
TEK5030

Lecture 10.2
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RECAP ON NONLINEAR LEAST-SQUARES 
(WITH UPDATED NOTATION)

Part I
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Linear least squares

When the equations        are linear,
we can obtain an objective function on the form

A solution is required to have zero gradient:

This results in the normal equations, 

which can be solved with Cholesky- or QR factorization.
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Linear least squares

When the equations        are linear,
we can obtain an objective function on the form

A solution is required to have zero gradient:

This results in the normal equations, 

which can be solved with Cholesky- or QR factorization.
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Read more about LLS:
• http://vmls-book.stanford.edu/vmls.pdf

Matlab example:
x = A\b;

Eigen example:
A.colPivHouseholderQr().solve(b);

( )e x

http://vmls-book.stanford.edu/vmls.pdf
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Nonlinear least squares

When the equations are nonlinear, 
we have a nonlinear least squares problem.

They cannot be solved directly, 
but require an iterative procedure 
starting from a suitable initial estimate.

5

olve the linearized problemS

Linearize the problem

Update the estimate

Choose a suitable inital estimate( )e x
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Nonlinear MAP inference for state estimation

We will use nonlinear least squares to solve state estimation problems 
based on measurements and corresponding measurement models

Let 𝑋𝑋 be the set of all unknown state variables, 
and 𝑍𝑍 be the set of all measurements.

We are interested in estimating the unknown state variables 𝑋𝑋, given the measurements 𝑍𝑍.
The Maximum a Posteriori estimate is given by:
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State variables

A state variable 𝐱𝐱 is typically used to describe the physical state of an object.

We can estimate several state variables at once
by concatenating all the variables into the vector 𝐱𝐱: 

The equations         can be defined to operate 
on one or more of these p state variables.
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State variables

A state variable 𝐱𝐱 is typically used to describe the physical state of an object.

We can estimate several state variables at once
by concatenating all the variables into the vector 𝐱𝐱: 

The equations         can be defined to operate 
on one or more of these p state variables.
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How can we represent both
points and poses as states?
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Orientations and poses lie on manifolds

Orientations and poses lie on manifolds
in higher-dimensional spaces

This makes it complicated to add increments, 
represent uncertainty and perform differentiation

Example:
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Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
(Cropped and edited; licensed under CC BY-NC-SA 4.0)

https://creativecommons.org/licenses/by-nc-sa/4.0/
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Lie theory lets us work on these manifolds

Orientations and poses are matrix Lie groups

A Lie group is a group on a smooth manifold

Lie theory describes the tangent space around 
elements of a Lie group, 
and defines exact mappings between 
the tangent space and the manifold

The tangent space is a vector space with the 
same dimension as the number of degrees of 
freedom of the group transformations

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
(Cropped; licensed under CC BY-NC-SA 4.0)

https://creativecommons.org/licenses/by-nc-sa/4.0/
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The exponential map

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
(licensed under CC BY-NC-SA 4.0)

https://creativecommons.org/licenses/by-nc-sa/4.0/
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Plus and minus operators

It is convenient to express perturbations using plus and minus operators.

The right plus and minus operators are defined as:

Image source: Solà, J., Deray, J., & Atchuthan, D. (n.d.). A micro Lie theory for state estimation in robotics
(licensed under CC BY-NC-SA 4.0)

https://creativecommons.org/licenses/by-nc-sa/4.0/
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Concatenated set of state variables

Concatenation of state variables over a composite manifold
and the corresponding concatenation of tangent space vectors

Plus and minus for the concatenated state variable

13
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Concatenated set of state variables

We define     to be the concatenated set of state variables 
taken as input by the i-th equation          .

14

( )i ie X
iX



TEK5030

Concatenated set of state variables

We define     to be the concatenated set of state variables 
taken as input by the i-th equation          .

Example:
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Concatenated set of state variables

We define     to be the concatenated set of state variables 
taken as input by the i-th equation          .

We can then define the objective function over all state variables
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Nonlinear MAP inference for state estimation

Measurement model:

Measurement prediction function:

Measurement error function:

Objective function:
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Nonlinear MAP inference for state estimation

Measurement model:

Measurement prediction function:

Measurement error function:

Objective function:
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It turns out that the nonlinear least squares solution
to this problem is the MAP estimate!

This results in the nonlinear least squares problem:
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Nonlinear least squares

When the equations are nonlinear, 
we have a nonlinear least squares problem.

They cannot be solved directly, 
but require an iterative procedure 
starting from a suitable initial estimate.

19

olve the linearized problemS

Linearize the problem

Update the estimate

Choose a suitable inital estimate( ) ( )i i i i ie h= − zX X
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We can linearize the measurement prediction functions
using first order Taylor expansions at the current estimates     :

where the measurement Jacobian is

and

is the state update vector.

Linearizing the problem

ˆ
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Linearizing the problem

This leads to the linearized measurement error function
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Linearizing the problem

The linearized objective function is then given by
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Solving the linearized problem

The linearized objective function is then given by
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We can solve the linearized problem
as a linear least squares problem 
using the normal equations
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Solving the nonlinear problem

We solve the nonlinear least-squares problem
by iteratively solving the linearized system:

2olve argminS∗ ← −
τ

τ Aτ b

ˆ, Linearize at t←A b X

1ˆ ˆt t+ ∗← ⊕ τX X

24

0ˆChoose a suitable inital estimate X



TEK5030

The Gauss-Newton algorithm

25
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BUNDLE ADJUSTMENT
Part II
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Bundle adjustment

Bundle Adjustment (BA)
Estimating the imaging geometry 
based on minimizing reprojection error

• Motion-only BA
• Structure-only BA
• Full BA
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Pose estimation by minimizing reprojection error

28

Minimize geometric error over the camera pose given known structure
This is also sometimes called Motion-Only Bundle Adjustment
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Pose estimation by minimizing reprojection error

Given:
– World points

Measurements:
– Correspondences               with measurement noise

State we wish to estimate:
– Camera pose

Initial estimate:
– PnP (P3P, EPnP, …)
– Motion model

29

w
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Applying the MAP framework

For simplicity,
we pre-calibrate to normalized image coordinates (and propagate the noise)

This gives us the measurement prediction function

and measurement error function

30
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Applying the MAP framework

The measurement Jacobian is given by

31
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This results in the linearized weighted least squares problem

where

Applying the MAP framework

32
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Applying the MAP framework

For an example with three points,
the measurement Jacobian A and the prediction error b are

1 1

2 2

3 3

   
   = =   
      

A b
A A b b

A b
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Applying the MAP framework

The solution can be found by solving the normal equations

( )T T∗ =A A ξ A b

34

2olve argminS∗ ← −
τ

τ Aτ b

ˆ, Linearize at t←A b X

1ˆ ˆt t+ ∗← ⊕ τX X

0ˆChoose a suitable inital estimate X
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Example
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Example
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Example
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Example

38
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Pose estimation by minimizing reprojection error

39

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment
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21argmin ( )
w
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Triangulation by minimizing reprojection error

40

Minimize geometric error over the world points
This is also sometimes called Structure-Only Bundle Adjustment
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Triangulation by minimizing reprojection error

Given:
– Camera poses

Measurements:
– Correspondences               with measurement noise

State we wish to estimate:
– World points

Initial estimate:
– Triangulation

41
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Applying the MAP framework

For simplicity,
we pre-calibrate to normalized image coordinates (and propagate the noise)

This gives us the measurement prediction function

and measurement error function

42
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Applying the MAP framework

The measurement Jacobian is given by

43
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This results in the linearized weighted least squares problem

where

Applying the MAP framework

44
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Linear least-squares

The measurement Jacobian A is now a block sparse matrix.
For an example with two cameras and three points we have
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Applying the MAP framework

The solution can be found by solving the normal equations

Since 𝐀𝐀 is sparse, 
a sparse solver should be used.

( )T Tδ ∗ =A A x A b
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2olve argminS∗ ← −
τ

τ Aτ b

ˆ, Linearize at t←A b X

1ˆ ˆt t+ ∗← ⊕ τX X

0ˆChoose a suitable inital estimate X
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Example
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Example
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Example

49
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Pose estimation by minimizing reprojection error

50

Minimize geometric error over the camera pose
This is also sometimes called Motion-Only Bundle Adjustment
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21argmin ( )
w
j

w w i
j i wc j j

i j
π

∗

∗ −= ⋅ −∑∑
x

x T x u

Triangulation by minimizing reprojection error

51

Minimize geometric error over the world points
This is also sometimes called Structure-Only Bundle Adjustment
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{ }
,
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Pose and structure estimation by minimizing reprojection error

52

Minimize geometric error over the camera poses and world points
This is also sometimes called Full Bundle Adjustment
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Pose and structure estimation by minimizing reprojection error

Given:
–

Measurements:
– Correspondences               with measurement noise

State we wish to estimate:
– Camera poses      and world points

Initial estimate:
– From the essential matrix

(5-point algorithm)

53
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For simplicity,
we pre-calibrate to normalized image coordinates (and propagate the noise)

This gives us the measurement prediction function

and measurement error function

Applying the MAP framework

54
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Applying the MAP framework

Since the measurement prediction function is a function of two variables,
we linearize it at the current state estimates as

The measurement Jacobians are given in motion-only BA and structure-only BA.

55
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This results in the linearized weighted least squares problem

where

Applying the MAP framework

56
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Linear least-squares

The measurement Jacobian A is a block sparse matrix.
For an example with two cameras and three points we have
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Applying the MAP framework

The solution can be found by solving the normal equations

Since 𝐀𝐀 is sparse, 
a sparse solver should be used.

( )T T∗ =A A τ A b

58

2olve argminS∗ ← −
τ

τ Aτ b

ˆ, Linearize at t←A b X

1ˆ ˆt t+ ∗← ⊕ τX X

0ˆChoose a suitable inital estimate X



TEK5030

Example
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Example
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Example
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Example
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Example

63



TEK5030

Example
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Example
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Example

66

Why does this fail?
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Gauge freedom

67

The solution is not uniquely determined!
– The Hessian is singular!
– We can apply any 7DOF similarity transform to the cameras 

without affecting the objective function
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Gauge freedom

68

The solution is not uniquely determined!
– The Hessian is singular!
– We can apply any 7DOF similarity transform to the cameras 

without affecting the objective function

Possible solutions:
– Use Levenberg-Marquardt optimization
– Add priors on poses and points
– Fuse with other information, such as GPS and IMU
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Adding priors

Prior on first pose and first point

69
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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EFFICIENT MAP OPTIMIZATION AND SENSOR FUSION 
WITH FACTOR GRAPHS

Part III
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Map optimization and sensor fusion with factor graphs

• Combining many different sensors in SLAM 
is a difficult and highly nonlinear problem

• Factor graphs provide powerful tools for 
expressing and solving nonlinear estimation problems

• It has become the current de-facto standard 
for the formulation of SLAM

80

Cadena, C., et al. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: 
Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), 1309–1332
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Toy example

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑙𝑙1 𝑙𝑙2
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Toy example

Variables:

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑙𝑙1 𝑙𝑙2

Robot poses
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Toy example

Variables:

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑙𝑙1 𝑙𝑙2

Landmarks
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Toy example

Measurements:

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑙𝑙1 𝑙𝑙2

Bearing
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Toy example

Measurements:

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑙𝑙1 𝑙𝑙2

«GPS»
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Toy example

Motion model:

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑙𝑙1 𝑙𝑙2
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Toy example

Want to characterize our knowledge about
the unknown state variables

when given a set of observed measurements

by obtaining

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑙𝑙1 𝑙𝑙2

1 2 3 1 2{ , , , , }X x x x l l=

1 2 3 4{ , , , }Z z z z z=

( | )p X Z
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MAP inference for nonlinear factor graphs

MAP inference for factor graphs:

Let us assume that all factors are of the form

Taking the negative log and dropping the constant factor
allows us instead to minimize a sum of nonlinear least-squares:

argmax ( )

argmax ( )

MAP

X

i i
X i

X X

X

φ

φ

=

= ∏

21( ) exp ( )
2 i

i i i i iX h X zφ
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 ∝ − − 
 

2argmin ( )
i

MAP
i i i

X i
X h X z

Σ
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𝑙𝑙1 𝑙𝑙2



TEK5030

MAP inference for nonlinear factor graphs

MAP inference for factor graphs:

Let us assume that all factors are of the form

Taking the negative log and dropping the constant factor
allows us instead to minimize a sum of nonlinear least-squares:

argmax ( )

argmax ( )

MAP

X

i i
X i

X X

X

φ

φ

=

= ∏

21( ) exp ( )
2 i

i i i i iX h X zφ
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i
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i i i
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𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑙𝑙1 𝑙𝑙2

We know how
to solve this!
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The sparse Jacobian and its factor graph

• The key in modern SLAM is to exploit sparsity
• Factor graphs represent the sparse block structure in the resulting sparse Jacobian 𝐀𝐀.

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑙𝑙1 𝑙𝑙2

1 2 1 2 3

1 13 1

2 23 24 2

3 34 35 3

4 41 4
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6 63 6

7 71 73 7

8 81 84 8

9 92 95 9
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Supplementary material

• Georgia Tech Smoothing and Mapping library
– https://bitbucket.org/gtborg/gtsam

• Jing Dong “GTSAM 4.0 Tutorial”

• Frank Dellaert “Factor Graphs and GTSAM: A Hands-on Introduction”
Technical Report number GT-RIM-CP&R-2014-XXX
September 2014
(gtsam/doc/gtsam.pdf in the repo)

91

http://frc.ri.cmu.edu/~kaess/pub/Dell
aert17fnt.pdf

https://bitbucket.org/gtborg/gtsam
https://www.cc.gatech.edu/grads/j/jdong37/files/gtsam-tutorial.pdf
http://frc.ri.cmu.edu/%7Ekaess/pub/Dellaert17fnt.pdf
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