UiO Department of Technology Systems University of Oslo

Lecture 4.3 Estimating homographies from feature correspondences

Thomas Opsahl

Homographies induced by central projection

• Homography $H\widetilde{\mathbf{u}} = \widetilde{\mathbf{u}}'$

$$\mathbf{H} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$

- Point-correspondences can be determined automatically
- Erroneous correspondences are common
- Robust estimation is required to find H

Homographies induced by central projection

• Homography $\mathbf{H}\widetilde{\mathbf{u}} = \widetilde{\mathbf{u}}'$

$$\mathbf{H} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$

- Point-correspondences can be determined automatically
- Erroneous correspondences are common
- Robust estimation is required to find H

Estimating the homography between overlapping images

- Establish point correspondences $\mathbf{u}_i \leftrightarrow \mathbf{u'}_i$
 - Find key points $\{\mathbf{u}_i \in \text{Img1}\}\$ and $\{\mathbf{u'}_i \in \text{Img2}\}\$
 - Represent key points by suitable descriptors
 - Determine correspondences $\mathbf{u}_i \leftrightarrow \mathbf{u'}_i$ by matching descriptors
 - Some wrong correspondences are to be expected
- Estimate the homography **H** such that $\mathbf{u'}_i = \mathbf{H}\mathbf{u}_i \ \forall i$
 - Robust estimation with RANSAC
 - Improved estimation based on RANSAC inliers
- This homography enables us to compose the images into a larger image
 - Image mosaicing
 - Panorama

Adaptive RANSAC

Objective

To robustly fit a model $y = f(x; \alpha)$ to a data set S containing outliers

Algorithm

- 1. Let $N = \infty$, $S_{IN} = \emptyset$ and #iterations = 0
- 2. while N > #iterations repeat 3-5
- 3. Estimate parameters α_{tst} from a random n-tuple from S
- 4. Determine inlier set S_{tst} , i.e. data points within a distance t of the model $\mathbf{y} = f(\mathbf{x}; \alpha_{tst})$
- 5. If $|S_{tst}| > |S_{IN}|$, set $S_{IN} = S_{tst}$, $\alpha = \alpha_{tst}$, $\omega = \frac{|S_{IN}|}{|S|}$ and $N = \frac{log(1-p)}{log(1-\omega^n)}$ with p = 0.99 Increase #iterations by 1

Estimating the homography

- Estimating the homography in a RANSAC scheme requires
 - 1. A basic homography estimation method for n point-correspondences
 - 2. A way to determine the inlier set of point-correspondences for a given homography

Estimating the homography

- Estimating the homography in a RANSAC scheme requires
 - 1. A basic homography estimation method for n point-correspondences
 - 2. A way to determine the inlier set of point-correspondences for a given homography
- The homography has 8 degrees of freedom, but it is custom to treat all 9 entries of the matrix as unknowns instead of setting one of the entries to 1 which excludes all potential solutions where this entry is 0
- Let us solve the equation $H\widetilde{\mathbf{u}} = \widetilde{\mathbf{u}}'$ for the entries of the homography matrix

$$\begin{aligned}
\mathbf{H}\widetilde{\mathbf{u}} &= \widetilde{\mathbf{u}}' \\
\begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} &= \begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix}
\end{aligned}$$

Basic homography estimation
$$\begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix} \begin{bmatrix} u \\ 1 \end{bmatrix} = \begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} uh_1 + vh_2 + h_3 = u' \\ uh_4 + vh_5 + h_6 = v' \\ uh_7 + vh_8 + h_9 = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 0 & 0 & 0 & -u & -v & -1 & v'u & v'v & v' \\ u & v & 1 & 0 & 0 & 0 & -u'u & -u'v & -u' \\ -v'u & -v'v & -v' & u'u & u'v & u' & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \\ h_5 \\ h_6 \\ h_7 \\ h_8 \\ h_9 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow \mathbf{Ah} = \mathbf{0}$$

Observe that the third row in A is a linear combination of the first and second row $row_3 = -u' \cdot row_1 - v' \cdot row_2$

Hence every correspondence $\mathbf{u}_i \leftrightarrow \mathbf{u}'_i$ contribute with 2 equations in the 9 unknown entries

- Since H (and thus h) is homogeneous, we only need the matrix A to have rank 8 in order to determine h up to scale
- It is sufficient with 4 point correspondences where no 3 points are collinear
- We can calculate the non-trivial solution to the equation $\mathbf{Ah} = \mathbf{0}$ by SVD $\operatorname{svd}(\mathbf{A}) = \mathbf{USV}^T$
- The solution is given by the right singular vector without a singular value which is the last column of \mathbf{V} , i.e. $\mathbf{h} = \mathbf{v}_9$

$$\begin{bmatrix} 0 & 0 & 0 & -u_{1} & -v_{1} & -1 & v'_{1}u_{1} & v'_{1}v_{1} & v'_{1} \\ u_{1} & v_{1} & 1 & 0 & 0 & 0 & -u'_{1}u_{1} & -u'_{1}v_{1} & -u'_{1} \\ 0 & 0 & 0 & -u_{2} & -v_{2} & -1 & v'_{2}u_{2} & v'_{2}v_{2} & v'_{2} \\ u_{2} & v_{2} & 1 & 0 & 0 & 0 & -u'_{2}u_{2} & -u'_{2}v_{2} & -u'_{2} \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} h_{2} \\ h_{3} \\ h_{4} \\ h_{5} \\ h_{6} \\ h_{7} \\ h_{8} \\ h_{9} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \end{bmatrix}$$

$$A\mathbf{h} = \mathbf{0}$$

- Estimating the homography in a RANSAC scheme requires
 - 1. A basic homography estimation method for n point-correspondences
 - 2. A way to determine which of the point correspondences that are inliers for a given homography

Direct Linear Transform

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & -u_1 & -v_1 & -1 & v_1'u_1 & v_1'v_1 & v_1' \\ u_1 & v_1 & 1 & 0 & 0 & 0 & -u_1'u_1 & -u_1'v_1 & -u_1' \\ \vdots & \vdots \end{bmatrix}$$

- 1. Build the matrix **A** from at least 4 point-correspondences $(u_i, v_i) \leftrightarrow (u'_i, v'_i)$
- 2. Obtain the SVD of A: $A = USV^T$
- 3. If **S** is diagonal with positive values in descending order along the main diagonal, then **h** equals the last column of **V**
- 4. Reconstruct H from h

- The basic DLT algorithm is never used with more than 4 point-correspondences
- This is because the algorithm performs better when all the terms of A has a similar scale
 - Note that some of the terms will always be of scale 1
- To achieve this, it is common to extend the algorithm with a normalization and a denormalization step

Normalized Direct Linear Transform

- 1. Normalize the set of points $\mathbf{u}_i = [u_i, v_i]^T$ by computing a similarity transform T that translates the centroid to the origin and scales such that the average distance from the origin is $\sqrt{2}$
- 2. In the same way normalize the set of points $\mathbf{u}'_i = [u'_i, v'_i]^T$ by computing a similarity transform \mathbf{T}'
- 3. Apply the basic DLT algorithm on the normalized points to obtain a homography $\hat{\mathbf{H}}$
- 4. Denormalize to get the homography: $\mathbf{H} = \mathbf{T}'^{-1} \hat{\mathbf{H}} \mathbf{T}$

- Estimating the homography in a RANSAC scheme requires
 - 1. A basic homography estimation method for n point-correspondences
 - 2. A way to determine the inlier set of point-correspondences for a given homography
- For a point correspondence $(u_i, v_i) \leftrightarrow (u'_i, v'_i)$ and homography **H**, we can choose from several errors
 - Algebraic error: $\varepsilon_i = \|\mathbf{A}_i \mathbf{h}\|$ where

$$\mathbf{A}_{i} = \begin{bmatrix} 0 & 0 & 0 & -u_{i} & -v_{i} & -1 & v'_{i}u_{i} & v'_{i}v_{i} & v'_{i} \\ u_{i} & v_{i} & 1 & 0 & 0 & 0 & -u'_{i}u_{i} & -u'_{i}v_{i} & -u'_{i} \end{bmatrix}$$

- Geometric errors:
 - 1. $\varepsilon_i = d(\mathbf{H}\mathbf{u}_i, \mathbf{u}'_i) + d(\mathbf{u}_i, \mathbf{H}^{-1}\mathbf{u}'_i)$ (Reprojection error)
 - 2. $\varepsilon_i = d(\mathbf{u}_i, \mathbf{H}^{-1}\mathbf{u}'_i)$
 - 3. $\varepsilon_i = d(\mathbf{H}\mathbf{u}_i, \mathbf{u}'_i)$

Notation	
Euclidean distance	$d(\cdot,\cdot)$
$ig $ Inhomogenous H $\widetilde{f u}_i$	$ \mathbf{H}\mathbf{u}_i $
Inhomogeneous $\mathbf{H}^{-1}\widetilde{\mathbf{u}}'_i$	$ \mathbf{H}^{-1}\mathbf{u'}_i $

Robust homography estimation

RANSAC estimation of homography

For a set of point-correspondences $S = \{\mathbf{u}_i \mapsto \mathbf{u'}_i\}$, perform N iterations, where N is determined adaptively

- 1. Estimate \mathbf{H}_{tst} from 4 random correspondences $\mathbf{u}_i \mapsto \mathbf{u'}_i$ using the basic DLT algorithm
- 2. Determine the set of inlier-correspondences $S_{tst} = \{\mathbf{u}_i \mapsto \mathbf{u}'_i \text{ such that } \epsilon_i < t\}$ Here one can choose $\epsilon_i = d(\mathbf{H}\mathbf{u}_i, \mathbf{u}'_i) + d(\mathbf{u}_i, \mathbf{H}^{-1}\mathbf{u}'_i)$ and $t = \sqrt{5.99}\sigma$ where σ is the expected uncertainty in key-point positions
- 3. If $|S_{tst}| > |S_{IN}|$ update N, homography and inlier set: $\mathbf{H} = \mathbf{H}_{tst}$, $S_{IN} = S_{tst}$

- Finally we would typically re-estimate **H** from all correspondences in S_{IN}
 - Normalized DLT
 - Minimize $\epsilon = \sum \epsilon_i$ in an iterative optimization method like Levenberg Marquardt

• Let us compose these two images into a larger image

Find key points and represent by descriptors

- Establish point-correspondences by matching descriptors
- Several wrong correspondences

- Establish point-correspondences by matching descriptors
- Several wrong correspondences

- Estimate homography $\mathbf{H}\widetilde{\mathbf{u}} = \widetilde{\mathbf{u}}'$
 - OpenCV
 #include "opencv2/calib3d.hpp"
 cv::findHomography(srcPoints, dstPoints, CV_RANSAC);
 - Matlab
 tform = estimateGeometricTransform(srcPoints,dstPoints,'projective');

- Represent the images in common coordinates (Note the additional translation!)
 - OpenCV
 #include "opencv2/calib3d.hpp"
 cv::warpPerspective(img1, img2, H, output_size);
 - Matlab
 img2 = imwarp(img1,tform);

Now we can compose the images

Singular Value Decomposition

The singular value decomposition of a real $m \times n$ matrix **A** is a factorization $\mathbf{A} = \mathbf{USV}^T$

Here **U** is a orthogonal $m \times m$ matrix, **V** is a orthogonal $n \times n$ matrix and **S** is a real positive diagonal $m \times n$ matrix

The diagonal entries of $\mathbf{S} = \mathrm{diag}(s_1, ..., s_{\min(m,n)})$ are known as the singular values of \mathbf{A} and the columns of $\mathbf{U} = [\mathbf{u}_1, ..., \mathbf{u}_m]$ and $\mathbf{V} = [\mathbf{v}_1, ..., \mathbf{v}_n]$ are known as the left and right singular vectors of \mathbf{A} respectively

The nullspace of A is the span of the right singular vectors \mathbf{v}_i that corresponds to a zero singular value s_i (or does not have a corresponding singular value)

How to use

Matlab [U,S,V] = svd(A);

Right singular vectors are columns in V

OpenCV

```
cv::SVD::compute(A, S, U, Vtranspose,
cv::SVD::FULL_UV);
Right singular vectors are rows in Vtranspose
```

Eigen

```
Eigen::JacobiSVD<Eigen::MatrixXd> svd(A,
Eigen::ComputeFullU | Eigen::ComputeFullV);
Right singular vectors are columns in svd.matrixV()
```

Singular Value Decomposition

The singular value decomposition of a real $m \times n$ matrix **A** is a factorization $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$

Here ${\bf U}$ is a orthogonal $m\times m$ matrix, ${\bf V}$ is a orthogonal $n\times n$ matrix and ${\bf S}$ is a real positive diagonal $m\times n$ matrix

The diagonal entries of $\mathbf{S} = \operatorname{diag}(s_1, \dots, s_{\min(m,n)})$ are known as the singular values of \mathbf{A} and the columns of $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_m]$ and $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ are known as the left and right singular vectors of \mathbf{A} respectively

The nullspace of \mathbf{A} is the span of the right singular vectors \mathbf{v}_i that corresponds to a zero singular value s_i (or does not have a corresponding singular value)

Applications of SVD

Solving homogeneous linear equations like

$$Ah = 0$$

Method

For theoretical problems, $\mathbf{h} \in \text{null}(\mathbf{A})$ so \mathbf{h} is a linear combination of the right singular vectors \mathbf{v}_i that correspond to a zero singular value s_i

$$\mathbf{h} = \sum k_i \mathbf{v}_i$$
; $k_i \in \mathbb{R}$, $s_i = 0$ (or missing)

For practical problems, the presence of noise force us to expand the solution by including those right singular vectors that correspond to small singular values $s_i \approx 0$

$$\mathbf{h} = \sum k_i \mathbf{v}_i$$
; $k_i \in \mathbb{R}$, $s_i \approx 0$ (or missing)

Example

$$\mathbf{A}\mathbf{x} = \mathbf{0}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

From $[\mathbf{U}, \mathbf{S}, \mathbf{V}] = svd(\mathbf{A})$ we get

$$\mathbf{U} = \begin{bmatrix} -0.3863 & -0.9224 \\ -0.9224 & 0.3863 \end{bmatrix} \quad \mathbf{S} = \begin{bmatrix} 9.5080 & 0 & 0 \\ 0 & 0.7729 & 0 \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} -0.4287 & 0.8060 & 0.4082 \\ -0.5663 & 0.1124 & -0.8165 \\ -0.7039 & -0.5812 & 0.4082 \end{bmatrix}$$

From this we see that A has:

• 2 left singular vectors

$$\mathbf{u}_{1} = \begin{bmatrix} -0.3863 \\ -0.9224 \end{bmatrix} \quad \mathbf{u}_{2} = \begin{bmatrix} -0.9224 \\ 0.3863 \end{bmatrix}$$

2 nonzero singular values

$$s_1 = 9.5080$$
 $s_2 = 0.7729$

• 3 right singular vectors

$$\mathbf{v}_{1} = \begin{bmatrix} -0.4287 \\ -0.5663 \\ -0.7039 \end{bmatrix} \quad \mathbf{v}_{2} = \begin{bmatrix} 0.8060 \\ 0.1124 \\ -0.5812 \end{bmatrix} \quad \mathbf{v}_{3} = \begin{bmatrix} 0.4082 \\ -0.8165 \\ 0.4082 \end{bmatrix}$$

Since \mathbf{v}_3 does not have a corresponding singular value, $\mathbf{x} = \mathbf{v}_3$ is a non-trivial solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$ and $\mathbf{x} = k \cdot \mathbf{v}_3$; $k \in \mathbb{R} \setminus \{0\}$ is the family of all non-trivial solutions

Example

$$\begin{bmatrix} 1.0792 & 2.0656 & 3.0849 \\ 4.0959 & 5.0036 & 6.0934 \\ 1.0679 & 2.0743 & 3.0655 \\ 4.0758 & 5.0392 & 6.0171 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

This time singular value decomposition give us the following singular values and right singular vectors:

 $\mathbf{A}\mathbf{x} = \mathbf{0}$

$$\mathbf{v}_{1} = \begin{bmatrix} -0.4336 \\ -0.5635 \\ -0.7032 \end{bmatrix} \quad \mathbf{v}_{2} = \begin{bmatrix} -0.8103 \\ -0.0975 \\ 0.5778 \end{bmatrix} \quad \mathbf{v}_{3} = \begin{bmatrix} 0.3942 \\ -0.8203 \\ 0.4143 \end{bmatrix}$$

This time all right singular vectors correspond to a non-zero singular value, so the equation does not have any non-trivial solutions! If this equation came from a practical problem, instead of looking for solutions to $\mathbf{A}\mathbf{x}=\mathbf{0}$, we might be looking for the \mathbf{x} that minimize $\|\mathbf{A}\mathbf{x}\|$

Since $s_1 \approx 0$, $s_2 \approx 0$, $s_3 \approx 0$, we would conclude that $\mathbf{x} = \mathbf{v}_3$ solves the equation in a least-squares sense

Check:

$$\mathbf{Av}_3 = \begin{bmatrix} 0.0091 \\ 0.4288 \\ -0.0105 \\ -0.0341 \end{bmatrix}$$

Summary

• Homography $\mathbf{H}\widetilde{\mathbf{u}} = \widetilde{\mathbf{u}}'$

$$\mathbf{H} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$

- Automatic point-correspondences
- Wrong correspondences are common
- RANSAC estimation
 - Basic DLT (Direct Linear Transform) on 4 random correspondences
 - Inliers determined from the reprojection error $\epsilon_i = d(\mathbf{H}\mathbf{u}_i, \mathbf{u}'_i) + d(\mathbf{u}_i, \mathbf{H}^{-1}\mathbf{u}'_i)$

- Improve estimate by normalized DLT on inliers or iterative methods for an even better estimate
- Additional reading
 - Szeliski: 6.1.1 6.1.3