UiO : Department of Technology Systems University of Oslo

Lecture 4.3
 Estimating homographies from feature correspondences

Thomas Opsahl

Homographies induced by central projection

- Homography $\mathbf{H} \widetilde{\mathbf{u}}=\widetilde{\mathbf{u}}^{\prime}$

$$
\mathbf{H}=\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]
$$

- Point-correspondences can be determined automatically
- Erroneous correspondences are common
- Robust estimation is required to find \mathbf{H}

Homographies induced by central projection

- Homography $\mathbf{H} \widetilde{\mathbf{u}}=\widetilde{\mathbf{u}}^{\prime}$

$$
\mathbf{H}=\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]
$$

- Point-correspondences can be determined automatically
- Erroneous correspondences are common
- Robust estimation is required to find \mathbf{H}

Estimating the homography between overlapping images

- Establish point correspondences $\mathbf{u}_{i} \leftrightarrow \mathbf{u}_{i}^{\prime}$
- Find key points $\left\{\mathbf{u}_{i} \in \operatorname{Img} 1\right\}$ and $\left\{\mathbf{u}_{i}^{\prime} \in \operatorname{Img} 2\right\}$
- Represent key points by suitable descriptors
- Determine correspondences $\mathbf{u}_{i} \leftrightarrow \mathbf{u}_{i}^{\prime}$ by matching descriptors
- Some wrong correspondences are to be expected
- Estimate the homography \mathbf{H} such that $\mathbf{u}_{i}^{\prime}=\mathbf{H} \mathbf{u}_{i} \forall i$
- Robust estimation with RANSAC
- Improved estimation based on RANSAC inliers
- This homography enables us to compose the images into a larger image
- Image mosaicing
- Panorama

Adaptive RANSAC

Objective

To robustly fit a model $\mathbf{y}=f(\mathbf{x} ; \boldsymbol{\alpha})$ to a data set S containing outliers

Algorithm

1. Let $N=\infty, S_{I N}=\varnothing$ and \#iterations $=0$
2. while $N>$ \#iterations repeat $3-5$
3. Estimate parameters $\boldsymbol{\alpha}_{t s t}$ from a random n-tuple from S
4. Determine inlier set $S_{t s t}$, i.e. data points within a distance t of the model $\mathbf{y}=f\left(\mathbf{x} ; \boldsymbol{\alpha}_{t s t}\right)$
5. If $\left|S_{t s t}\right|>\left|S_{I N}\right|$, set $S_{I N}=S_{t s t}, \boldsymbol{\alpha}=\boldsymbol{\alpha}_{t s t}, \omega=\frac{\left|S_{I N}\right|}{|S|}$ and $N=\frac{\log (1-p)}{\log \left(1-\omega^{n}\right)}$ with $p=0.99$ Increase \#iterations by 1

Estimating the homography

- Estimating the homography in a RANSAC scheme requires

1. A basic homography estimation method for n point-correspondences
2. A way to determine the inlier set of point-correspondences for a given homography

Estimating the homography

- Estimating the homography in a RANSAC scheme requires

1. A basic homography estimation method for \boldsymbol{n} point-correspondences
2. A way to determine the inlier set of point-correspondences for a given homography

- The homography has 8 degrees of freedom, but it is custom to treat all 9 entries of the matrix as unknowns instead of setting one of the entries to 1 which excludes all potential solutions where this entry is 0
- Let us solve the equation $\mathbf{H} \widetilde{\mathbf{u}}=\widetilde{\mathbf{u}}^{\prime}$ for the entries of the homography matrix

$$
\begin{aligned}
& \mathbf{H} \widetilde{\mathbf{u}}=\widetilde{\mathbf{u}}^{\prime} \\
& {\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right]}
\end{aligned}
$$

Basic homography estimation

$$
\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{l}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right] \Leftrightarrow\left\{\begin{array}{l}
u h_{1}+v h_{2}+h_{3}=u^{\prime} \\
u h_{4}+v h_{5}+h_{6}=v^{\prime} \\
u h_{7}+v h_{8}+h_{9}=1
\end{array}\right\} \Leftrightarrow\left[\begin{array}{ccccccccc}
0 & 0 & 0 & -u & -v & -1 & v^{\prime} u & v^{\prime} v & v^{\prime} \\
u & v & 1 & 0 & 0 & 0 & -u^{\prime} u & -u^{\prime} v & -u^{\prime} \\
-v^{\prime} u & -v^{\prime} v & -v^{\prime} & u^{\prime} u & u^{\prime} v & u^{\prime} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
h_{5} \\
h_{6} \\
h_{7} \\
h_{8} \\
h_{9}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Leftrightarrow \mathbf{A h}=\mathbf{0}
$$

Basic homography estimation

Observe that the third row in \mathbf{A} is a linear combination of the first and second row

$$
\text { row }_{3}=-u^{\prime} \cdot \text { row }_{1}-v^{\prime} \cdot \text { row }_{2}
$$

Hence every correspondence $\mathbf{u}_{i} \leftrightarrow \mathbf{u}_{i}^{\prime}$ contribute with 2 equations in the 9 unknown entries

Basic homography estimation

- Since \mathbf{H} (and thus \mathbf{h}) is homogeneous, we only need the matrix \mathbf{A} to have rank 8 in order to determine \mathbf{h} up to scale
- It is sufficient with 4 point correspondences where no 3 points are collinear
- We can calculate the non-trivial solution to the equation $\mathbf{A h}=\mathbf{0}$ by SVD

$$
\operatorname{svd}(\mathbf{A})=\mathbf{U S V}^{T}
$$

- The solution is given by the right singular vector without a singular value which is the last column of \mathbf{V}, i.e. $\mathbf{h}=\mathbf{v}_{\mathbf{9}}$

$$
\begin{gathered}
{\left[\begin{array}{ccccccccc}
0 & 0 & 0 & -u_{1} & -v_{1} & -1 & v_{1}^{\prime} u_{1} & v_{1}^{\prime} v_{1} & v_{1}^{\prime} \\
u_{1} & v_{1} & 1 & 0 & 0 & 0 & -u_{1}^{\prime} u_{1} & -u_{1}^{\prime} v_{1} & -u_{1}^{\prime} \\
0 & 0 & 0 & -u_{2} & -v_{2} & -1 & v_{2}^{\prime} u_{2} & v_{2}^{\prime} v_{2} & v_{2}^{\prime} \\
u_{2} & v_{2} & 1 & 0 & 0 & 0 & -u_{2}^{\prime} u_{2} & -u_{2}^{\prime} v_{2} & -u_{2}^{\prime} \\
\vdots & \vdots
\end{array}\right]\left[\begin{array}{c}
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
h_{5} \\
h_{6} \\
h_{7} \\
h_{8} \\
h_{9}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
\vdots
\end{array}\right]} \\
\mathbf{A h}=\mathbf{0}
\end{gathered}
$$

Basic homography estimation

- Estimating the homography in a RANSAC scheme requires

1. A basic homography estimation method for n point-correspondences
2. A way to determine which of the point correspondences that are inliers for a given homography

Direct Linear Transform

$$
\mathbf{A}=\left[\begin{array}{ccccccccc}
0 & 0 & 0 & -u_{1} & -v_{1} & -1 & v_{1}^{\prime} u_{1} & v_{1}^{\prime} v_{1} & v_{1}^{\prime} \\
u_{1} & v_{1} & 1 & 0 & 0 & 0 & -u_{1}^{\prime} u_{1} & -u_{1}^{\prime} v_{1} & -u_{1}^{\prime} \\
\vdots & \vdots
\end{array}\right]
$$

1. Build the matrix \mathbf{A} from at least 4 point-correspondences $\left(u_{i}, v_{i}\right) \leftrightarrow\left(u^{\prime}{ }_{i}, v^{\prime}{ }_{i}\right)$
2. Obtain the SVD of $\mathbf{A}: \mathbf{A}=\mathbf{U S V}{ }^{T}$
3. If \mathbf{S} is diagonal with positive values in descending order along the main diagonal, then \mathbf{h} equals the last column of \mathbf{V}
4. Reconstruct \mathbf{H} from \mathbf{h}

Basic homography estimation

- The basic DLT algorithm is never used with more than 4 point-correspondences
- This is because the algorithm performs better when all the terms of A has a similar scale - Note that some of the terms will always be of scale 1
- To achieve this, it is common to extend the algorithm with a normalization and a denormalization step

Normalized Direct Linear Transform

1. Normalize the set of points $\mathbf{u}_{i}=\left[u_{i}, v_{i}\right]^{T}$ by computing a similarity transform T that translates the centroid to the origin and scales such that the average distance from the origin is $\sqrt{2}$
2. In the same way normalize the set of points $\mathbf{u}_{i}^{\prime}=\left[u^{\prime}{ }_{i}, v_{i}^{\prime}\right]^{T}$ by computing a similarity transform \mathbf{T}^{\prime}
3. Apply the basic DLT algorithm on the normalized points to obtain a homography $\widehat{\mathbf{H}}$
4. Denormalize to get the homography: $\mathbf{H}=\mathbf{T}^{\prime-1} \widehat{\mathbf{H}} \mathbf{T}$

Basic homography estimation

- Estimating the homography in a RANSAC scheme requires

1. A basic homography estimation method for n point-correspondences
2. A way to determine the inlier set of point-correspondences for a given homography

- For a point correspondence $\left(u_{i}, v_{i}\right) \leftrightarrow\left(u_{i}^{\prime}, v_{i}^{\prime}\right)$ and homography \mathbf{H}, we can choose from several errors
- Algebraic error: $\varepsilon_{i}=\left\|\mathbf{A}_{i} \mathbf{h}\right\|$ where

$$
\mathbf{A}_{i}=\left[\begin{array}{ccccccccc}
0 & 0 & 0 & -u_{i} & -v_{i} & -1 & v_{i}^{\prime} u_{i} & v_{i}^{\prime} v_{i} & v_{i}^{\prime} \\
u_{i} & v_{i} & 1 & 0 & 0 & 0 & -u_{i}^{\prime} u_{i} & -u_{i}^{\prime} v_{i} & -u_{i}^{\prime}
\end{array}\right]
$$

- Geometric errors:

1. $\varepsilon_{i}=d\left(\mathbf{H} \mathbf{u}_{i}, \mathbf{u}_{i}^{\prime}\right)+d\left(\mathbf{u}_{i}, \mathbf{H}^{-1} \mathbf{u}_{i}^{\prime}\right)$ (Reprojection error)
2. $\varepsilon_{i}=d\left(\mathbf{u}_{i}, \mathbf{H}^{-1} \mathbf{u}_{i}{ }_{i}\right)$
3. $\varepsilon_{i}=d\left(\mathbf{H} \mathbf{u}_{i}, \mathbf{u}_{i}^{\prime}\right)$

$\left\|\right.$Notation Euclidean distance Inhomogenous $\mathbf{H} \widetilde{\mathbf{u}}_{i}$ H(Inhomogeneous $\mathbf{H}^{-1} \widetilde{\mathbf{u}}_{i}^{\prime}$$\| \mathbf{H}^{-1} \mathbf{u}_{i}^{\prime}$

Robust homography estimation

RANSAC estimation of homography

For a set of point-correspondences $S=\left\{\mathbf{u}_{i} \mapsto \mathbf{u}_{i}^{\prime}\right\}$, perform N iterations, where N is determined adaptively

1. Estimate $\mathbf{H}_{t s t}$ from 4 random correspondences $\mathbf{u}_{\boldsymbol{i}} \mapsto \mathbf{u}_{i}^{\prime}$ using the basic DLT algorithm
2. Determine the set of inlier-correspondences $S_{t s t}=\left\{\mathbf{u}_{\boldsymbol{i}} \mapsto \mathbf{u}_{i}^{\prime}\right.$ such that $\left.\epsilon_{i}<t\right\}$

Here one can choose $\epsilon_{i}=d\left(\mathbf{H} \mathbf{u}_{i}, \mathbf{u}_{i}^{\prime}\right)+d\left(\mathbf{u}_{i}, \mathbf{H}^{-1} \mathbf{u}_{i}^{\prime}\right)$ and $t=\sqrt{5.99} \sigma$ where σ is the expected uncertainty in key-point positions
3. If $\left|S_{t s t}\right|>\left|S_{I N}\right|$ update N, homography and inlier set: $\mathbf{H}=\mathbf{H}_{t s t}, S_{I N}=S_{t s t}$

- Finally we would typically re-estimate \mathbf{H} from all correspondences in $S_{I N}$
- Normalized DLT
- Minimize $\epsilon=\sum \epsilon_{i}$ in an iterative optimization method like Levenberg Marquardt

Image mosaicing

- Let us compose these two images into a larger image

Image mosaicing

- Find key points and represent by descriptors

Image mosaicing

- Establish point-correspondences by matching descriptors
- Several wrong correspondences

Image mosaicing

- Establish point-correspondences by matching descriptors
- Several wrong correspondences

Image mosaicing

H

- Estimate homography $\mathbf{H} \widetilde{\mathbf{u}}=\widetilde{\mathbf{u}}^{\prime}$
- OpenCV
\#include "opencv2/calib3d.hpp" cv::findHomography(srcPoints, dstPoints, CV_RANSAC);
- Matlab
tform = estimateGeometricTransform(srcPoints,dstPoints,'projective');

Image mosaicing

- Represent the images in common coordinates (Note the additional translation!)
- OpenCV
\#include "opencv2/calib3d.hpp"
cv::warpPerspective(img1, img2, H, output_size);
- Matlab
img2 = imwarp(img1,tform);

Image mosaicing

- Now we can compose the images

SVD

Singular Value Decomposition

The singular value decomposition of a real $m \times n$ matrix \mathbf{A} is a factorization $\mathbf{A}=\mathbf{U S V}^{T}$

Here \mathbf{U} is a orthogonal $m \times m$ matrix, \mathbf{V} is a orthogonal $n \times n$ matrix and \mathbf{S} is a real positive diagonal $m \times n$ matrix

The diagonal entries of $\boldsymbol{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{\min (m, n)}\right)$ are known as the singular values of \mathbf{A} and the columns of $\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right]$ and $\mathbf{V}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ are known as the left and right singular vectors of A respectively

The nullspace of \mathbf{A} is the span of the right singular vectors \mathbf{v}_{i} that corresponds to a zero singular value s_{i} (or does not have a corresponding singular value)

How to use

- Matlab
[U,S, V] = svd(A);
Right singular vectors are columns in V
- OpenCV
cv::SVD::compute(A, S, U, Vtranspose, cv::SVD::FULL_UV);
Right singular vectors are rows in Vtranspose
- Eigen

Eigen::JacobiSVDEigen::MatrixXd svd(A, Eigen::ComputeFullU | Eigen::ComputeFullV); Right singular vectors are columns in svd.matrixV()

SVD

Singular Value Decomposition

The singular value decomposition of a real $m \times n$ matrix \mathbf{A} is a factorization $\mathbf{A}=\mathbf{U S V}^{T}$

Here \mathbf{U} is a orthogonal $m \times m$ matrix, \mathbf{V} is a orthogonal $n \times n$ matrix and \mathbf{S} is a real positive diagonal $m \times n$ matrix

The diagonal entries of $\mathbf{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{\min (m, n)}\right)$ are known as the singular values of \mathbf{A} and the columns of $\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right]$ and $\mathbf{V}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ are known as the left and right singular vectors of A respectively

The nullspace of \mathbf{A} is the span of the right singular vectors \mathbf{v}_{i} that corresponds to a zero singular value s_{i} (or does not have a corresponding singular value)

Applications of SVD

Solving homogeneous linear equations like

$$
\mathbf{A h}=\mathbf{0}
$$

Method

For theoretical problems, $\mathbf{h} \in \operatorname{null}(\mathbf{A})$ so \mathbf{h} is a linear combination of the right singular vectors \mathbf{v}_{i} that correspond to a zero singular value s_{i}

$$
\mathbf{h}=\sum k_{i} \mathbf{v}_{i} ; k_{i} \in \mathbb{R}, s_{i}=0 \text { (or missing) }
$$

For practical problems, the presence of noise force us to expand the solution by including those right singular vectors that correspond to small singular values $s_{i} \approx 0$

$$
\mathbf{h}=\sum k_{i} \mathbf{v}_{i} ; k_{i} \in \mathbb{R}, s_{i} \approx 0 \text { (or missing) }
$$

SVD

Example

$$
\begin{aligned}
& \mathbf{A x}=\mathbf{0} \\
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

From $[\mathbf{U}, \mathbf{S}, \mathbf{V}]=\operatorname{svd}(\mathbf{A})$ we get

$$
\begin{aligned}
& \mathbf{U}=\left[\begin{array}{cc}
-0.3863 & -0.9224 \\
-0.9224 & 0.3863
\end{array}\right] \mathbf{S}=\left[\begin{array}{ccc}
9.5080 & 0 & 0 \\
0 & 0.7729 & 0
\end{array}\right] \\
& \mathbf{V}=\left[\begin{array}{lcc}
-0.4287 & 0.8060 & 0.4082 \\
-0.5663 & 0.1124 & -0.8165 \\
-0.7039 & -0.5812 & 0.4082
\end{array}\right]
\end{aligned}
$$

From this we see that A has:

- 2 left singular vectors

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
-0.3863 \\
-0.9224
\end{array}\right] \quad \mathbf{u}_{2}=\left[\begin{array}{c}
-0.9224 \\
0.3863
\end{array}\right]
$$

- 2 nonzero singular values

$$
s_{1}=9.5080 \quad s_{2}=0.7729
$$

- 3 right singular vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
-0.4287 \\
-0.5663 \\
-0.7039
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
0.8060 \\
0.1124 \\
-0.5812
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{c}
0.4082 \\
-0.8165 \\
0.4082
\end{array}\right]
$$

Since \mathbf{v}_{3} does not have a corresponding singular value, $\mathbf{x}=\mathbf{v}_{3}$ is a non-trivial solution to $\mathbf{A x}=\mathbf{0}$ and $\mathbf{x}=k \cdot \mathbf{v}_{3} ; k \in \mathbb{R} \backslash\{0\}$ is the family of all non-trivial solutions

SVD

Example

$$
\begin{gathered}
\mathbf{A x}=\mathbf{0} \\
{\left[\begin{array}{lll}
1.0792 & 2.0656 & 3.0849 \\
4.0959 & 5.0036 & 6.0934 \\
1.0679 & 2.0743 & 3.0655 \\
4.0758 & 5.0392 & 6.0171
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{gathered}
$$

This time singular value decomposition give us the following singular values and right singular vectors:

$$
\begin{aligned}
& s_{1}=13.6295 \quad s_{2}=1.0849 \quad s_{3}=0.0506 \\
& \mathbf{v}_{1}=\left[\begin{array}{l}
-0.4336 \\
-0.5635 \\
-0.7032
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-0.8103 \\
-0.0975 \\
0.5778
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{c}
0.3942 \\
-0.8203 \\
0.4143
\end{array}\right]
\end{aligned}
$$

This time all right singular vectors correspond to a non-zero singular value, so the equation does not have any non-trivial solutions!

If this equation came from a practical problem, instead of looking for solutions to $\mathbf{A x}=\mathbf{0}$, we might be looking for the \mathbf{x} that minimize $\|\mathbf{A x}\|$

Since $s_{1} \not \approx 0, s_{2} \not \approx 0, s_{3} \approx 0$, we would conclude that $\mathbf{x}=\mathbf{v}_{3}$ solves the equation in a least-squares sense

Check:

$$
\mathbf{A v}_{3}=\left[\begin{array}{c}
0.0091 \\
0.4288 \\
-0.0105 \\
-0.0341
\end{array}\right]
$$

Summary

- Homography $\mathbf{H} \widetilde{\mathbf{u}}=\widetilde{\mathbf{u}}^{\prime}$

$$
\mathbf{H}=\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]
$$

- Improve estimate by normalized DLT on inliers or iterative methods for an even better estimate
- Additional reading
- Szeliski: 6.1.1-6.1.3
- Wrong correspondences are common
- RANSAC estimation
- Basic DLT (Direct Linear Transform) on 4 random correspondences
- Inliers determined from the reprojection error $\epsilon_{i}=d\left(\mathbf{H} \mathbf{u}_{i}, \mathbf{u}_{i}^{\prime}\right)+d\left(\mathbf{u}_{i}, \mathbf{H}^{-1} \mathbf{u}_{i}^{\prime}\right)$

