle avoidance and path planning)

Maybe best left as auxiliary processing?

Feature-based metric maps

Image: Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. *IEEE Transactions on Robotics*, *32*(6), 1309–1332

Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31(5), 1147–1163. https://doi.org/10.1109/TRO.2015.2463671

Dense metric maps

DTAM: Dense Tracking and Mapping in Real-Time

Image: Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. *IEEE Transactions on Robotics*, *32*(6), 1309–1332

Newcombe, R. A., Lovegrove, S. J., & Davison, A. J. (2011). DTAM: Dense tracking and mapping in realtime. In 2011 International Conference on Computer Vision (pp. 2320–2327). IEEE

Topological maps

FABMAP

Image: YouTube: ORI - Oxford Robotics Institute

Cummins, M., & Newman, P. (2008). FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance. The International Journal of Robotics Research, 27(6), 647–665

Topological-metric maps

Visual Teach & Repeat

Image: YouTube: utiasASRL

Furgale P T and Barfoot T D. Visual Teach and Repeat for Long-Range Rover Autonomy. Journal of Field Robotics, special issue on Visual mapping and navigation outdoors, 27(5): 534-560, 2010.

TEK5030

How do we build a map?

Relative pose and 3D from two views

TEK5030

How do we track a map?

Pose from known 3D map

Pose from point correspondences

Pose from point correspondences

Pose from point correspondences

Minimize geometric error

$$\mathbf{T}_{wc}^* = \underset{\mathbf{T}_{wc}}{\operatorname{argmin}} \sum_{i} \left\| \pi(\mathbf{T}_{wc}^{-1} \cdot \mathbf{x}_{i}^{w}) - \mathbf{u}_{i} \right\|^{2}$$

TEK5030

Maximum a Posteriori Inference

Interested in the unknown state variables X, given the measurements Z.

The most often used estimator for *X* is the MAP estimate:

$$X^{\text{MAP}} = \underset{X}{\operatorname{argmax}} p(X \mid Z)$$

Maximum a Posteriori Inference

Interested in the unknown state variables X, given the measurements Z.

The most often used estimator for *X* is the MAP estimate:

$$X^{\text{MAP}} = \underset{X}{\operatorname{argmax}} p(X \mid Z)$$

=
$$\underset{X}{\operatorname{argmax}} \frac{p(Z \mid X) p(X)}{p(Z)}$$

=
$$\underset{X}{\operatorname{argmax}} l(X;Z) p(X)$$

$$l(X;Z) \propto p(Z \mid X)$$

Maximum a Posteriori Inference

Measurement model:

$$\mathbf{z}_i = h_i(X_i) + \eta, \qquad \eta \sim N(\mathbf{0}, \boldsymbol{\Sigma}_i)$$

Measurement prediction function:

$$\hat{\mathbf{z}}_i = h_i(X_i)$$

Measurement likelihood:

$$p(\mathbf{z}_i \mid X_i) \propto l(X_i; \mathbf{z}_i) = \exp\left(-\frac{1}{2} \left\| h_i(X_i) - \mathbf{z}_i \right\|_{\mathbf{\Sigma}_i}^2\right)$$

TEK5030

MAP estimate:

$$X^{\text{MAP}} = \underset{X}{\operatorname{argmin}} \sum_{i} \left\| h_i(X_i) - \mathbf{z}_i \right\|_{\Sigma_i}^2$$

Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. *IEEE Transactions on Robotics*, *32*(6), 1309–1332

TEK5030

Visual SLAM vs visual odometry

Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31(5), 1147–1163

Visual SLAM vs visual odometry

Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. *IEEE Transactions on Robotics*, *32*(6), 1309–1332

Components of SLAM

Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. *IEEE Transactions on Robotics*, *32*(6), 1309–1332

Components of VSLAM

- Short-term tracking
 - Pose estimation given the map
 - Keyframe proposals
- Long-term tracking
 - Visual place recognition
 - Loop closure detection over keyframes
- Mapping
 - Building and optimizing the map over keyframes
 - Data fusion

Lowry, S. et al. (2016). Visual Place Recognition: A Survey. IEEE Transactions on Robotics, 32(1), 1–19.

Example: ORB-SLAM 2

R. Mur-Artal and J. D. Tardos, "ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras," IEEE Trans. Robot., pp. 1–8, 2017.

TEK5030

Supplementary material

- "Parallel Tracking and Mapping for Small AR Workspaces", Klein and Murray, In Proc. International Symposium on Mixed and Augmented Reality (ISMAR'07, Nara), 2007 <u>https://www.robots.ox.ac.uk/~vgg/rg/papers/klein_murray_2007_ptam.pdf</u>
- "Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age", Cadena et al., IEEE Transactions on Robotics 32 (6) pp 1309-1332, 2016 <u>https://arxiv.org/abs/1606.05830</u>
- "Visual Place Recognition: A Survey", Lowry, S. et al., IEEE Transactions on Robotics, 32 (1), pp 1–19, 2016 <u>https://ieeexplore.ieee.org/document/7339473</u>

