UiO Department of Technology Systems University of Oslo

Lecture 1.2 The perspective camera model

Thomas Opsahl

A mathematical model that with some adaptations can be used to accurately describe the viewing geometry of most cameras

It describes how a camera with pinhole geometry maps 3D points in the world to 2D points in the image

The camera is represented by a 3D frame \mathcal{F}_c with its origin in the camera's projective center (pinhole), z-axis pointing forwards, x-axis to the right and y-axis pointing downwards

The *z*-axis is commonly referred to as the cameras **optical axis**

According to the pinhole geometry, the imaging process is a central projection onto the image plane a distance f (focal length) behind the pinhole

The normalized image plane is more convenient to work with than the image plane

The normalized image plane has a fixed position in \mathcal{F}_c defined by z=1

- The image plane is camera specific (not necessarily z = -f)

The image is represented by a 2D frame \mathcal{F}_i that spans the normalized image plane

Points in the normalized image plane can be described both as 2D and 3D points

- 3D points \mathbf{x}_n in \mathcal{F}_c
- 2D points \mathbf{u} in \mathcal{F}_i

The perspective camera model is composed by two transformations:

- A perspective projection that maps x to x_n
- A transformation of the normalized image plane, that maps \mathbf{x}_n to \mathbf{u}

Projective geometry

- Projective geometry is an alternative to Euclidean geometry
 - Points
 - Point transformations
 - +++
- The perspective camera model is most conveniently expressed using some of the basic notions from projective geometry
- In computer vision many results and expressions are easiest described in the projective framework

Projective geometry

Points in the plane

Euclidean geometry

- Unique representation
- Each point corresponds to a coordinate pair

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$$

Projective geometry

- Unique representation up to scale
- Each point corresponds to a triple of homogeneous coordinates

$$\tilde{\mathbf{x}} = \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{w} \end{bmatrix} \in \mathbb{P}^2$$

$$\tilde{\mathbf{x}} = \lambda \tilde{\mathbf{x}} \quad \forall \lambda \in \mathbb{R} \setminus \{0\}$$

Projective geometry

Points in the plane

Euclidean geometry

- Unique representation
- Each point corresponds to a coordinate pair

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$$

Projective geometry

- Unique representation up to scale
- Each point corresponds to a triple of homogeneous coordinates

$$\tilde{\mathbf{x}} = \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{w} \end{bmatrix} \in \mathbb{P}^2$$

$$\tilde{\mathbf{x}} = \lambda \tilde{\mathbf{x}} \quad \forall \lambda \in \mathbb{R} \setminus \{0\}$$

Projective geometry

$\tilde{\mathbf{X}}$ + 1 dimension... $\tilde{w} = 1$

Points in space

Euclidean geometry

Unique representation

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3$$

Projective geometry

Unique representation up to scale

$$\tilde{\mathbf{x}} = \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \\ \tilde{w} \end{bmatrix} \in \mathbb{P}^3$$

$$\tilde{\mathbf{x}} = \lambda \tilde{\mathbf{x}} \quad \forall \lambda \in \mathbb{R} \setminus \{0\}$$

Projective geometry

Linear transformations

Euclidean geometry

Linear transformations can be represented as a unique matrix

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathbf{x} \mapsto \mathbf{y} = \mathbf{T}\mathbf{x}$ 2x2 matrix

Projective geometry

 Linear transformations can be represented as a homogeneous matrix (unique up to scale)

$$H: \mathbb{P}^2 \rightarrow \mathbb{P}^2$$
 $\tilde{\mathbf{x}} \mapsto \tilde{\mathbf{y}} = \mathbf{H}\tilde{\mathbf{x}}$ 3x3 matrix

$$\mathbf{H} = \lambda \mathbf{H} \quad \forall \lambda \in \mathbb{R} \setminus \{0\}$$

Projective geometry

Some transformations are linear in projective geometry and non-linear in Euclidean geometry

Linear transformations

Euclidean geometry

Linear transformations can be represented as a unique matrix

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\mathbf{x} \mapsto \mathbf{y} = \mathbf{T}\mathbf{x}$$

2x2 matrix

Projective geometry

 Linear transformations can be represented as a homogeneous matrix (unique up to scale)

$$H: \mathbb{P}^2 \to \mathbb{P}^2$$

$$\tilde{\mathbf{x}} \mapsto \tilde{\mathbf{y}} = \mathbf{H}\tilde{\mathbf{x}}$$
3x3

3x3 matrix

$$\mathbf{H} = \lambda \mathbf{H} \quad \forall \lambda \in \mathbb{R} \setminus \{0\}$$

- An affine transformation K that maps \mathbf{x}_n to \mathbf{u}

The perspective camera model is composed by two transformations:
$$\tilde{\mathbf{u}} = \begin{bmatrix} f_u & s & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \tilde{\mathbf{x}}$$
- An affine transformation K that maps \mathbf{x}_u to \mathbf{u}_u

The perspective camera model is composed by two transformations: $\tilde{\mathbf{u}} = \begin{bmatrix} f_u & s & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{bmatrix} \tilde{\mathbf{x}}_n$ — A perspective projection Π_0 that maps \mathbf{x} to \mathbf{x}_n

- An affine transformation K that maps \mathbf{x}_n to \mathbf{u}

$$\tilde{\mathbf{u}} = \begin{bmatrix} f_u & s & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{bmatrix} \tilde{\mathbf{x}},$$

Remark on computations

Computing the image point $[u, v]^T$ for a world point $[x, y, z]^T$ is done in three steps

The affine transformation matrix **K** is the **intrinsic** part of the camera model, and it is often called the **camera calibration matrix**

The parameters are usually given in pixels

- The **optical center**, or **principal point**, (c_u, c_v) is where the optical axis intersects the image plane
- Often approximated by the center of the image, but the true value depends on how the detector array is aligned with the optical axis

$$\mathbf{K} = \begin{bmatrix} \mathbf{f}_{u} & s & c_{u} \\ 0 & \mathbf{f}_{v} & c_{v} \\ 0 & 0 & 1 \end{bmatrix}$$

- The **focal length** *f* is the distance between the projective center and the image plane
- The parameters f_u and f_v are scaled versions of f reflecting that the density of detector elements can be different in the u- and v direction of the image plane

Detector array

$$\mathbf{K} = \begin{bmatrix} f_u & \mathbf{s} & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{bmatrix}$$

- The **skew** parameter *s* is required to describe cases when the detector array is not orthogonal to the optical axis
- For modern cameras this effect can typically be ignored, so it is common to set s=0

Detector array

FOR THIS COURSE

$$SKEW = 0$$

$$\mathbf{K} = \begin{bmatrix} f_u & 0 & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{bmatrix}$$

FOR THIS COURSE

By Tamasflex [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], from Wikimedia Commons

- The perspective camera model describes a 3D to 2D transformation consistent with the pinhole geometry
 - Key characteristic: Preserves straight lines
- No cameras fit this model perfectly All cameras suffer from some kind of distortion
- If we want to use images for geometrical computations we need to take this distortion into account

- Image from a camera with a large field of view
- Distorted Lines are not preserved
- The perspective camera model does not apply!

- Image from a camera with a large field of view
- Distorted Lines are not preserved
- The perspective camera model does not apply!

- Undistorted version of the same image
- **Undistortion** is an image transformation that removes distortion effects
- The perspective camera model applies!

UNDISTORTED FULL COVERAGE

http://www.robots.ox.ac.uk/~vgg/hzbook/

ORIGINAL

UNDISTORTED LIMITED COVERAGE

- The undistorted image has a different "footprint" than the original image
 - Images are rectangular → empty pixels
- It is common to restrict the visible part of the undistorted image to avoid empty pixels

Radial distortion

Distortion model

A distortion model describes how a camera deviates from the pinhole camera geometry

The deviation is most conveniently described in the normalized image plane as a relationship between the corrected (undistorted) points \mathbf{x}_n and the true (distorted) points \mathbf{x}'_n

Distortion model

This example model describes radial distortion using 2 parameters k_1 and k_2 :

$$x = x'(1 + k_1 r'^2 + k_2 r'^4)$$

$$y = y'(1 + k_1 r'^2 + k_2 r'^4)$$
 where $r'^2 = x'^2 + y'^2$

Working with images from non-ideal cameras

https://www.youtube.com/watch?v=F3s3M0mokNc

- Geometrical computations requires knowledge about the camera's geometrical model
- For many cameras this can accurately be described by the perspective camera model combined with a distortion model

Working with images from non-ideal cameras

https://www.youtube.com/watch?v=F3s3M0mokNc

For geometrical computations, there are two common approaches

- 1. Work with undistorted images
- 2. Work with original images but undistort image points that are relevant for the computations

Camera calibration

- Estimates the intrinsic parameters f_u , f_v , s, c_u , c_v and the distortion parameters for a camera
- Calibration software
 - OpenCV
 - Kalibr (https://github.com/ethz-asl/kalibr)

In general, we can represent a geometric camera model as a function

$$\pi: \mathbb{R}^3 \to \Omega$$

that projects 3D points x in the world to 2D points u in the image.

Here Ω denotes the image domain, so that

$$\mathbf{u} = \begin{bmatrix} u \\ v \end{bmatrix} \in \Omega \subset \mathbb{R}^2$$

The perspective camera model is one example – Here in Euclidean form (with zero skew)

$$\pi_{p}(\mathbf{x}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \mathbf{K} \frac{1}{z} \mathbf{x} = \begin{bmatrix} f_{u} \frac{x}{z} + c_{u} \\ f_{v} \frac{y}{z} + c_{v} \end{bmatrix}$$

The perspective camera model is one example – Here in Euclidean form (with zero skew)

$$\pi_{p}(\mathbf{x}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \mathbf{K} \frac{1}{z} \mathbf{x} = \begin{bmatrix} f_{u} \frac{x}{z} + c_{u} \\ f_{v} \frac{y}{z} + c_{v} \end{bmatrix}$$

$$\tilde{\mathbf{u}} = \begin{bmatrix} f_u & 0 & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \tilde{\mathbf{x}}$$

But others exist

Array of *n* perspective cameras

$$\pi_{mp}\left(\mathbf{x}\right) = \left\{\pi_{p_i}\left(\mathbf{R}_i\mathbf{x}\right)\right\}_{i=1...n}$$

Unified model

$$\pi_{u}\left(\mathbf{x}\right) = \begin{bmatrix} f_{x} \frac{x}{z + \|\mathbf{x}\| \xi} \\ f_{y} \frac{y}{z + \|\mathbf{x}\| \xi} \end{bmatrix} + \begin{bmatrix} c_{x} \\ c_{y} \end{bmatrix}$$

Caruso, D., Engel, J., & Cremers, D. (2015). Large-scale direct SLAM for omnidirectional cameras. In *IEEE International Conference on Intelligent Robots and Systems* (Vol. 2015–Decem, pp. 141–148). https://doi.org/10.1109/IROS.2015.7353366

Inverting the perspective camera model

Sometimes we want to backproject a 2D image point **u** to a 3D world point **x**

$$m{\pi} = egin{bmatrix} 1 & 0 & 0 & 0 & f_u & 0 & c_u \ 0 & 1 & 0 & 0 & 0 & f_v & c_v \ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Not invertible!

This is impossible unless we impose some restriction upon x

One natural option is to backproject to a predefined depth z

Inverting the perspective camera model

The inverse model is the backprojection

$$\pi_p^{-1}: \Omega \times \mathbb{R}^+ \rightarrow \mathbb{R}^3$$

which maps 2D image points back to 3D world points when the depth z is known

The depth is often represented as **inverse depth** $d=z^{-1}$ since this parametrization is better suited when we want to model uncertainty

The backprojection model can be written as

$$\pi_p^{-1}(\mathbf{u},d) = \frac{1}{d}\mathbf{K}^{-1}\begin{bmatrix}\mathbf{u}\\1\end{bmatrix}$$

Inverting the perspective camera model

$$\mathbf{x} = \frac{1}{d} \mathbf{K}^{-1} \begin{bmatrix} \mathbf{u} \\ 1 \end{bmatrix}$$

Summary

The perspective camera model

- Pinhole geometry
- Preserves straight lines
- "Invertible"

Non-ideal cameras

- Perspective camera model + distortion model
- Undistorted images are consistent with the perspective camera model

$$\tilde{\mathbf{u}} = \begin{bmatrix} f_u & 0 & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \tilde{\mathbf{x}}$$

 $\pi_{p}(\mathbf{x}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \mathbf{K} \frac{1}{z} \mathbf{x} = \begin{bmatrix} f_{u} \frac{x}{z} + c_{u} \\ f_{v} \frac{y}{z} + c_{v} \end{bmatrix}$

$$\pi_p^{-1}(\mathbf{u},d) = \frac{1}{d}\mathbf{K}^{-1} \begin{bmatrix} \mathbf{u} \\ 1 \end{bmatrix}$$

Further reading

- Do you want to know more?
- Online book by Richard Szeliski: Computer Vision: Algorithms and Applications
 http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf
 - Chapter 2 is about "image formation" and covers the perspective camera model in section 2.1.5
- Online book by Timothy D. Barfoot: State Estimation for Robotics
 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.708.1086&rep=rep1&type=pdf
 - Chapter 6.4 is about "sensor models" and covers the perspective camera model