Lecture 10.2
 Building a consistent map from observations

Trym Vegard Haavardsholm

Part I

RECAP ON NONLINEAR LEAST-SQUARES (WITH UPDATED NOTATION)

Linear least squares

When the equations $e(x)$ are linear, we can obtain an objective function on the form

$$
f(\mathbf{x})=\|e(\mathbf{x})\|^{2}=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}
$$

A solution is required to have zero gradient:

$$
\nabla f\left(\mathbf{x}^{*}\right)=2 \mathbf{A}^{T}\left(\mathbf{A x}^{*}-\mathbf{b}\right)=\mathbf{0}
$$

This results in the normal equations,

$$
\begin{aligned}
& \mathbf{A}^{T} \mathbf{A x}^{*}=\mathbf{A}^{T} \mathbf{b} \\
& \mathbf{x}^{*}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
\end{aligned}
$$

which can be solved with Cholesky- or QR factorization.

Linear least squares

When the equations $e(x)$ are linear, we can obtain an objective function on the form

$$
f(\mathbf{x})=\|e(\mathbf{x})\|^{2}=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}
$$

A solution is required to have zero gradient:

$$
\nabla f\left(\mathbf{x}^{*}\right)=2 \mathbf{A}^{T}\left(\mathbf{A} \mathbf{x}^{*}-\mathbf{b}\right)=\mathbf{0}
$$

This results in the normal equations,

$$
\begin{aligned}
& \mathbf{A}^{T} \mathbf{A x}^{*}=\mathbf{A}^{T} \mathbf{b} \\
& \mathbf{x}^{*}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
\end{aligned}
$$

which can be solved with Cholesky- or QR factorization.

Matlab example:
x = A\b;
Eigen example:
A.colPivHouseholderQr().solve(b);

Read more about LLS:

- http://vmls-book.stanford.edu/vmls.pdf

Nonlinear least squares

When the equations $e(\mathbf{x})$ are nonlinear, we have a nonlinear least squares problem.

They cannot be solved directly, but require an iterative procedure starting from a suitable initial estimate.

Choose a suitable inital estimate

Linearize the problem

Solve the linearized problem

Update the estimate

Nonlinear MAP inference for state estimation

We will use nonlinear least squares to solve state estimation problems based on measurements and corresponding measurement models

Let X be the set of all unknown state variables, and Z be the set of all measurements.

We are interested in estimating the unknown state variables X, given the measurements Z. The Maximum a Posteriori estimate is given by:

$$
X^{M A P}=\underset{X}{\operatorname{argmax}} p(X \mid Z)
$$

State variables

A state variable \mathbf{x} is typically used to describe the physical state of an object.

We can estimate several state variables at once by concatenating all the variables into the vector \mathbf{x} :

The equations $e_{i}(\mathbf{x})$ can be defined to operate on one or more of these p state variables.

State variables

A state variable \mathbf{x} is typically used to describe the physical state of an object.

We can estimate several state variables at once by concatenating all the variables into the vector \mathbf{x} :

The equations $e_{i}(\mathbf{x})$ can be defined to operate on one or more of these p state variables.

How can we represent both points and poses as states?

Orientations and poses lie on manifolds

Orientations and poses lie on manifolds in higher-dimensional spaces

This makes it complicated to add increments, represent uncertainty and perform differentiation

Example:

$$
\begin{array}{r}
\mathbf{R} \in S O(3) \\
\delta \mathbf{R} \in \mathbb{R}^{3 \times 3} \\
\mathbf{R}+\delta \mathbf{R} \notin S O(3)
\end{array}
$$

Image source: Solà, J., Deray, J., \& Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
(Cropped and edited; licensed under CC BY-NC-SA 4.0)

Lie theory lets us work on these manifolds

Orientations and poses are matrix Lie groups

A Lie group is a group on a smooth manifold
Lie theory describes the tangent space around elements of a Lie group, and defines exact mappings between the tangent space and the manifold

The tangent space is a vector space with the same dimension as the number of degrees of freedom of the group transformations

Image source: Solà, J., Deray, J., \& Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics (Cropped; licensed under CC BY-NC-SA 4.0)

The exponential map

Image source: Solà, J., Deray, J., \& Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics

Plus and minus operators

It is convenient to express perturbations using plus and minus operators.
The right plus and minus operators are defined as:

$$
\begin{aligned}
\mathcal{Y} & =\mathcal{X} \oplus^{\mathcal{X}} \boldsymbol{\tau} \triangleq \mathcal{X} \circ \operatorname{Exp}\left({ }^{\mathcal{X}} \boldsymbol{\tau}\right) \in \mathcal{M} \\
{ }^{\mathcal{X}} \boldsymbol{\tau} & =\mathcal{Y} \ominus \mathcal{X} \triangleq \log \left(\mathcal{X}^{-1} \circ \mathcal{Y}\right) \in \mathcal{T} \mathcal{M}_{\mathcal{X}}
\end{aligned}
$$

Concatenated set of state variables

Concatenation of state variables over a composite manifold and the corresponding concatenation of tangent space vectors

$$
\underline{\mathcal{X}} \triangleq\left\{\begin{array}{c}
\mathcal{X}_{1} \\
\vdots \\
\mathcal{X}_{p}
\end{array}\right\} \in \mathcal{M} \quad \underline{\boldsymbol{\tau}} \triangleq\left[\begin{array}{c}
\boldsymbol{\tau}_{1} \\
\vdots \\
\boldsymbol{\tau}_{p}
\end{array}\right] \in \mathbb{R}^{m} \quad \begin{aligned}
& \mathcal{X}_{i} \in \mathcal{M}_{i} \\
& \\
& \mathcal{M}=\left\{\mathcal{M}_{1}, \ldots, \mathcal{M}_{p}\right\} \\
& \boldsymbol{\tau}_{i} \in \mathcal{T} \mathcal{M}_{i}
\end{aligned}
$$

Plus and minus for the concatenated state variable

$$
\underline{\mathcal{X}} \oplus \underline{\boldsymbol{\tau}} \triangleq\left\{\begin{array}{c}
\mathcal{X}_{1} \oplus \boldsymbol{\tau}_{1} \\
\vdots \\
\mathcal{X}_{p} \oplus \boldsymbol{\tau}_{p}
\end{array}\right\} \in \mathcal{M} \quad \underline{\mathcal{Y}} \ominus \underline{\mathcal{X}} \triangleq\left[\begin{array}{c}
\mathcal{Y}_{1} \ominus \mathcal{X}_{1} \\
\vdots \\
\mathcal{Y}_{p} \ominus \mathcal{X}_{p}
\end{array}\right] \in \mathbb{R}^{m}
$$

Concatenated set of state variables

We define \underline{X}_{i} to be the concatenated set of state variables taken as input by the i-th equation $e_{i}\left(\mathrm{X}_{i}\right)$.

Concatenated set of state variables

We define \underline{X}_{i} to be the concatenated set of state variables taken as input by the i-th equation $e_{i}\left(\mathrm{X}_{i}\right)$.

Example:

$$
\begin{aligned}
& e_{i j}\left(\underline{X}_{i j}\right)=e_{i j}\left(\mathbf{T}_{w c_{i}}, \mathbf{x}_{j}^{w}\right)=\pi\left(\mathbf{T}_{w c_{i}}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}^{i} \\
& \underline{X}_{i j}=\left\{\begin{array}{l}
\mathbf{T}_{w c_{i}} \\
\mathbf{x}_{j}^{w}
\end{array}\right\}
\end{aligned}
$$

Concatenated set of state variables

We define \underline{X}_{i} to be the concatenated set of state variables taken as input by the i-th equation $e_{i}\left(\mathrm{X}_{i}\right)$.

We can then define the objective function over all state variables

$$
f(\underline{\mathrm{X}})=\|e(\underline{\mathrm{X}})\|^{2}=\sum_{i=1}^{n}\left\|e_{i}\left(\underline{\mathrm{X}}_{i}\right)\right\|^{2}
$$

Nonlinear MAP inference for state estimation

Measurement model:

$$
\mathbf{z}_{i}=h_{i}\left(\underline{X}_{i}\right)+\eta_{i}, \quad \eta_{i} \sim N\left(\mathbf{0}, \boldsymbol{\Sigma}_{i}\right)
$$

Measurement prediction function:

$$
\hat{\mathbf{z}}_{i}=h_{i}\left(\underline{X}_{i}\right)
$$

Measurement error function:

$$
e_{i}\left(\underline{\mathrm{X}}_{i}\right)=h_{i}\left(\underline{\mathrm{X}}_{i}\right)-\mathbf{z}_{i}
$$

Objective function:

$$
f(\underline{\mathrm{X}})=\sum_{i=1}^{n}\left\|h_{i}\left(\underline{X}_{i}\right)-\mathbf{z}_{i}\right\|_{\Sigma_{i}}^{2} \quad \text { where }\|\mathbf{e}\|_{\Sigma}^{2}=\mathbf{e}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{e} \text { is the squared Mahalanobis norm }
$$

Nonlinear MAP inference for state estimation

Measurement model:

$$
\mathbf{z}_{i}=h_{i}\left(\underline{X}_{i}\right)+\eta_{i}, \quad \eta_{i} \sim N\left(\mathbf{0}, \boldsymbol{\Sigma}_{i}\right)
$$

Measurement prediction function:

$$
\hat{\mathbf{z}}_{i}=h_{i}\left(\underline{X}_{i}\right)
$$

Measurement error function:

$$
e_{i}\left(\underline{\mathrm{X}}_{i}\right)=h_{i}\left(\mathrm{X}_{i}\right)-\mathbf{z}_{i}
$$

Objective function:

$$
f(\underline{\mathrm{X}})=\sum_{i=1}^{n}\left\|h_{i}\left(\underline{\mathrm{X}}_{i}\right)-\mathbf{z}_{i}\right\|_{\Sigma_{i}}^{2}
$$

This results in the nonlinear least squares problem:

$$
\underline{\mathrm{X}}^{*}=\underset{\underline{\underline{x}}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|h_{i}\left(\underline{\mathrm{X}}_{i}\right)-\mathbf{z}_{i}\right\|_{\mathbf{\Sigma}_{i}}^{2}
$$

It turns out that the nonlinear least squares solution to this problem is the MAP estimate!

Nonlinear least squares

When the equations $e_{i}\left(\underline{X}_{i}\right)=h_{i}\left(\underline{X}_{i}\right)-\mathbf{z}_{i}$ are nonlinear, we have a nonlinear least squares problem.

They cannot be solved directly, but require an iterative procedure starting from a suitable initial estimate.

Choose a suitable inital estimate

Linearize the problem

Solve the linearized problem

Update the estimate

Linearizing the problem

We can linearize the measurement prediction functions
using first order Taylor expansions at the current estimates $\hat{\underline{X}}_{i}$:

$$
h_{i}\left(\underline{\mathrm{X}}_{i}\right)=h_{i}\left(\hat{\mathrm{X}}_{i} \oplus \underline{\boldsymbol{\tau}}_{i}\right) \approx h_{i}\left(\hat{\underline{\mathrm{X}}}_{i}\right)+\mathbf{J}_{\mathbf{x}_{i}}^{h_{i}} \boldsymbol{\tau}_{i}
$$

where the measurement Jacobian $\mathbf{J}_{\underline{\underline{X}}_{i}}^{h_{i}}$ is

$$
\left.\mathbf{J}_{\underline{\underline{x}}_{i}}^{h_{i}} \triangleq \frac{\partial h_{i}\left(\underline{X}_{i}\right)}{\partial \underline{X}_{i}}\right|_{\underline{\underline{x}}_{i}}
$$

and

$$
\underline{\boldsymbol{\tau}}_{i} \triangleq \underline{\mathcal{X}}_{i} \ominus \underline{\mathcal{X}}_{i}
$$

is the state update vector.

Linearizing the problem

This leads to the linearized measurement error function

$$
e_{i}\left(\underline{\mathrm{X}}_{i}\right)=e_{i}\left(\hat{\mathrm{X}}_{i} \oplus \underline{\boldsymbol{\tau}}_{i}\right) \approx h_{i}\left(\hat{\mathrm{X}_{i}}\right)+\mathbf{J}_{\hat{X}_{i}}^{h_{i}} \boldsymbol{\tau}_{i}-\mathbf{z}_{i}
$$

Linearizing the problem

The linearized objective function is then given by

$$
\begin{aligned}
f(\underline{\mathrm{X}})=f(\underline{\hat{X}} \oplus \underline{\boldsymbol{\tau}}) & =\sum_{i=1}^{n}\left\|e_{i}\left(\hat{\mathrm{X}}_{i} \oplus \underline{\boldsymbol{\tau}}_{i}\right)\right\|_{\Sigma_{i}}^{2} \\
& \approx \sum_{i=1}^{n}\left\|h_{i}\left(\hat{\mathrm{X}}_{i}\right)+\mathbf{J}_{\underline{\underline{X}}_{i}}^{h_{i}} \underline{\boldsymbol{\tau}}_{i}-\mathbf{z}_{i}\right\|_{\Sigma_{i}}^{2} \\
& =\sum_{i=1}^{n}\left\|\mathbf{J}_{\underline{\underline{X}}_{i}}^{h_{i}} \underline{\boldsymbol{\tau}}_{i}-\left(\mathbf{z}_{i}-h_{i}\left(\underline{\mathrm{X}}_{i}\right)\right)\right\|_{\Sigma_{i}}^{2} \\
& =\sum_{i=1}^{n}\left\|\boldsymbol{\Sigma}_{i}^{-1 / 2} \mathbf{J}_{\underline{\underline{x}}_{i}}^{h_{i}} \boldsymbol{\tau}_{i}-\mathbf{\Sigma}_{i}^{-1 / 2}\left(\mathbf{z}_{i}-h_{i}\left(\hat{\mathrm{X}}_{i}\right)\right)\right\|^{2} \\
& =\sum_{i=1}^{n}\left\|\mathbf{A}_{i} \underline{\boldsymbol{\tau}}_{i}-\mathbf{b}_{i}\right\|^{2} \\
& =\|\mathbf{A} \underline{\boldsymbol{\tau}}-\mathbf{b}\|^{2}
\end{aligned}
$$

Solving the linearized problem

The linearized objective function is then given by

$$
\begin{aligned}
f(\underline{\mathrm{X}})=f(\underline{\hat{\mathrm{X}}} \oplus \underline{\boldsymbol{\tau}}) & =\sum_{i=1}^{n}\left\|e_{i}\left(\hat{\mathrm{X}}_{i} \oplus \underline{\boldsymbol{\tau}}_{i}\right)\right\|_{\underline{\Sigma}_{i}}^{2} \\
& \approx \sum_{i=1}^{n}\left\|h_{i}\left(\hat{\mathrm{X}}_{i}\right)+\mathbf{J}_{\mathbf{x}_{i}}^{h_{i}} \boldsymbol{\tau}_{i}-\mathbf{z}_{i}\right\|_{\mathbf{\Sigma}_{i}}^{2} \\
& =\sum_{i=1}^{n}\left\|\mathbf{J}_{\underline{x}_{i}}^{h_{i}} \boldsymbol{\tau}_{i}-\left(\mathbf{z}_{i}-h_{i}\left(\hat{\hat{X}_{i}}\right)\right)\right\|_{\mathbf{\Sigma}_{i}}^{2} \\
& =\sum_{i=1}^{n}\left\|\boldsymbol{\Sigma}_{i}^{-1 / 2} \mathbf{J}_{\underline{x}_{i}}^{h_{i}} \boldsymbol{\tau}_{i}-\boldsymbol{\Sigma}_{i}^{-1 / 2}\left(\mathbf{z}_{i}-h_{i}\left(\hat{\mathrm{X}}_{i}\right)\right)\right\|^{2} \\
& =\sum_{i=1}^{n}\left\|\mathbf{A}_{i} \underline{\boldsymbol{\tau}}_{i}-\mathbf{b}_{i}\right\|^{2} \\
& =\|\mathbf{A} \underline{\boldsymbol{\tau}}-\mathbf{b}\|^{2}
\end{aligned}
$$

We can solve the linearized problem as a linear least squares problem using the normal equations
$\mathbf{A}^{T} \mathbf{A} \underline{\tau}^{*}=\mathbf{A}^{T} \mathbf{b}$

Solving the nonlinear problem

We solve the nonlinear least-squares problem by iteratively solving the linearized system:

Choose a suitable inital estimate $\underline{\underline{X}}^{0}$

$\mathbf{A}, \mathbf{b} \leftarrow$ Linearize at \underline{X}^{t}

$\underline{\tau}^{*} \leftarrow$ Solve $\underset{\tau}{\operatorname{argmin}}\|\mathbf{A} \underline{\boldsymbol{\tau}}-\mathbf{b}\|^{2}$

$$
\underline{\hat{X}}^{t+1} \leftarrow \hat{\mathrm{x}}^{\mathrm{t}} \oplus \underline{\boldsymbol{\tau}}^{*}
$$

The Gauss-Newton algorithm

```
Data: An objective function }f(\underline{\mathcal{X}})\mathrm{ and a good initial state estimate }\mp@subsup{\hat{\mathcal{X}}}{}{0
Result: An estimate for the states \mathcal{X}
for }t=0,1,\ldots,\mp@subsup{t}{}{max}\mathrm{ do
    A,\mathbf{b}\leftarrowL\mp@code{Linearise f(\underline{X}) at }\mp@subsup{\underline{\mathcal{X}}}{}{t}
    \underline { \tau } \leftarrow \text { Solve the linearised problem A' } \mathbf { A } ^ { \top } \mathbf { A } \underline { \boldsymbol { \tau } } = \mathbf { A } ^ { \top } \mathbf { b }
    \mp@subsup{\hat{\mathcal{X}}}{}{t+1}}\leftarrow\mp@subsup{\hat{\chi}}{}{\boldsymbol{\mathcal{X}}}\oplus\underline{\boldsymbol{\tau}
    if f(\mp@subsup{\hat{\mathcal{X}}}{}{t+1})\mathrm{ is very small or }\mp@subsup{\hat{\mathcal{X}}}{}{t+1}\approx\mp@subsup{\hat{\mathcal{X}}}{}{t}}\mathrm{ then
        \hat{\mathcal{X}}}\leftarrow\mp@subsup{\hat{\mathcal{X}}}{}{t+1
        return
    end
end
```

Part II

BUNDLE ADJUSTMENT

Bundle adjustment

Bundle Adjustment (BA)

Estimating the imaging geometry based on minimizing reprojection error

- Motion-only BA
- Structure-only BA
- Full BA

Pose estimation by minimizing reprojection error

Minimize geometric error over the camera pose given known structure This is also sometimes called Motion-Only Bundle Adjustment

$$
\mathbf{T}_{w c}^{*}=\underset{\mathbf{T}_{w c}}{\operatorname{argmin}} \sum_{j}\left\|\pi\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}\right\|^{2}
$$

Pose estimation by minimizing reprojection error

Given:

- World points \mathbf{x}_{j}^{w}

Measurements:

- Correspondences $\mathbf{u}_{j} \leftrightarrow \mathbf{x}_{j}^{w}$ with measurement noise $\boldsymbol{\Sigma}_{j}$

State we wish to estimate:

- Camera pose $\mathbf{T}_{\text {wc }}$

Initial estimate:

- PnP (P3P, EPnP, ...)
- Motion model

TEK5030

Applying the MAP framework

For simplicity,
we pre-calibrate to normalized image coordinates (and propagate the noise)

This gives us the measurement prediction function

$$
h_{j}\left(\mathbf{T}_{w c}\right)=\pi_{n}\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{j}^{w}\right)
$$

and measurement error function

$$
e_{j}\left(\mathbf{T}_{w c}\right)=\pi_{n}\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{x}_{n j}
$$

Applying the MAP framework

The measurement Jacobian is given by

$$
\begin{aligned}
& \mathbf{J}_{\mathbf{T}_{w c}}^{h}=\mathbf{J}_{\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}^{w}}^{\pi_{n}\left(\mathbf{T}_{w_{c}}^{-1} \cdot \mathbf{x}^{w}\right)} \mathbf{J}_{\mathbf{T}_{w c}^{-1}}^{\mathbf{T}_{w_{c}^{1}}^{-1} \cdot \mathbf{x}^{w}} \mathbf{J}_{\mathbf{T}_{w c}}^{\mathbf{T}_{w c}^{-1}} \\
& =\mathbf{J}_{\mathbf{x}^{c}}^{\pi_{n}\left(\mathbf{x}^{c}\right)} \mathbf{J}_{\mathbf{T}_{w_{c}}^{-1}}^{\mathbf{T}_{w_{c}^{-1}}^{-1} \cdot \mathbf{w}^{w}} \mathbf{J}_{\mathbf{T}_{w c}}^{\mathbf{T}_{w c}^{-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =d\left[\begin{array}{ccc}
1 & 0 & -x_{n} \\
0 & 1 & -y_{n}
\end{array}\right]\left[\begin{array}{ll}
-\mathbf{I} & \left.\left[\mathbf{x}^{c}\right]_{\times}\right]
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
-d & 0 & d x_{n} & x_{n} y_{n} & -1-x_{n}^{2} & y_{n} \\
0 & -d & d y_{n} & 1+y_{n}^{2} & -x_{n} y_{n} & -x_{n}
\end{array}\right],
\end{aligned}
$$

Applying the MAP framework

This results in the linearized weighted least squares problem

$$
\begin{aligned}
\boldsymbol{\xi}^{*} & =\underset{\boldsymbol{\xi}}{\arg \min } \sum_{j=1}^{n}\left\|\mathbf{A}_{j} \boldsymbol{\xi}-\mathbf{b}_{j}\right\|^{2} \\
& =\underset{\boldsymbol{\xi}}{\arg \min }\|\mathbf{A} \boldsymbol{\xi}-\mathbf{b}\|^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbf{A}_{j} & =\boldsymbol{\Sigma}_{n j}^{-1 / 2} \mathbf{J}_{\mathbf{T}_{w c}}^{h_{j}} \\
\mathbf{b}_{j} & =\boldsymbol{\Sigma}_{n j}^{-1 / 2}\left(\mathbf{x}_{n j}-h_{j}\left(\mathbf{T}_{w c}\right)\right),
\end{aligned}
$$

$$
\mathbf{A}=\left[\begin{array}{c}
\mathbf{A}_{1} \\
\vdots \\
\mathbf{A}_{n}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
\mathbf{b}_{1} \\
\vdots \\
\mathbf{b}_{n}
\end{array}\right] .
$$

Applying the MAP framework

For an example with three points, the measurement Jacobian \mathbf{A} and the prediction error \mathbf{b} are

$$
\mathbf{A}=\left[\begin{array}{l}
\mathbf{A}_{1} \\
\mathbf{A}_{2} \\
\mathbf{A}_{3}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2} \\
\mathbf{b}_{3}
\end{array}\right]
$$

Applying the MAP framework

The solution can be found by solving the normal equations

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \xi^{*}=\mathbf{A}^{T} \mathbf{b}
$$

Choose a suitable inital estimate $\underline{\underline{X}}^{0}$

$$
\underline{\hat{x}}^{+1+1} \leftarrow \hat{\underline{x}}^{\hat{t}} \oplus \underline{\tau}^{*}
$$

Example

TEK5030

Example

TEK5030

Example

TEK5030

Example

TEK5030

Pose estimation by minimizing reprojection error

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

$$
\mathbf{T}_{w c}^{*}=\underset{\mathbf{T}_{w c}}{\operatorname{argmin}} \sum_{j}\left\|\pi\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}\right\|^{2}
$$

Triangulation by minimizing reprojection error

Minimize geometric error over the world points
This is also sometimes called Structure-Only Bundle Adjustment

$$
\mathbf{x}_{j}^{w^{*}}=\underset{\mathbf{x}_{j}^{w}}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|\pi_{i}\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}^{i}\right\|^{2}
$$

Triangulation by minimizing reprojection error

Given:

- Camera poses T_{wc}

Measurements:

- Correspondences $\mathbf{u}_{j}^{i} \leftrightarrow \mathbf{x}_{j}^{w}$ with measurement noise $\Sigma_{i j}$

State we wish to estimate:

- World points \mathbf{x}_{j}^{w}

Initial estimate:

- Triangulation

Applying the MAP framework

For simplicity,
we pre-calibrate to normalized image coordinates (and propagate the noise)

This gives us the measurement prediction function

$$
h_{i j}\left(\mathbf{x}_{j}^{w}\right)=\pi_{n}\left(\mathbf{T}_{w c_{i}}^{-1} \cdot \mathbf{x}_{j}^{w}\right)
$$

and measurement error function

$$
e_{i j}\left(\mathbf{x}_{j}^{w}\right)=\pi_{n}\left(\mathbf{T}_{w c_{i}}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{x}_{n j}^{i}
$$

Applying the MAP framework

The measurement Jacobian is given by

$$
\begin{aligned}
\mathbf{J}_{\mathbf{x}^{w}}^{h} & =\mathbf{J}_{\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}^{w}}^{\pi_{n}\left(\mathbf{T}^{-1} \cdot \mathbf{x}^{w}\right)} \mathbf{J}_{\mathbf{x}^{w}}^{\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}^{w}} \\
& =\mathbf{J}_{\mathbf{x}^{c}}^{\pi_{n}\left(\mathbf{x}^{c}\right)} \mathbf{J}_{\mathbf{x}_{w}^{w}}^{\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}^{w}} \\
& =\frac{1}{z^{c}}\left[\begin{array}{lll}
1 & 0 & -x^{c} / z^{c} \\
0 & 1 & -y^{c} / z^{c}
\end{array}\right] \mathbf{R}_{w c}^{\top} \\
& =d\left[\begin{array}{lll}
1 & 0 & -x_{n} \\
0 & 1 & -y_{n}
\end{array}\right] \mathbf{R}_{w c}^{\top},
\end{aligned}
$$

Applying the MAP framework

This results in the linearized weighted least squares problem

$$
\begin{aligned}
\delta \mathbf{x}^{*} & =\underset{\delta \mathbf{x}}{\arg \min } \sum_{i=1}^{k} \sum_{j=1}^{n}\left\|\mathbf{A}_{i j} \delta \mathbf{x}_{j}-\mathbf{b}_{i j}\right\|^{2} \\
& =\underset{\delta \mathbf{x}}{\arg \min }\|\mathbf{A} \delta \mathbf{x}-\mathbf{b}\|^{2},
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbf{A}_{i j} & =\boldsymbol{\Sigma}_{n i j}^{-1 / 2} \mathbf{J}_{\mathbf{x}_{j}^{h i j}}^{h_{i j}} \\
\mathbf{b}_{i j} & =\boldsymbol{\Sigma}_{n i j}^{-1 / 2}\left(\mathbf{x}_{n j}^{i}-h_{i j}\left(\mathbf{x}_{j}^{w}\right)\right),
\end{aligned}
$$

$$
\mathbf{A}=\left[\begin{array}{ccc}
\mathbf{A}_{11} & & \\
& \ddots & \\
& & \mathbf{A}_{1 n} \\
& \vdots & \\
\mathbf{A}_{k 1} & & \\
& \ddots & \\
& & \mathbf{A}_{k n}
\end{array}\right] \quad \delta \mathbf{x}=\left[\begin{array}{c}
\delta \mathbf{x}_{1} \\
\vdots \\
\delta \mathbf{x}_{n}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
\mathbf{b}_{11} \\
\vdots \\
\mathbf{b}_{1 n} \\
\vdots \\
\mathbf{b}_{k 1} \\
\vdots \\
\mathbf{b}_{k n}
\end{array}\right]
$$

Linear least-squares

The measurement Jacobian \mathbf{A} is now a block sparse matrix.
For an example with two cameras and three points we have

$$
\mathbf{A}=\left[\begin{array}{lll}
\mathbf{A}_{11} & & \\
& \mathbf{A}_{12} & \\
& & \mathbf{A}_{13} \\
\mathbf{A}_{21} & & \\
& \mathbf{A}_{22} & \\
& & \mathbf{A}_{23}
\end{array}\right] \quad \delta \mathbf{x}=\left[\begin{array}{l}
\delta \mathbf{x}_{1} \\
\delta \mathbf{x}_{2} \\
\delta \mathbf{x}_{3}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
\mathbf{b}_{11} \\
\mathbf{b}_{12} \\
\mathbf{b}_{13} \\
\mathbf{b}_{21} \\
\mathbf{b}_{22} \\
\mathbf{b}_{23}
\end{array}\right]
$$

Applying the MAP framework

The solution can be found by solving the normal equations

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \delta \mathbf{x}^{*}=\mathbf{A}^{T} \mathbf{b}
$$

$$
\text { Choose a suitable inital estimate } \underline{\mathrm{X}}^{0}
$$

Since A is sparse,
a sparse solver should be used.

Example

TEK5030

Example

TEK5030

Example

TEK5030

Pose estimation by minimizing reprojection error

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment

$$
\mathbf{T}_{w c}^{*}=\underset{\mathbf{T}_{w c}}{\operatorname{argmin}} \sum_{j}\left\|\pi\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}\right\|^{2}
$$

Triangulation by minimizing reprojection error

Minimize geometric error over the world points
This is also sometimes called Structure-Only Bundle Adjustment

$$
\mathbf{x}_{j}^{w^{*}}=\underset{\mathbf{x}_{j}^{w}}{\operatorname{argmin}} \sum_{i} \sum_{j}\left\|\pi_{i}\left(\mathbf{T}_{w c}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{u}_{j}^{i}\right\|^{2}
$$

Pose and structure estimation by minimizing reprojection error

Minimize geometric error over the camera poses and world points
This is also sometimes called Full Bundle Adjustment

Pose and structure estimation by minimizing reprojection error

Given:

Measurements:

- Correspondences $\mathbf{u}_{j}^{i} \leftrightarrow \mathbf{x}_{j}^{w}$ with measurement noise $\Sigma_{i j}$

State we wish to estimate:

- Camera poses $\mathbf{T}_{\text {wa }}$ and world points \mathbf{x}_{j}^{w}

Initial estimate:

- From the essential matrix (5-point algorithm)

Applying the MAP framework

For simplicity,
we pre-calibrate to normalized image coordinates (and propagate the noise)

This gives us the measurement prediction function

$$
h_{i j}\left(\mathbf{T}_{w c_{i}}, \mathbf{x}_{j}^{w}\right)=\pi_{n}\left(\mathbf{T}_{w c_{i}}^{-1} \cdot \mathbf{x}_{j}^{w}\right)
$$

and measurement error function

$$
e_{i j}\left(\mathbf{T}_{w c_{i}}, \mathbf{x}_{j}^{w}\right)=\pi_{n}\left(\mathbf{T}_{w c_{i}}^{-1} \cdot \mathbf{x}_{j}^{w}\right)-\mathbf{x}_{n j}^{i}
$$

Applying the MAP framework

Since the measurement prediction function is a function of two variables, we linearize it at the current state estimates as

$$
\begin{aligned}
h_{i j}\left(\mathbf{T}_{w c_{i}}, \mathbf{x}_{j}^{w}\right) & =h_{i j}\left(\hat{\mathbf{T}}_{w c_{i}} \oplus \boldsymbol{\xi}_{i}, \hat{\mathbf{x}}_{j}^{w}+\delta \mathbf{x}_{j}\right) \\
& \approx h_{i j}\left(\hat{\mathbf{T}}_{w c_{i}}, \hat{\mathbf{x}}_{j}^{w}\right)+\mathbf{J}_{\hat{\mathbf{T}}_{w c_{i}}}^{h_{i j}} \boldsymbol{\xi}_{i}+\mathbf{J}_{\hat{\mathbf{x}}_{j}^{w}}^{h_{i j}} \delta \mathbf{x}_{j}
\end{aligned}
$$

The measurement Jacobians are given in motion-only BA and structure-only BA.

Applying the MAP framework

This results in the linearized weighted least squares problem

$$
\begin{aligned}
\boldsymbol{\tau}^{*} & =\underset{\boldsymbol{\tau}}{\arg \min } \sum_{i=1}^{k} \sum_{j=1}^{n}\left\|\mathbf{P}_{i j} \boldsymbol{\xi}_{i}+\mathbf{S}_{i j} \delta \mathbf{x}_{j}-\mathbf{b}_{i j}\right\|^{2} \\
& =\underset{\boldsymbol{\tau}}{\arg \min }\|\mathbf{A} \boldsymbol{\tau}-\mathbf{b}\|^{2},
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbf{P}_{i j} & =\boldsymbol{\Sigma}_{n i j}^{-1 / 2} \mathbf{J}_{\mathbf{T}_{w c_{i}}}^{h_{i j}} \\
\mathbf{S}_{i j} & =\boldsymbol{\Sigma}_{n i j}^{-1 / 2} \mathbf{J}_{\mathbf{x}_{j}^{w}}^{h_{i j}} \\
\mathbf{b}_{i j} & =\boldsymbol{\Sigma}_{n i j}^{-1 / 2}\left(\mathbf{x}_{n j}^{i}-h_{i j}\left(\mathbf{T}_{w c_{i}}, \mathbf{x}_{j}^{w}\right)\right),
\end{aligned}
$$

$\mathbf{A}=\left[\begin{array}{c}\mathbf{P}_{11} \\ \vdots \\ \mathbf{P}_{1 n} \\ \\ \\ \end{array}\right.$

$$
\begin{array}{cc}
& \mathbf{S}_{11} \\
& \\
& \\
\mathbf{P}_{k 1} & \mathbf{S}_{k 1} \\
\vdots & \\
\mathbf{P}_{k n} &
\end{array}
$$

$$
\left.\begin{array}{l}
\\
\mathbf{S}_{1 n} \\
\\
\mathbf{S}_{k n}
\end{array}\right]
$$

$$
\underline{\boldsymbol{\tau}}=\left[\begin{array}{c}
\boldsymbol{\xi}_{1} \\
\vdots \\
\boldsymbol{\xi}_{k} \\
\delta \mathbf{x}_{1} \\
\vdots \\
\delta \mathbf{x}_{n}
\end{array}\right]
$$

$$
\mathbf{b}=\left[\begin{array}{c}
\mathbf{b}_{11} \\
\vdots \\
\mathbf{b}_{1 n} \\
\vdots \\
\mathbf{b}_{k 1} \\
\vdots \\
\mathbf{b}_{k n}
\end{array}\right]
$$

Linear least-squares

The measurement Jacobian \mathbf{A} is a block sparse matrix.
For an example with two cameras and three points we have
$\mathbf{A}=\left[\begin{array}{lllll}\mathbf{P}_{11} & & \mathbf{S}_{11} & & \\ \mathbf{P}_{12} & & & \mathbf{S}_{12} & \\ \mathbf{P}_{13} & & & & \mathbf{S}_{13} \\ & \mathbf{P}_{21} & \mathbf{S}_{21} & & \\ & \mathbf{P}_{22} & & \mathbf{S}_{22} & \\ & \mathbf{P}_{23} & & & \mathbf{S}_{23}\end{array}\right] \quad \boldsymbol{\tau}=\left[\begin{array}{c}\boldsymbol{\xi}_{1} \\ \boldsymbol{\xi}_{2} \\ \delta \mathbf{x}_{1} \\ \delta \mathbf{x}_{2} \\ \delta \mathbf{x}_{3}\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}\mathbf{b}_{11} \\ \mathbf{b}_{12} \\ \mathbf{b}_{13} \\ \mathbf{b}_{21} \\ \mathbf{b}_{22} \\ \mathbf{b}_{23}\end{array}\right]$

Applying the MAP framework

The solution can be found by solving the normal equations

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \underline{\boldsymbol{\tau}}^{*}=\mathbf{A}^{T} \mathbf{b}
$$

$$
\text { Choose a suitable inital estimate } \underline{\mathrm{X}}^{0}
$$

Since A is sparse, a sparse solver should be used.

Example

TEK5030

Example

Why does this fail?

TEK5030

Gauge freedom

The solution is not uniquely determined!

- The Hessian is singular!
- We can apply any 7DOF similarity transform to the cameras without affecting the objective function

Gauge freedom

The solution is not uniquely determined!

- The Hessian is singular!
- We can apply any 7DOF similarity transform to the cameras without affecting the objective function

Possible solutions:

- Use Levenberg-Marquardt optimization
- Add priors on poses and points
- Fuse with other information, such as GPS and IMU

Adding priors

Prior on first pose and first point

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ccccc}
\mathbf{P}_{11} & & \mathbf{S}_{11} & & \\
\mathbf{P}_{12} & & & \mathbf{S}_{12} & \\
\mathbf{P}_{13} & & & & \mathbf{S}_{13} \\
& \mathbf{P}_{21} & \mathbf{S}_{21} & & \\
& \mathbf{P}_{22} & & \mathbf{S}_{22} & \\
& \mathbf{P}_{23} & & & \mathbf{S}_{23} \\
\mathbf{I}_{2 \times 6} & & & &
\end{array}\right] \\
& \underline{\boldsymbol{\tau}}=\left[\begin{array}{c}
\boldsymbol{\xi}_{1} \\
\boldsymbol{\xi}_{2} \\
\delta \mathbf{x}_{1} \\
\delta \mathbf{x}_{2} \\
\delta \mathbf{x}_{3}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
\mathbf{b}_{11} \\
\mathbf{b}_{12} \\
\mathbf{b}_{13} \\
\mathbf{b}_{21} \\
\mathbf{b}_{22} \\
\mathbf{b}_{23} \\
\mathbf{b}_{\xi_{1} \text { prior }} \\
\mathbf{b}_{\boldsymbol{b x}_{1}} \\
\text { prior }
\end{array}\right] \\
& \mathbf{b}_{\xi_{1}^{\text {prior }}}=\mathbf{T}_{w c_{1}}^{p r i o r} \ominus \mathbf{T}_{w c_{1}} \\
& \mathbf{b}_{\delta \mathbf{x}_{1}^{\text {prior }}}=\mathbf{x}_{1}^{w, \text { prior }}-\mathbf{x}_{1}^{w}
\end{aligned}
$$

Example

TEK5030

Part III

EFFICIENT MAP OPTIMIZATION AND SENSOR FUSION WITH FACTOR GRAPHS

Map optimization and sensor fusion with factor graphs

- Combining many different sensors in SLAM
is a difficult and highly nonlinear problem
- Factor graphs provide powerful tools for expressing and solving nonlinear estimation problems
- It has become the current de-facto standard for the formulation of SLAM

Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping:
Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), 1309-1332

Toy example

Toy example

Variables:

Toy example
Variables:

Toy example

Measurements:

Toy example

Measurements:

Toy example

Motion model:

Toy example

Want to characterize our knowledge about the unknown state variables

$$
X=\left\{x_{1}, x_{2}, x_{3}, l_{1}, l_{2}\right\}
$$

when given a set of observed measurements

$$
Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}
$$

by obtaining

$$
p(X \mid Z)
$$

MAP inference for nonlinear factor graphs

MAP inference for factor graphs:

$$
\begin{aligned}
X^{\text {MAP }} & =\underset{X}{\operatorname{argmax}} \phi(X) \\
& =\underset{X}{\operatorname{argmax}} \prod_{i} \phi_{i}\left(X_{i}\right)
\end{aligned}
$$

Let us assume that all factors are of the form

$$
\phi_{i}\left(X_{i}\right) \propto \exp \left\{-\frac{1}{2}\left\|h_{i}\left(X_{i}\right)-z_{i}\right\|_{\Sigma_{i}}^{2}\right\}
$$

Taking the negative log and dropping the constant factor allows us instead to minimize a sum of nonlinear least-squares:

$$
X^{\text {MAP }}=\underset{X}{\operatorname{argmin}} \sum_{i}\left\|h_{i}\left(X_{i}\right)-z_{i}\right\|_{\Sigma_{i}}^{2}
$$

MAP inference for nonlinear factor graphs

MAP inference for factor graphs:

$$
\begin{aligned}
X^{\text {MAP }} & =\underset{X}{\operatorname{argmax}} \phi(X) \\
& =\underset{X}{\operatorname{argmax}} \prod_{i} \phi_{i}\left(X_{i}\right)
\end{aligned}
$$

Let us assume that all factors are of the form

$$
\phi_{i}\left(X_{i}\right) \propto \exp \left\{-\frac{1}{2}\left\|h_{i}\left(X_{i}\right)-z_{i}\right\|_{\Sigma_{i}}^{2}\right\}
$$

Taking the negative log and dropping the constant factor allows us instead to minimize a sum of nonlinear least-squares:

$$
X^{\text {MAP }}=\underset{x}{\operatorname{argmin}} \sum_{i}\left\|h_{i}\left(X_{i}\right)-z_{i}\right\|_{z_{i}}^{2}
$$

The sparse Jacobian and its factor graph

- The key in modern SLAM is to exploit sparsity
- Factor graphs represent the sparse block structure in the resulting sparse Jacobian \mathbf{A}.

Supplementary material

- Georgia Tech Smoothing and Mapping library
- https://bitbucket.org/gtborg/gtsam
- Jing Dong "GTSAM 4.0 Tutorial"
- Frank Dellaert "Factor Graphs and GTSAM: A Hands-on Introduction" Technical Report number GT-RIM-CP\&R-2014-XXX September 2014
(gtsam/doc/gtsam.pdf in the repo)

http://frc.ri.cmu.edu/-kaess/pub/Dell aert17fnt.pdf

