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Motivation 

• Projective geometry is an alternative to 
Euclidean geometry 
 

• Many results, derivations and expressions 
in computer vision are easiest described in 
the projective framework 
– The perspective camera model 
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Motivation 

• Projective geometry is an alternative to 
Euclidean geometry 
 

• Many results, derivations and expressions 
in computer vision are easiest described in 
the projective framework 
– The perspective camera model 
– Transformations 
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Motivation 

• Projective geometry is an alternative to 
Euclidean geometry 
 

• Many results, derivations and expressions 
in computer vision are easiest described in 
the projective framework 
– The perspective camera model 
– Transformations 
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Points in the projective plane ℙ2 
How to describe points in the plane? 
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Points in the projective plane ℙ2 

x
y x

2


How to describe points in the plane? 
 
Euclidean plane ℝ2 
• Choose a 2D coordinate frame 
• Points have 2 unique coordinates 
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Points in the projective plane ℙ2 
How to describe points in the plane? 
 
Euclidean plane ℝ2 
• Choose a 2D coordinate frame 
• Points have 2 unique coordinates 

 
 
 
 

Projective plane 2 
• Expand coordinate frame to 3D 
• Points have 3 homogeneous coordinates 
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Points in the projective plane ℙ2 
Observations 
1.  Any point 𝐱𝐱 = 𝑥𝑥, 𝑦𝑦 𝑇𝑇 in the Euclidean 

plane has a corresponding 
homogeneous point 𝐱𝐱� = 𝑥𝑥, 𝑦𝑦, 1 𝑇𝑇 in the 
projective plane 
 

2. Homogeneous points of the form 
𝑥𝑥�, 𝑦𝑦�, 0 𝑇𝑇 does not have counterparts in 

the Euclidean plane 
 
They correspond to points at infinity 
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Points in the projective plane ℙ2 
Observations 
3. When we work with geometrical 

problems in the plane, we can swap 
between the Euclidean representation 
and the projective representation 
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Lines in the projective plane ℙ2 
How to describe lines in the plane? 
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Lines in the projective plane ℙ2 
How to describe lines in the plane? 
 
Euclidean plane ℝ2  
• 3 parameters 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ ℝ 

𝑙𝑙 = 𝑥𝑥, 𝑦𝑦  | 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0  

l
x

y

2
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Lines in the projective plane ℙ2 
How to describe lines in the plane? 
 
Euclidean plane ℝ2 
• 3 parameters 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ ℝ 

𝑙𝑙 = 𝑥𝑥, 𝑦𝑦  | 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0  
 
Projective plane 2 
• Homogeneous vector 𝐥𝐥 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 𝑇𝑇 

𝑙𝑙 = 𝐱𝐱� ∈ 2 | 𝐥̃𝐥𝑇𝑇𝐱𝐱� = 0  
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Lines in the projective plane ℙ2 
Observations 
1. Points and lines in the projective plane 

have the same representation, we say 
that points and lines are dual objects in 
2  
 

2. All lines in the Euclidean plane have a 
corresponding line in the projective 
plane 
 

3. The line 𝐥𝐥 = 0,0,1 𝑇𝑇 in the projective 
plane does not have an Euclidean 
counterpart 
 
This line consists entirely of ideal 
points, and is know as the line at infinity 
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Lines in the projective plane ℙ2 
Properties of lines in the projective plane 
1. In the projective plane, all lines 

intersect, parallel lines intersect at 
infinity 
 
Two lines 𝐥𝐥1 and 𝐥𝐥2 intersect in the point  

𝐱𝐱� = 𝐥𝐥1×𝐥𝐥2 
 

2. The line passing through points 𝐱𝐱�1 and 
𝐱𝐱�2 is given by 

𝐥𝐥 = 𝐱𝐱�1×𝐱𝐱�2 
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Example 1 

Determine the line passing through the two points 𝐱𝐱𝟏𝟏 and 𝐱𝐱𝟐𝟐 
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Example 1 

Determine the line passing through the two points 𝐱𝐱𝟏𝟏 and 𝐱𝐱𝟐𝟐 
 
Homogeneous representation of the points 
 
 
 
Homogeneous representation of line 
 
 
 
Equation of the line 
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Example 2 

At which point does these two lines intersect? 
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Example 2 

At which point does these two lines intersect? 
 
 
 
 
 
Point of intersection 
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Example 3 

At which point does these two lines intersect? 
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Example 3 

At which point does these two lines intersect? 
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Euclidean geometry 
Parallel lines never intersect! 
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Example 3 

At which point does these two lines intersect? 
 
 
 
 
 
Point of intersection 
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Euclidean geometry 
Parallel lines never intersect! 

Projective geometry 
All lines intersect! 
 
Parallel lines intersect at infinity 
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Example 4 

23 

Image: Flicker.com (Melita) 

Cameras can observe points that are 
“infinitely” far away 
 
 
 
 
 
In images of planar surfaces we can see 
how the surface converges towards a line 
 
Any two parallel lines in the plane will 
appear to intersect on this line 
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Example 4 

24 

Cameras can observe points that are 
“infinitely” far away 
 
 
 
 
 
In images of planar surfaces we can see 
how the surface converges towards a line 
 
Any two parallel lines in the plane will 
appear to intersect on this line 
 Image: Flicker.com (Melita) 

The line at infinity 
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Example 4 
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Different directions correspond to different 
points at infinity 
 
The set of all infinite points constitute the 
line at infinity 
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Linear transformations of the projective plane ℙ2 

• A linear transformation of ℙ2 can be represented by a invertible homogeneous 3 × 3 matrix 
 
 
 
where 
 
 

• Important groups of linear projective transformations 
 

• Each group is closed under 
– Matrix multiplication 
– Matrix inverse 
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Transformation Matrix #DoF Preserves Visualization 

Euclidean 
 

3 Lengths 
+ all below 

Similarity 
 

4 Angles 
+ all below 

Affine 6 Parallelism, line at 
infinity 
+ all below 

Homography 8 Straight lines 

Linear transformations of the projective plane ℙ2 

27 

1T

 
 
 

R t
0

1T

s
s 
∈ 

 


R t
0

11 12 13

21 22 23

0 0 1

a a a
a a a
 
 
 
  

11 12 13

21 22 23

31 32 33

h h h
h h h
h h h

 
 
 
  



TEK5030 

Linear transformations of the projective plane ℙ2 

• Several image operations correspond to a linear projective transformation 
– Rotation 
– Translation 
– Resizing 
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Linear transformations of the projective plane ℙ2 

• Several image operations correspond to a linear projective transformation 
– Rotation 
– Translation 
– Resizing 
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Linear transformations of the projective plane ℙ2 

• Several image operations correspond to a linear projective transformation 
– Rotation 
– Translation 
– Resizing 
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Linear transformations of the projective plane ℙ2 

• Perspective imaging of a flat surface can be described by a homography 
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Linear transformations of the projective plane ℙ2 

• The central projection between two planes corresponds to a homography 
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Linear transformations of the projective plane ℙ2 

• For images of a flat surface, a homography can be used to «change» the camera position 

33 
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The projective space ℙ3 

• The relationship between the Euclidean space ℝ3 and the projective space 3 is much like 
the relationship between ℝ2 and 2 
– We represent points in homogeneous coordinates 

 
 
 
 
 

– Points at infinity have 𝑤𝑤� = 0 
 
– We can transform between ℝ3 and 3 
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Linear transformations of the projective space ℙ3 
Transformation of  𝟑𝟑 Matrix #DoF Preserves 

Euclidean 
 

6 Volumes, volume ratios, lengths 
+ all below 

Similarity 
 

7 Angles 
+ all below 

Affine 12 Parallelism of planes, 
The plane at infinity 
+ all below 

Homography 15 Intersection and tangency  of 
surfaces in contact, straight lines 
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Summary 

• Projective plane ℙ2 and space ℙ3 
– Alternative representation of points 
– Homogeneous coordinates 
– Can swap between ℝ𝑛𝑛 and ℙ𝑛𝑛 

 
• Linear projective transformations 

– Homogeneous matrices 
– Several groups 
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Further reading 

• Do you want to know more? 
 

• Online book by Richard Szeliski:  Computer Vision: Algorithms and Applications 
http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf  
– Chapter 2 is about “image formation” and covers some projective geometry, focusing on 

transformations, in section 2.1.1-2.1.4 
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