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Image function
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2D signal where f(x,y) gives the intensity at position (x,y)
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Digital Image

0 0 0 255 | 255 0 0 0 0 0

0 0 0 255 | 255 | 170 0 0 0 0
0 0 255 | 170 | 170 | 255 0 0 0 0
- 0 0 255 | 170 | 170 85 85 0 0 0
0 170 | 170 | 255 85 85 170 | 170 0 0
0 0 85 85 170 | 170 | 170 0 0 0

Discrete (sampled and quantized) version of the (continuous) image function f(z,y)
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Image Processing

o Point operators

o Image filtering in spatial domain
— Linear filters

— Non-linear filters

o Image filtering in frequency domain
— Fourier transform

fli, j] — gli, j]
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Point Operators

o Pixel transforms
— Brightness adjustment
— Contrast adjustment

o Colour transforms

o Histogram equalization

gli, 7] = h(fl3, j])

(Pixel-by-pixel transformation)

10 5
4 5
1 1

gli, j]
20 10 6
8 10 2
2 2 14

gli, 3] = 2f[i, j]

(Each pixel multiplied by 2)
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Pixel transforms - example

Original image Processed image
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Histogram equalization
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Image filtering

o Image filters in the spatial domain:
 Filtering is a mathematical operation on a grid of numbers
« Smoothing, sharpening (enhancing the image)

» Feature extraction (measuring texture, finding edges, distinctive points and
patterns).

o Image filters in the frequency domain:

* Filtering i1s a way to modify the (spatial) frequencies of images
* Noise removal, (re)sampling, image compression.
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Image filtering in spatial domain

Modify the pixels in an image based on some function of a local neighborhood of each pixel:

10 5 3 h

Local image data Modified image data
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Linear filtering

Convolution or cross-correlation where each pixel in the filtered image is a linear combination of the
pixels in a local neighborhood in the original image:

10| 51 3 0/l 010
111]8 01211
Local image data Kernel Modified image data

The coefficients of the linear combination is contained in the “kernel” (filter mask).
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Cross-correlation
Let f be the image, h be the kernel (of size 2k+1 x 2k+1), and g be the

output image:
Z Z hlu,v]|fli + u, 7 + v]

u=—kv=—k

This is called a cross-correlation operation:

g=hQ®}J
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Linear filtering
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gli, 5] = > hlu,v]fli +u,j + 0]
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Linear filtering
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Linear filtering

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
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Moving average filter (box filter)

3 x 3 kernel

0|+

1
1111
1

Replaces each pixel with an average of
its neighborhood (smoothing effect)

gli, 51 =D hlu, v]fli +u,j + 0]

u,v

9 x 9 kernel
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Sharpening filter

Enhances differences with
local average

TEK5030 10



Convolution
Same as cross-correlation, except that the kernel is “flipped” (horizontally and vertically):

gli,jl= > > hlu,vlf[i —u,j -]

u=—kv=—=%k%
This is called a convolution operation:
g=hxf

Convolution is commutative and associative (no difference between filter and image):

axb=0>b0%xa a*x(bxc)=(ax*xb)x*c

Apply several filters, one after the other:

(((a*b1) *bg) *xbg) = a* (by * by * b3)
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Gaussian filter (smoothing)
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Gaussian filtering

Original image o = 2 pixels o = 4 pixels o = 8 pixels
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Separable filters - example

The 2D Gaussian kernel can be expressed as a product of two 1D kernels:

. 1 ?+y?) 1 z? 1
o(T,y) = 902 eXp | — 952 = oo exp T 952 X 9o exXp

Discrete 3 x 3 approximation:

< [1]2]1]
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2D convolution

Filter kernel

3 x 3 image window

TEKS030

Result (center pixel only)
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1D convolution along rows and columns

Convolution along rows:

Convolution along remaining column:

* -
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Edge detection
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Edges and image derivatives

« An edge is a place of rapid change of the
Image intensity function

« Corresponds to extrema of the first
derivative of the image intensity function

« Discrete approximation to the image
derivatives:

i)~ Sl 1,1~ 7l
X

O i) fling +1) ~ 7l
Y
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Image gradient:

o[

dz’ dy

Gradient magnitude:

|Vf|—\/(g—£)2+(%)2

Prewitt operator:

1101 -1(-1)-1
1101 1111
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Image gradient

i\l
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Derivative of Gaussians 0
N an %hd (’LL, U)
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Sobel operator

Common approximation of the derivative of a
Gaussian:

x-direction y-direction
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Gradient magnitude

Sobel operator - example

x-direction y-direction
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Non-linear filtering - Median filter

A median filter operates over a neighborhood in the input image by selecting the median intensity:

10| 5] 3 Compute median
4] 6| || =————— from neighborhood === 4
1] 1] 8
Local image data Modified image data

Other non-linear filters:

 Bilateral filters (outlier rejection)

* Anisotropic diffusion

« Morphological operations (on binary images)
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Median filtering - example

Image with Salt & Pepper noise

TEKS030

Image after median filtering
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Morphological operations

o Non-linear filtering
o Typically used to clean up binary images

o Erosion: replace pixel value with minimum in
local neighborhood

» Dilation: replace pixel value with maximum in
local neighborhood

o Structuring element used to define the local

neighborhood:
0 1 0
1 1 1 A shape (in blue) and its morphological dilation (in
green) and erosion (in yellow) by a diamond-
0 1 0 shape structuring element.
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Morphological operations - Erosion

Structuring element (disk shaped) .

TEKS030
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Morphological operations - Dilation

Structuring element (disk shaped) .

N
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Opening = Erosion + Dilation
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Dilation + Erosion

Closing

35
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Filtering in frequency domain

Fourier (1807):

Any univariate function can be rewritten as
a weighted sum of sines and cosines of

different frequencies (true with some subtle
restrictions).

This leads to:

Fourier Series

Fourier Transform (continuous and discrete)
Fast Fourier Transform (FFT)

TEKS030

Jean Baptiste Joseph Fourier (1768-1830)
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Sum of sines

\\ //ﬂ\\ N AN
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Asin(wx + @) 4 Amplitude
The Fourier transform stores the magnitude and phase at
each frequency
Amplitude: Phase:
I(w)
—1
A=4+vVRW)?2+I(w)2 ¢=tan  —=

fO 2f0 3f0 Frequency
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Two-dimensional Fourier transform

Continous transform:

F(we, wy) — / / f(x, y)e_j(wmx+wyy)dxdy

Discrete transform:

M—1N-—-1
]_ - (kmm+knpn)

'k, kn| = VN f[m,n]e_Qm MN

m=0 n=0

TEKS5030
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Fourier analysis in images

Intensity images

I

Adid

: images . . -
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The Convolution Theorem

The Fourier transform of the convolution of two functions is the product of their
Fourier transforms:

Flg  h] = Flg|F[h]

Convolution in spatial domain is equivalent to multiplication in frequency domain:

g+ h=F"[F[g]F[h]
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Example — Gaussian (low pass) filtering

Original image Fourier transform (absolute value
.‘?’.,, " B
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Example — Gaussian filtering

Gaussian kernel (41 x 41), ;, — &

FFT
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Fourier transform (absolute value)
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Example — Gaussian filtering

Sl —

e x LT ]

AR

T
K

g
~

TEK5030 *



Example — Gaussian filtering

Fourier transform of filtered image

Inverse
FFT

—
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Filtered image
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Summary

Image Processing

» Point operators

o Image filtering in spatial domain
— Linear filters
— Non-linear filters

o Image filtering in frequency domain
— Fourier transforms

— Gaussian (low pass) filtering

More information: Szeliski 3.1 - 3.4
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