UiO Department of Technology Systems University of Oslo

Lecture 2.2 Image Pyramids

Idar Dyrdal

Image Pyramids

- Downsampling (decimation)
- Upsampling (interpolation)
- Pyramids
 - Gaussan Pyramids
 - Laplacian Pyramids (Lecture 2.3)
- Applications
 - Template matching (object detection)
 - Detecting stable points of interest
 - Image Registration
 - Compression
 - Image Blending
 - ..

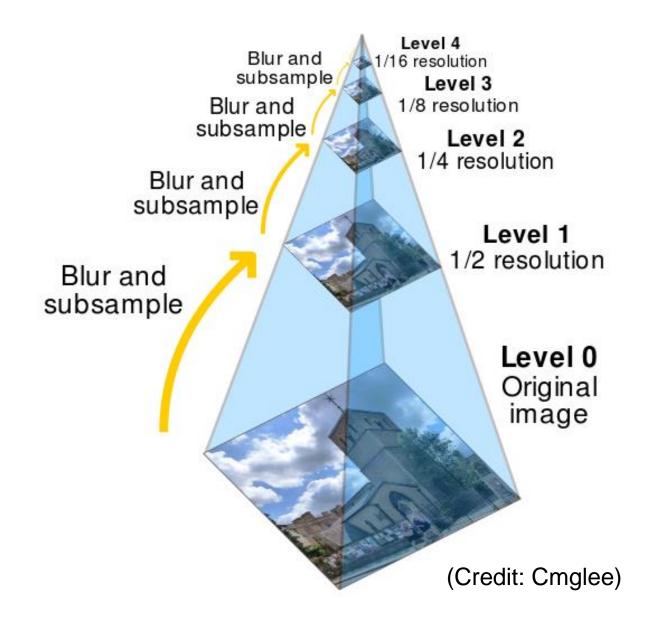


Image Scaling

- Assume that the image is too big for practical use:
 - Requires too much memory
 - Time consuming to process
 - Too big for the screen
 - **–** ...
- A smaller image can be obtained by image sub-sampling

Image Downsampling

1/4

1/8

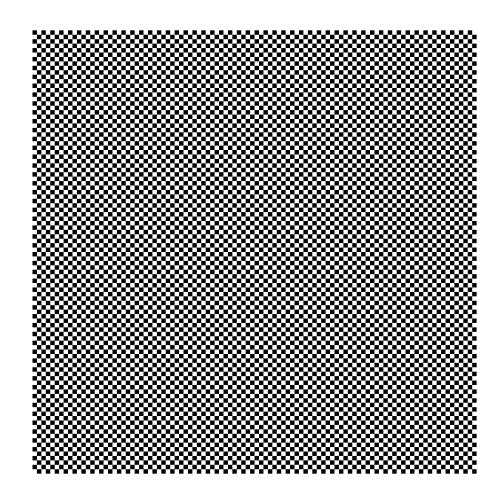
1/2

Throw away every other row and column \rightarrow image reduced to ½ size along each dimension.

Image Downsampling

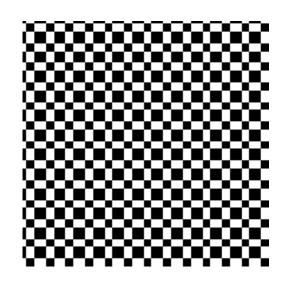
The subsampled images are of low quality. Why?

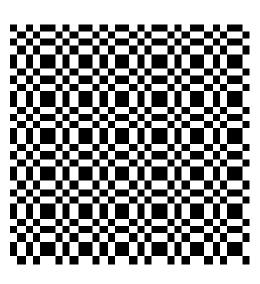
Spatial undersampling



Checkerboard with 10 x 10 pixel squares

Downsampled images



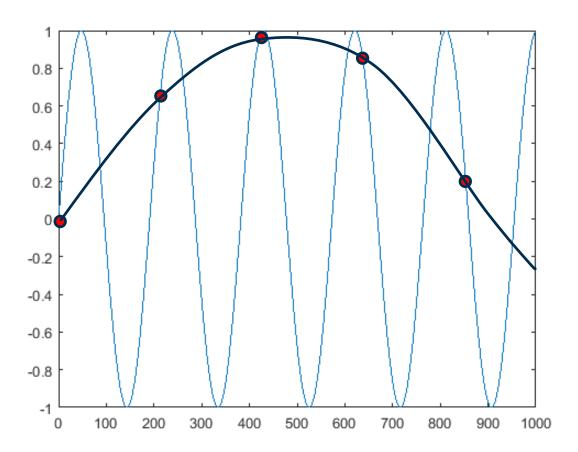


1/10 1/16

Aliasing

- Occurs when the (spatial) sampling rate is not high enough to capture the details in the image
- High frequencies are transformed to lower frequencies (i.e. aliases)
- To avoid aliasing the sampling rate must be at least two times the maximum frequency in the image (at least two samples per cycle)
- This minimum sampling rate is called the Nyquist rate.

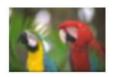
Aliasing can be avoided by low-pass filtering the image before downsampling



Gaussian pre-filtering (low pass)

Gaussian 1/2

Gaussian 1/4

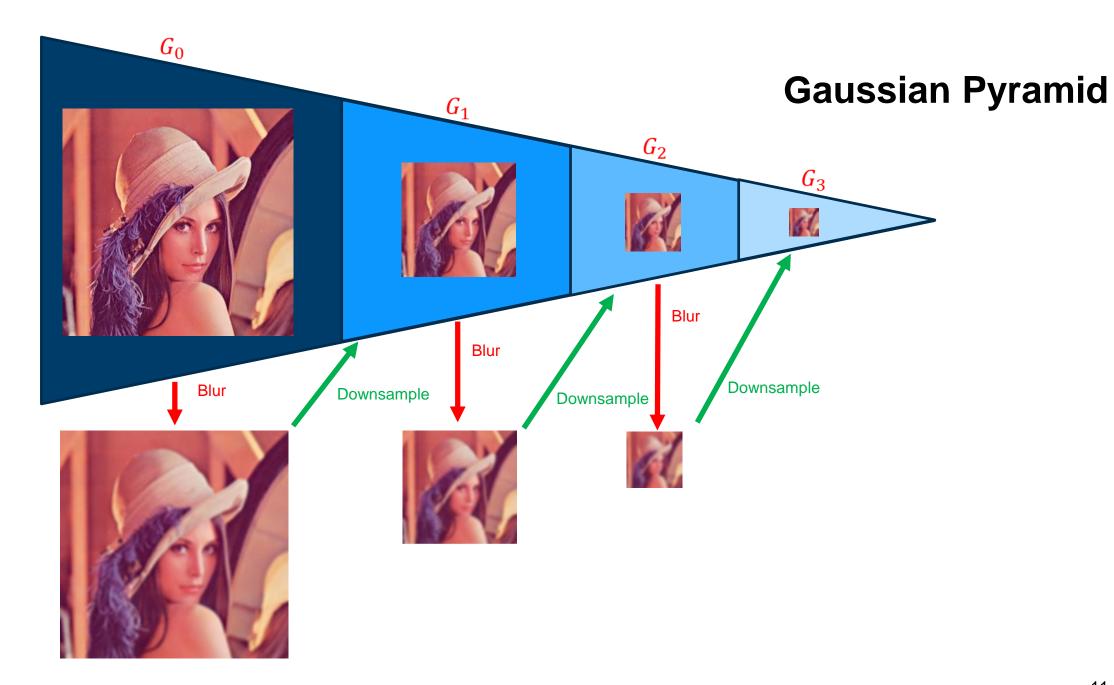


Gaussian 1/8

Gaussian pre-filtering (low pass)

Compared to downsampling without low-pass filtering...

Conclusion: Low-pass filtering (i.e. smoothing with a Gaussian kernel) before subsampling the image!



Upsampling

10 x magnification

Nearest neighbor interpolation:

- Repeat each row and column 10 times
- Fast and simple approach.

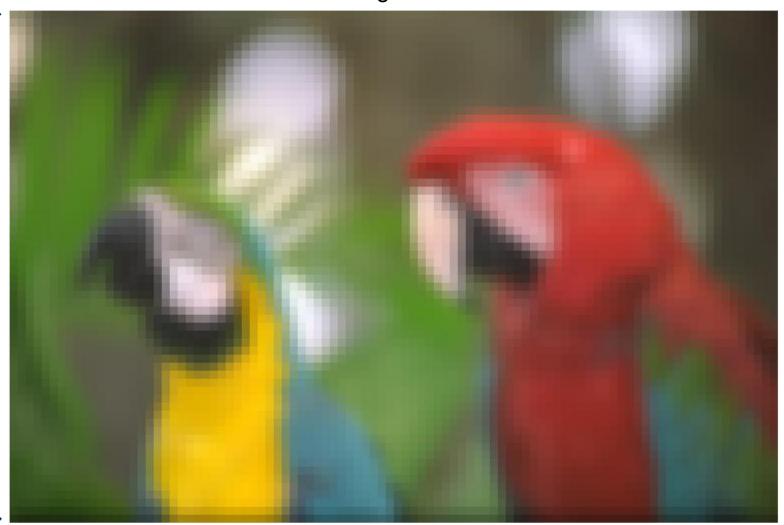
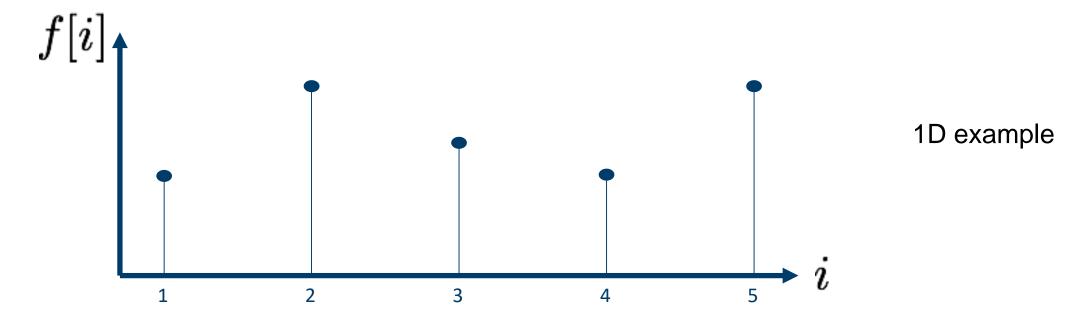


Image interpolation

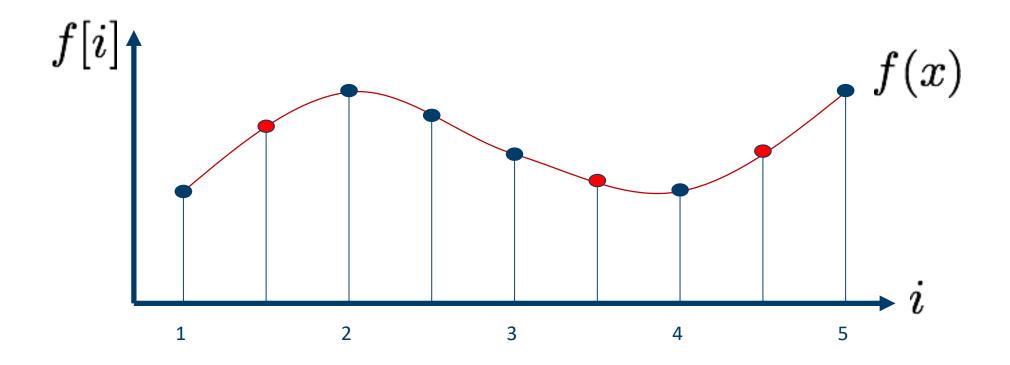
A digital image is a discrete point-sampling of a continuous function:

$$f[i,j] = \text{quantize}\{f(x,y)\}\ \text{where } x = i\Delta x \text{ and } y = j\Delta y.$$



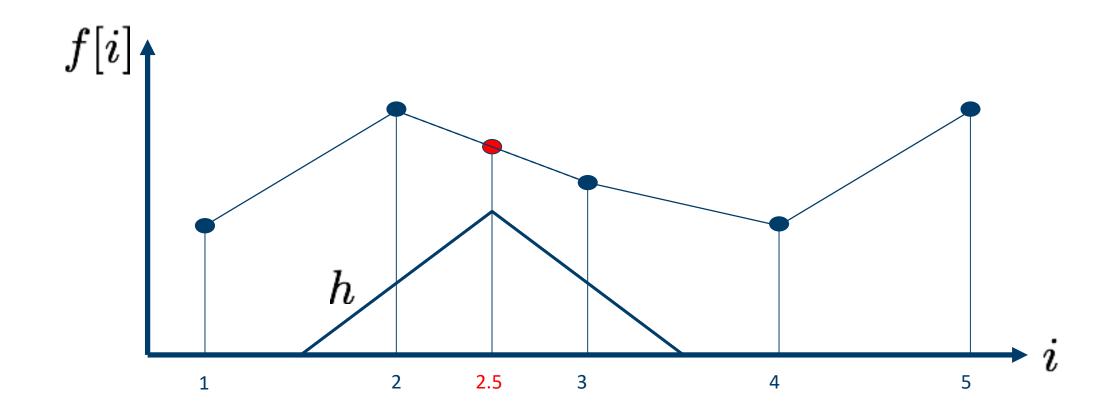
A new image could be generated, at any resolution and scale, if the original function could be reconstructed.

Interpolation by convolution



$$g[i,j] = \sum_{u=-k}^k \sum_{v=-k}^k h[u,v] f[i-ru,j-rv]$$
 r = scale factor

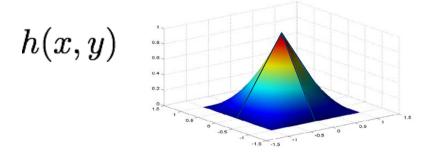
Linear interpolation (bilinear for images)



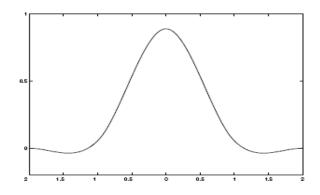
Some kernels for signal and image interpolation

Linear:

Bilinear:



Bicubic (better choice for images):



Nearest neighbor:

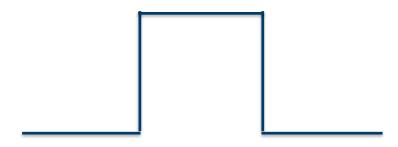


Image interpolation - examples

Nearest neighbor Bilinear Bicubic

Application: Template Matching with Image Pyramids

Input: Image, Template

- 1. Match template at current scale
- 2. Downsample image
- 3. Repeat 1-2 until image is very small
- 4. Take responses above some threshold, perhaps with non-maxima suppression.

Summary

Image Pyramids:

- Downsampling
- Upsampling
- Gaussian Pyramids

More information: Szeliski 3.5

