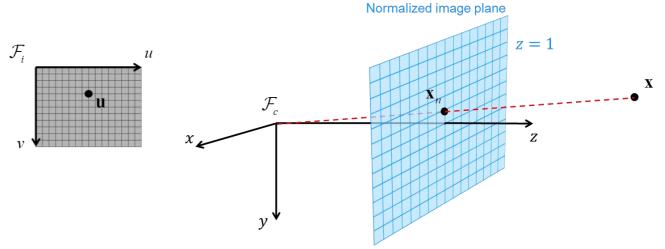
UiO Department of Technology Systems University of Oslo

Lecture 1.3 Basic projective geometry

Thomas Opsahl

- Projective geometry is an alternative to Euclidean geometry
- Many results, derivations and expressions in computer vision are easiest described in the projective framework
 - The perspective camera model

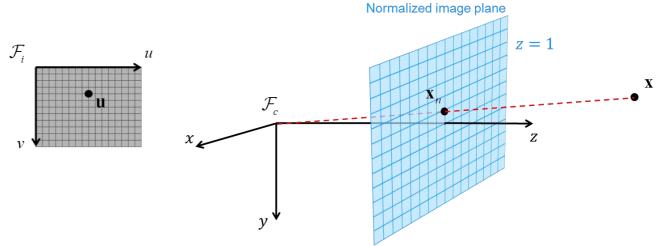


Projective representation versus Euclidean

$$\tilde{\mathbf{u}} = \begin{bmatrix} f_u & s & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \tilde{\mathbf{x}}$$

"Equal up to scale"

- Projective geometry is an alternative to Euclidean geometry
- Many results, derivations and expressions in computer vision are easiest described in the projective framework
 - The perspective camera model

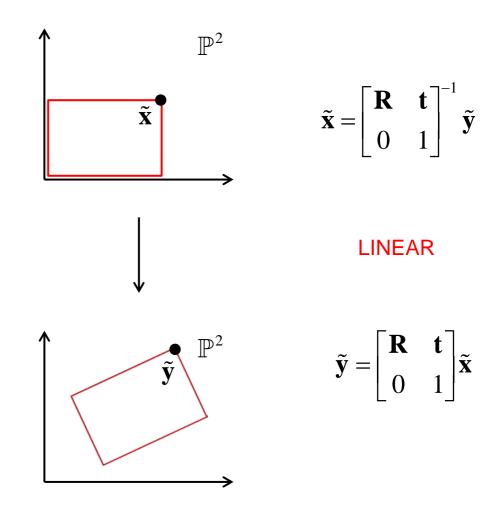


Projective representation versus **Euclidean**

$$\mathbf{u} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} f_u & s & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{bmatrix} \frac{1}{z} \mathbf{x}$$

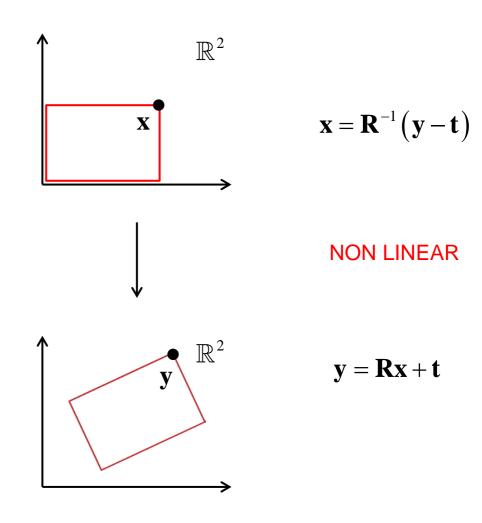
$$\mathbf{u} = \begin{bmatrix} f_u \frac{x}{z} + s \frac{y}{z} + c_u \\ f_v \frac{y}{z} + c_v \end{bmatrix}$$

- Projective geometry is an alternative to Euclidean geometry
- Many results, derivations and expressions in computer vision are easiest described in the projective framework
 - The perspective camera model
 - Transformations



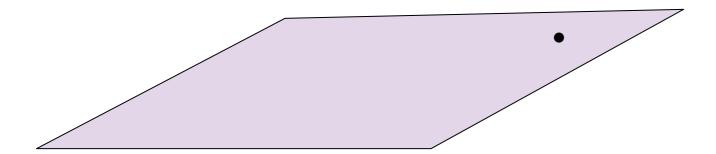
Projective representation versus Euclidean

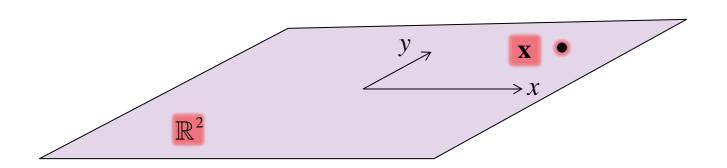
- Projective geometry is an alternative to Euclidean geometry
- Many results, derivations and expressions in computer vision are easiest described in the projective framework
 - The perspective camera model
 - Transformations



Projective representation versus **Euclidean**

How to describe points in the plane?



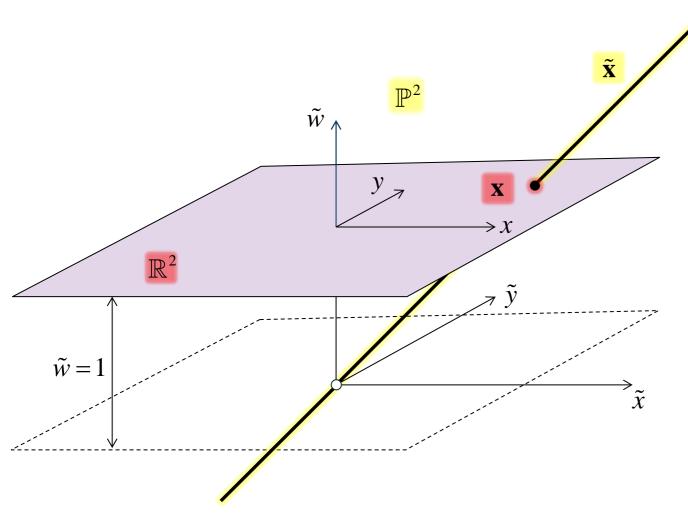


How to describe points in the plane?

Euclidean plane \mathbb{R}^2

- Choose a 2D coordinate frame
- Points have 2 unique coordinates

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$$



How to describe points in the plane?

Euclidean plane \mathbb{R}^2

- Choose a 2D coordinate frame
- Points have 2 unique coordinates

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$$

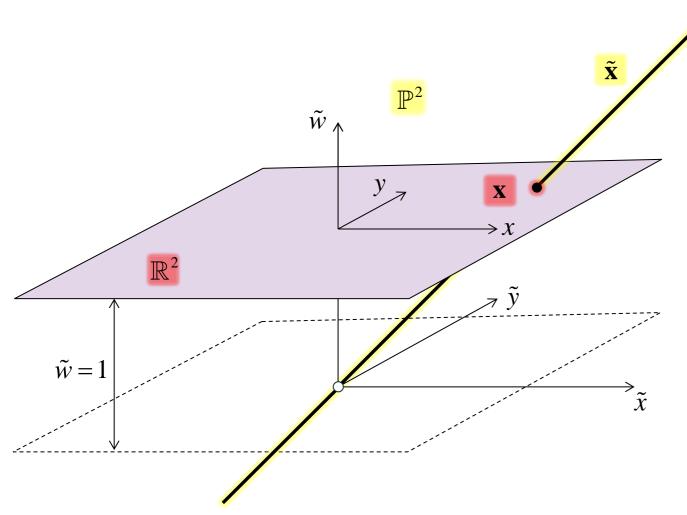
Projective plane \mathbb{P}^2

- Expand coordinate frame to 3D
- Points have 3 homogeneous coordinates

$$\tilde{\mathbf{x}} = \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{w} \end{bmatrix} \in \mathbb{P}^2$$

where

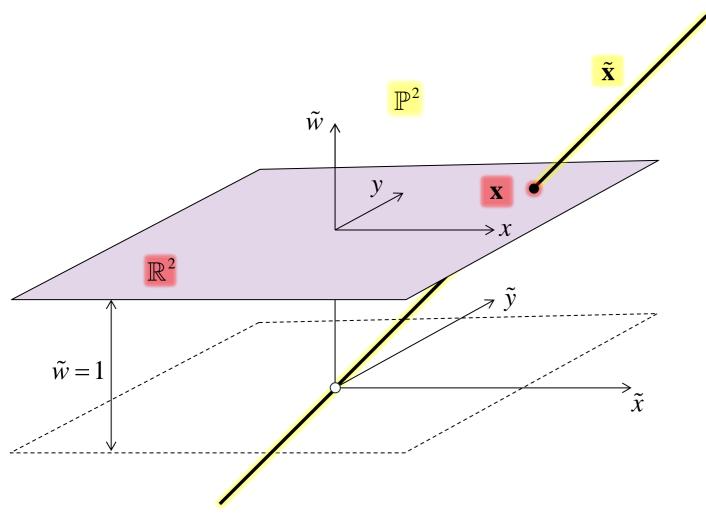
$$\tilde{\mathbf{x}} = \lambda \tilde{\mathbf{x}} \quad \forall \lambda \in \mathbb{R} \setminus \{0\}$$



Observations

- 1. Any point $\mathbf{x} = [x, y]^T$ in the Euclidean plane has a corresponding homogeneous point $\tilde{\mathbf{x}} = [x, y, 1]^T$ in the projective plane
- 2. Homogeneous points of the form $[\tilde{x}, \tilde{y}, 0]^T$ does not have counterparts in the Euclidean plane

They correspond to **points at infinity**

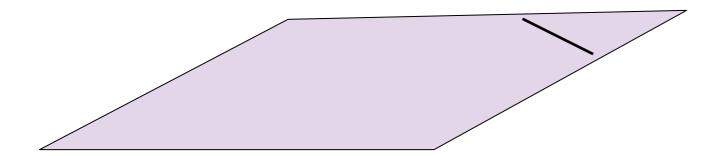


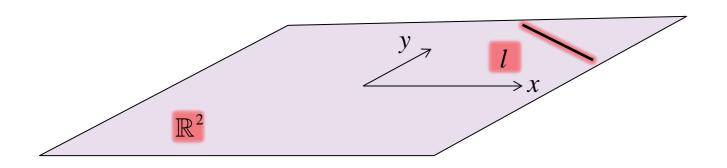
Observations

3. When we work with geometrical problems in the plane, we can swap between the Euclidean representation and the projective representation

$$\begin{array}{ccc}
\mathbb{R}^2 & \to & \mathbb{P}^2 \\
\begin{bmatrix} x \\ y \end{bmatrix} & \mapsto & \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \\
\mathbb{P}^2 & \to & \mathbb{R}^2 \\
\begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{y} \end{bmatrix} & \mapsto & \begin{bmatrix} \frac{\tilde{x}}{\tilde{w}} \\ \frac{\tilde{y}}{\tilde{y}} \end{bmatrix}
\end{array}$$

How to describe lines in the plane?

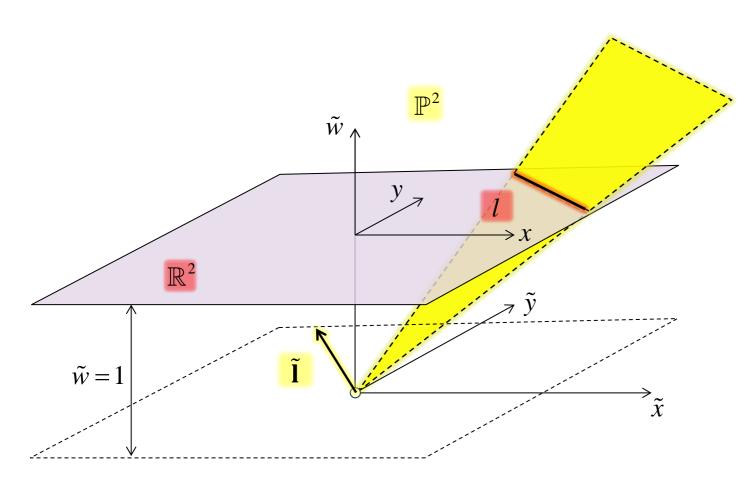




How to describe lines in the plane?

Euclidean plane \mathbb{R}^2

• 3 parameters $a, b, c \in \mathbb{R}$ $l = \{(x, y) \mid ax + by + c = 0\}$



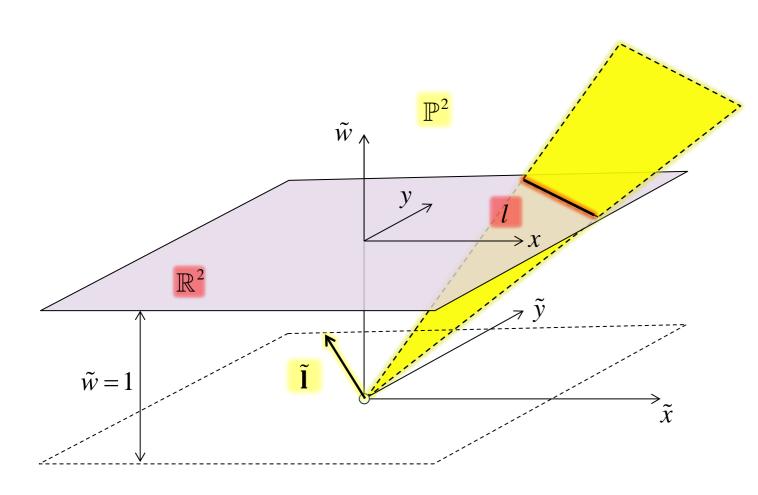
How to describe lines in the plane?

Euclidean plane \mathbb{R}^2

• 3 parameters $a, b, c \in \mathbb{R}$ $l = \{(x, y) \mid ax + by + c = 0\}$

Projective plane \mathbb{P}^2

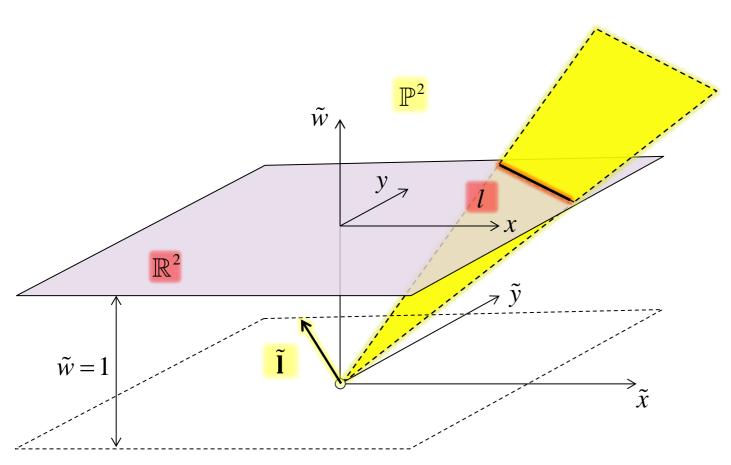
• Homogeneous vector $\tilde{\mathbf{l}} = [a, b, c]^T$ $l = \{ \tilde{\mathbf{x}} \in \mathbb{P}^2 \mid \tilde{\mathbf{l}}^T \tilde{\mathbf{x}} = 0 \}$



Observations

- 1. Points and lines in the projective plane have the same representation, we say that points and lines are dual objects in \mathbb{P}^2
- All lines in the Euclidean plane have a corresponding line in the projective plane
- 3. The line $\tilde{\mathbf{l}} = [0,0,1]^T$ in the projective plane does not have an Euclidean counterpart

This line consists entirely of ideal points, and is know as the line at infinity



Properties of lines in the projective plane

1. In the projective plane, all lines intersect, parallel lines intersect at infinity

Two lines $\tilde{\mathbf{l}}_1$ and $\tilde{\mathbf{l}}_2$ intersect in the point $\tilde{\mathbf{x}} = \tilde{\mathbf{l}}_1 \times \tilde{\mathbf{l}}_2$

2. The line passing through points $\tilde{\mathbf{x}}_1$ and $\tilde{\mathbf{x}}_2$ is given by

$$\tilde{\mathbf{l}} = \tilde{\mathbf{x}}_1 \times \tilde{\mathbf{x}}_2$$

$$x_1 = (2,4)$$
$$x_2 = (5,13)$$

Determine the line passing through the two points x_1 and x_2

$$x_1 = (2,4)$$

 $x_2 = (5,13)$

Determine the line passing through the two points x_1 and x_2

Homogeneous representation of the points

$$\tilde{\mathbf{x}}_1 = \begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix} \in \mathbb{P}^2 \qquad \tilde{\mathbf{x}}_2 = \begin{bmatrix} 5 \\ 13 \\ 1 \end{bmatrix} \in \mathbb{P}^2$$

Homogeneous representation of line

$$\tilde{\mathbf{I}} = \tilde{\mathbf{x}}_1 \times \tilde{\mathbf{x}}_2 = \tilde{\mathbf{x}}_1^{\hat{}} \tilde{\mathbf{x}}_2 = \begin{bmatrix} 0 & -1 & 4 \\ 1 & 0 & -2 \\ -4 & 2 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 13 \\ 1 \end{bmatrix} = \begin{bmatrix} -9 \\ 3 \\ 6 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 2 \end{bmatrix}$$

Equation of the line

$$-3x + y + 2 = 0 \quad \Leftrightarrow \quad y = 3x - 2$$

Matrix representation of the cross product

$$\mathbf{u} \times \mathbf{v} \mapsto \mathbf{u}^{\wedge} \mathbf{v}$$

where

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}^{\wedge} = \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix}$$

$$y = x - 2$$
$$y = -2x + 3$$

At which point does these two lines intersect?

$$y = x - 2$$
$$y = -2x + 3$$

At which point does these two lines intersect?

$$y = x - 2 \quad \mapsto \quad \tilde{\mathbf{I}}_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix} \in \mathbb{P}^2$$

$$y = -2x + 3 \quad \mapsto \quad \tilde{\mathbf{I}}_2 = \begin{bmatrix} -2 \\ -1 \\ 3 \end{bmatrix} \in \mathbb{P}^2$$

Point of intersection

$$\tilde{\mathbf{x}} = \tilde{\mathbf{I}}_{1} \times \tilde{\mathbf{I}}_{2} = \begin{bmatrix} 0 & 2 & -1 \\ -2 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -5 \\ 1 \\ -3 \end{bmatrix} \qquad \Rightarrow \qquad \mathbf{x} = \begin{bmatrix} \frac{-5}{-3} \\ \frac{1}{-3} \end{bmatrix} \approx \begin{bmatrix} 1.67 \\ -0.33 \end{bmatrix}$$

$$\mathbf{x} = \begin{vmatrix} \frac{-5}{-3} \\ \frac{1}{-3} \end{vmatrix} \approx \begin{bmatrix} 1.67 \\ -0.33 \end{bmatrix}$$

$$y = x - 2$$
$$y = x + 3$$

At which point does these two lines intersect?

$$y = x - 2$$

$$y = x + 3$$

Euclidean geometry

Parallel lines never intersect!

At which point does these two lines intersect?

$$y = x - 2$$
$$y = x + 3$$

Euclidean geometry

Parallel lines never intersect!

At which point does these two lines intersect?

$$y = x - 2 \quad \mapsto \quad \tilde{\mathbf{I}}_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix} \in \mathbb{P}^2$$

$$y = x + 3 \quad \mapsto \quad \tilde{\mathbf{I}}_2 = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} \in \mathbb{P}^2$$

Point of intersection

$$\tilde{\mathbf{x}} = \tilde{\mathbf{I}}_1 \times \tilde{\mathbf{I}}_2 = \begin{bmatrix} 0 & 2 & -1 \\ -2 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -5 \\ -5 \\ 0 \end{bmatrix}$$

Projective geometry

All lines intersect!

Parallel lines intersect at infinity

Cameras can observe points that are "infinitely" far away

$$\tilde{\mathbf{u}} = \begin{bmatrix} f_u & s & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix}$$

In images of planar surfaces we can see how the surface converges towards a line

Any two parallel lines in the plane will appear to intersect on this line

Image: Flicker.com (Melita)

Cameras can observe points that are "infinitely" far away

$$\tilde{\mathbf{u}} = \begin{bmatrix} f_u & s & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix}$$

In images of planar surfaces we can see how the surface converges towards a line

Any two parallel lines in the plane will appear to intersect on this line

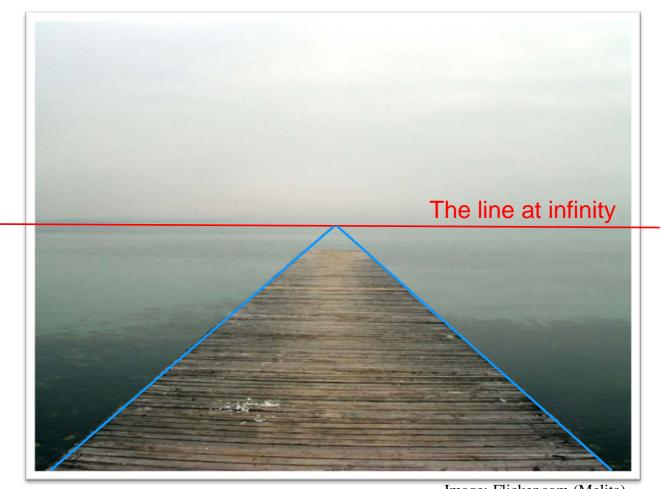
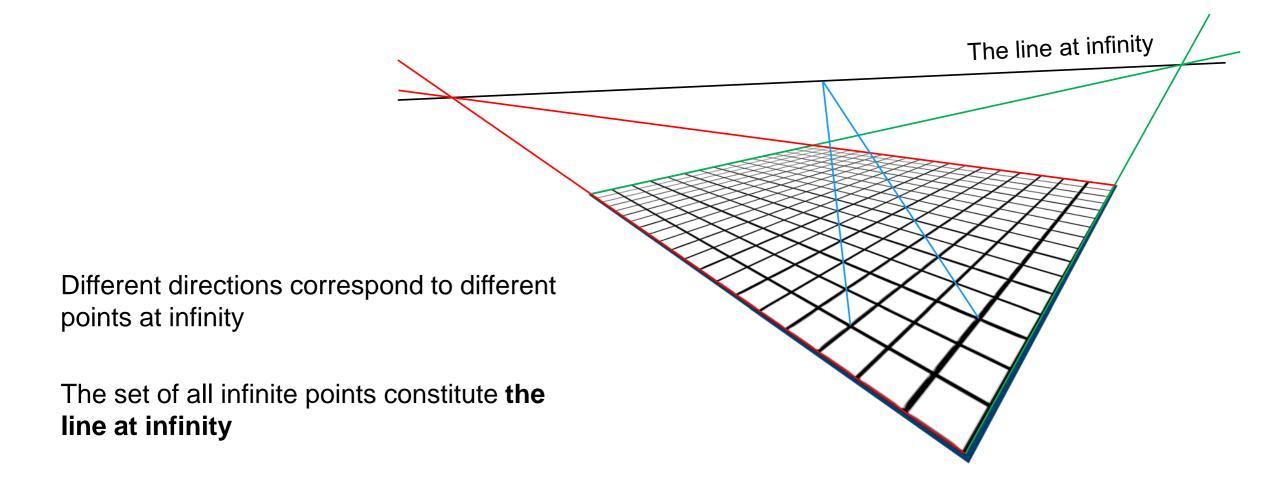


Image: Flicker.com (Melita)



• A linear transformation of \mathbb{P}^2 can be represented by a invertible homogeneous 3×3 matrix

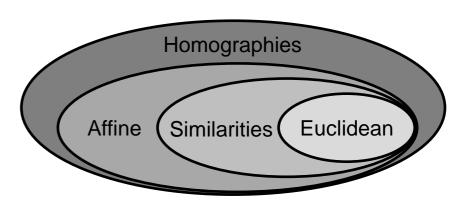
$$H: \mathbb{P}^2 \rightarrow \mathbb{P}^2$$

$$\tilde{\mathbf{x}} \mapsto \mathbf{H}\tilde{\mathbf{x}}$$

where

$$\mathbf{H} = \lambda \mathbf{H} \quad \forall \lambda \in \mathbb{R} \setminus \{0\}$$

- Important groups of linear projective transformations
- Each group is closed under
 - Matrix multiplication
 - Matrix inverse



Transformation	Matrix	#DoF	Preserves	Visualization
Euclidean	$\begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0^T & 1 \end{bmatrix}$	3	Lengths + all below	
Similarity	$\begin{bmatrix} s\mathbf{R} & \mathbf{t} \\ 0^T & 1 \end{bmatrix} s \in \mathbb{R}$	4	Angles + all below	$\begin{array}{c} \\ \\ \\ \\ \end{array} \rightarrow \begin{array}{c} \\ \\ \\ \end{array} $
Affine	$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix}$	6	Parallelism, line at infinity + all below	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Homography	$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$	8	Straight lines	$\begin{array}{c} \\ \\ \\ \\ \end{array} $

- Several image operations correspond to a linear projective transformation
 - Rotation
 - Translation
 - Resizing

$$\mathbf{H} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

$$\mathbf{t} = \mathbf{0}$$

- Several image operations correspond to a linear projective transformation
 - Rotation
 - Translation
 - Resizing

$$\mathbf{H} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

$$\mathbf{t} \neq \mathbf{0}$$

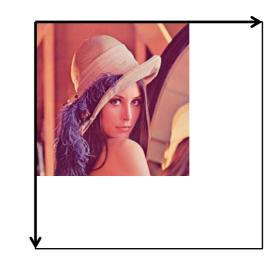
- Several image operations correspond to a linear projective transformation
 - Rotation
 - Translation
 - Resizing

$$\mathbf{H} = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

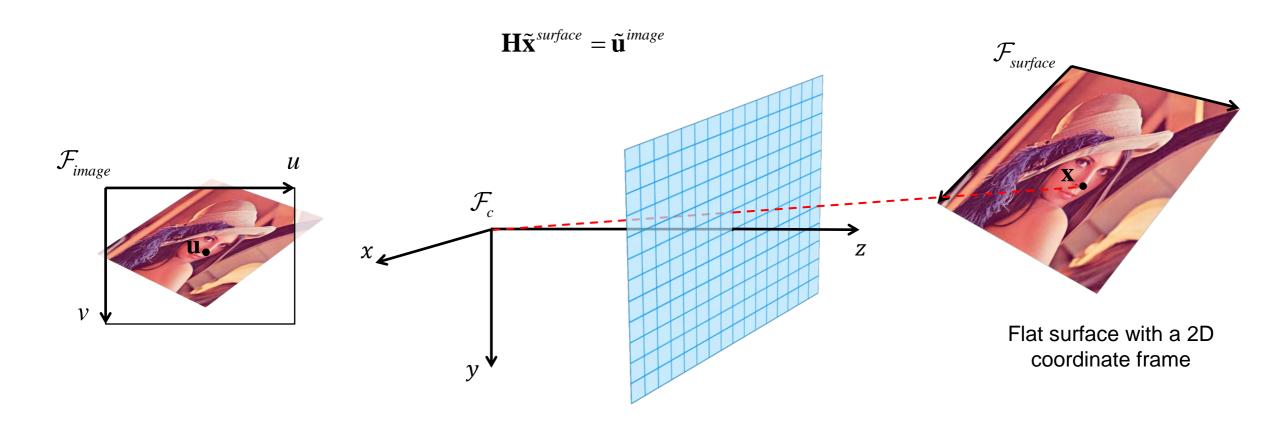
$$\xrightarrow{\mathbf{t} = \mathbf{0}}$$

$$s < 1$$

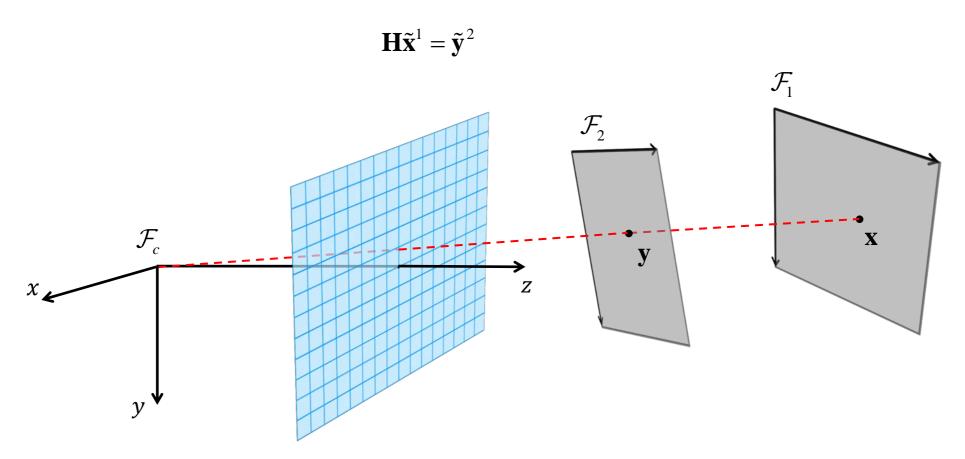
$$\mathbf{R} = \mathbf{I}$$



Perspective imaging of a flat surface can be described by a homography

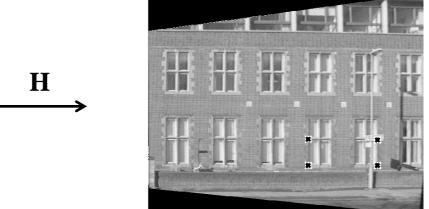


• The central projection between two planes corresponds to a homography



For images of a flat surface, a homography can be used to «change» the camera position

http://www.robots.ox.ac.uk/~vgg/hzbook.html



http://www.robots.ox.ac.uk/~vgg/hzbook.html

The projective space \mathbb{P}^3

- The relationship between the Euclidean space \mathbb{R}^3 and the projective space \mathbb{P}^3 is much like the relationship between \mathbb{R}^2 and \mathbb{P}^2
 - We represent points in homogeneous coordinates

$$\tilde{\mathbf{x}} = \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \\ \tilde{w} \end{bmatrix} = \lambda \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \\ \tilde{w} \end{bmatrix} \quad \forall \lambda \in \mathbb{R} \setminus \{0\}$$

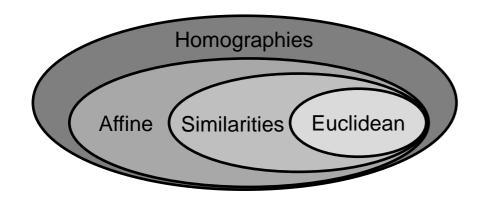
- Points at infinity have $\widetilde{w} = 0$
- We can transform between \mathbb{R}^3 and \mathbb{P}^3

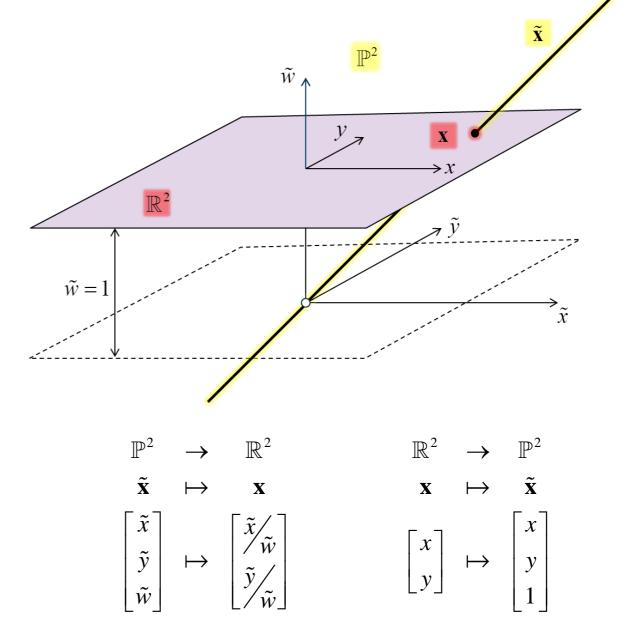
$$\begin{bmatrix} \tilde{\mathbf{x}} \\ \tilde{y} \\ \tilde{z} \\ \tilde{w} \end{bmatrix} \mapsto \begin{bmatrix} \tilde{x} / \tilde{w} \\ \tilde{y} / \tilde{w} \\ \tilde{z} / \tilde{w} \end{bmatrix}$$

Transformation of \mathbb{P}^3	Matrix	#DoF	Preserves
Euclidean	$\begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0^T & 1 \end{bmatrix}$	6	Volumes, volume ratios, lengths + all below
Similarity	$\begin{bmatrix} s\mathbf{R} & \mathbf{t} \\ 0^T & 1 \end{bmatrix} s \in \mathbb{R}$	7	Angles + all below
Affine	$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$	12	Parallelism of planes, The plane at infinity + all below
Homography	$\begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44} \end{bmatrix}$	15	Intersection and tangency of surfaces in contact, straight lines

Summary

- Projective plane \mathbb{P}^2 and space \mathbb{P}^3
 - Alternative representation of points
 - Homogeneous coordinates
 - Can swap between \mathbb{R}^n and \mathbb{P}^n
- Linear projective transformations
 - Homogeneous matrices
 - Several groups





Further reading

- Do you want to know more?
- Online book by Richard Szeliski: Computer Vision: Algorithms and Applications
 http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf
 - Chapter 2 is about "image formation" and covers some projective geometry, focusing on transformations, in section 2.1.1-2.1.4