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Homographies induced by central projection

2

𝐇𝐇

• Homography 𝐇𝐇�𝐮𝐮 = �𝐮𝐮′

𝐇𝐇 =
ℎ1 ℎ2 ℎ3
ℎ4 ℎ5 ℎ6
ℎ7 ℎ8 ℎ9

• Point-correspondences can be determined automatically
• Erroneous correspondences are common
• Robust estimation is required to find 𝐇𝐇
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Homographies induced by central projection
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Estimating the homography between overlapping images

• Establish point correspondences 𝐮𝐮𝑖𝑖 ↔ 𝐮𝐮′𝑖𝑖
– Find key points 𝐮𝐮𝑖𝑖 ∈ Img1 and 𝐮𝐮′𝑖𝑖 ∈ Img2
– Represent key points by suitable descriptors
– Determine correspondences 𝐮𝐮𝑖𝑖 ↔ 𝐮𝐮′𝑖𝑖 by matching descriptors
– Some wrong correspondences are to be expected

• Estimate the homography 𝐇𝐇 such that 𝐮𝐮′𝑖𝑖 = 𝐇𝐇𝐮𝐮𝑖𝑖 ∀𝑖𝑖
– Robust estimation with RANSAC
– Improved estimation based on RANSAC inliers

• This homography enables us to compose the images into a 
larger image
– Image mosaicing
– Panorama

4
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Adaptive RANSAC

5

Objective
To robustly fit a model 𝐲𝐲 = 𝑓𝑓 𝐱𝐱;𝛂𝛂 to a data set 𝑆𝑆 containing outliers

Algorithm
1. Let 𝑁𝑁 = ∞, 𝑆𝑆𝐼𝐼𝐼𝐼 = ∅ and #𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0

2. while 𝑁𝑁 > #𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 repeat 3-5

3. Estimate parameters 𝛂𝛂𝑡𝑡𝑡𝑡𝑡𝑡 from a random 𝑛𝑛-tuple from 𝑆𝑆

4. Determine inlier set 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡, i.e. data points within a distance 𝑡𝑡 of the model 𝐲𝐲 = 𝑓𝑓 𝐱𝐱;𝛂𝛂𝑡𝑡𝑡𝑡𝑡𝑡

5. If 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 > 𝑆𝑆𝐼𝐼𝐼𝐼 , set 𝑆𝑆𝐼𝐼𝐼𝐼 = 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡, 𝛂𝛂 = 𝛂𝛂𝑡𝑡𝑡𝑡𝑡𝑡, 𝜔𝜔 = 𝑆𝑆𝐼𝐼𝐼𝐼
𝑆𝑆

and 𝑁𝑁 = 𝑙𝑙𝑙𝑙𝑙𝑙 1−𝑝𝑝
𝑙𝑙𝑙𝑙𝑙𝑙 1−𝜔𝜔𝑛𝑛 with 𝑝𝑝 = 0.99

Increase #𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 by 1
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Estimating the homography

• Estimating the homography in a RANSAC scheme requires
1. A basic homography estimation method for 𝑛𝑛 point-correspondences
2. A way to determine the inlier set of point-correspondences for a given homography

6
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Estimating the homography

• Estimating the homography in a RANSAC scheme requires
1. A basic homography estimation method for 𝒏𝒏 point-correspondences
2. A way to determine the inlier set of point-correspondences for a given homography

• The homography has 8 degrees of freedom, but it is custom to treat all 9 entries of the matrix 
as unknowns instead of setting one of the entries to 1 which excludes all potential solutions 
where this entry is 0

• Let us solve the equation 𝐇𝐇�𝐮𝐮 = �𝐮𝐮′ for the entries of the homography matrix
𝐇𝐇�𝐮𝐮 = �𝐮𝐮′
ℎ1 ℎ2 ℎ3
ℎ4 ℎ5 ℎ6
ℎ7 ℎ8 ℎ9

𝑢𝑢
𝑣𝑣
1

=
𝑢𝑢′
𝑣𝑣′
1
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Basic homography estimation
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Basic homography estimation

Observe that the third row in 𝐀𝐀 is a linear combination of the first and second row
𝑟𝑟𝑟𝑟𝑟𝑟3 = −𝑢𝑢′ � 𝑟𝑟𝑟𝑟𝑟𝑟1 − 𝑣𝑣′ � 𝑟𝑟𝑟𝑟𝑟𝑟2

Hence every correspondence 𝐮𝐮𝑖𝑖 ↔ 𝐮𝐮′𝑖𝑖 contribute with 2 equations in the 9 unknown entries
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Basic homography estimation

• Since 𝐇𝐇 (and thus 𝐡𝐡) is homogeneous, we 
only need the matrix 𝐀𝐀 to have rank 8 in 
order to determine 𝐡𝐡 up to scale

• It is sufficient with 4 point correspondences 
where no 3 points are collinear

• We can calculate the non-trivial solution to 
the equation 𝐀𝐀𝐀𝐀 = 𝟎𝟎 by SVD

svd 𝐀𝐀 = 𝐔𝐔𝐔𝐔𝐕𝐕𝑇𝑇

• The solution is given by the right singular 
vector without a singular value which is the 
last column of 𝐕𝐕, i.e. 𝐡𝐡 = 𝐯𝐯9
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Basic homography estimation

• Estimating the homography in a RANSAC scheme requires
1. A basic homography estimation method for 𝒏𝒏 point-correspondences
2. A way to determine which of the point correspondences that are inliers for a given homography

11

Direct Linear Transform

1. Build the matrix 𝐀𝐀 from at least 4 point-correspondences 𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖 ↔ 𝑢𝑢′𝑖𝑖 ,𝑣𝑣′𝑖𝑖
2. Obtain the SVD of 𝐀𝐀: 𝐀𝐀 = 𝐔𝐔𝐔𝐔𝐕𝐕𝑇𝑇
3. If 𝐒𝐒 is diagonal with positive values in descending order along the main diagonal, 

then 𝐡𝐡 equals the last column of 𝐕𝐕
4. Reconstruct 𝐇𝐇 from 𝐡𝐡

1 1 1 1 1 1 1

1 1 1 1 1 1 1

0 0 0 1
1 0 0 0

u v v u v v v
u v u u u v u

′ ′ ′− − − 
 ′ ′ ′= − − − 
  

A
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Basic homography estimation

• The basic DLT algorithm is never used with more than 4 point-correspondences
• This is because the algorithm performs better when all the terms of 𝐴𝐴 has a similar scale

– Note that some of the terms will always be of scale 1
• To achieve this, it is common to extend the algorithm with a normalization and a 

denormalization step

12

Normalized Direct Linear Transform
1. Normalize the set of points 𝐮𝐮𝑖𝑖 = 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 𝑇𝑇 by computing a similarity transform 𝑇𝑇 that 

translates the centroid to the origin and scales such that the average distance from 
the origin is 2

2. In the same way normalize the set of points 𝐮𝐮′𝑖𝑖 = 𝑢𝑢′𝑖𝑖 ,𝑣𝑣′𝑖𝑖 𝑇𝑇 by computing a similarity 
transform 𝐓𝐓′

3. Apply the basic DLT algorithm on the normalized points to obtain a homography �𝐇𝐇
4. Denormalize to get the homography: 𝐇𝐇 = 𝐓𝐓′−1�𝐇𝐇𝐓𝐓
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Basic homography estimation

• Estimating the homography in a RANSAC scheme requires
1. A basic homography estimation method for 𝑛𝑛 point-correspondences
2. A way to determine the inlier set of point-correspondences for a given homography

• For a point correspondence 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 ↔ 𝑢𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑣𝑖𝑖 and homography 𝐇𝐇, we can choose from 
several errors
– Algebraic error:  𝜀𝜀𝑖𝑖 = 𝐀𝐀𝑖𝑖𝐡𝐡 where

– Geometric errors:
1. 𝜀𝜀𝑖𝑖 = 𝑑𝑑 𝐇𝐇𝐮𝐮𝑖𝑖 ,𝐮𝐮′𝑖𝑖 + 𝑑𝑑 𝐮𝐮𝑖𝑖 ,𝐇𝐇−1𝐮𝐮′𝑖𝑖 (Reprojection error)
2. 𝜀𝜀𝑖𝑖 = 𝑑𝑑 𝐮𝐮𝑖𝑖 ,𝐇𝐇−1𝐮𝐮′𝑖𝑖
3. 𝜀𝜀𝑖𝑖 = 𝑑𝑑 𝐇𝐇𝐮𝐮𝑖𝑖 ,𝐮𝐮′𝑖𝑖

13
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=  ′ ′ ′− − − 
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Notation
Euclidean distance 𝑑𝑑 �,�

Inhomogenous 𝐇𝐇�𝐮𝐮𝑖𝑖 𝐇𝐇𝐮𝐮𝑖𝑖
Inhomogeneous 𝐇𝐇−1�𝐮𝐮′𝑖𝑖 𝐇𝐇−1𝐮𝐮′𝑖𝑖
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Robust homography estimation

• Finally we would typically re-estimate 𝐇𝐇 from all correspondences in 𝑆𝑆𝐼𝐼𝐼𝐼
– Normalized DLT
– Minimize ϵ = ∑𝜖𝜖𝑖𝑖 in an iterative optimization method like Levenberg Marquardt

14

RANSAC estimation of homography
For a set of point-correspondences S = 𝐮𝐮𝒊𝒊 ↦ 𝐮𝐮′𝑖𝑖 , perform 𝑁𝑁 iterations, where 𝑁𝑁 is determined 
adaptively

1. Estimate 𝐇𝐇𝑡𝑡𝑡𝑡𝑡𝑡 from 4 random correspondences 𝐮𝐮𝒊𝒊 ↦ 𝐮𝐮′𝑖𝑖 using the basic DLT algorithm
2. Determine the set of inlier-correspondences 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐮𝐮𝒊𝒊 ↦ 𝐮𝐮′𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜖𝜖𝑖𝑖 < 𝑡𝑡

Here one can choose 𝜖𝜖𝑖𝑖 = 𝑑𝑑 𝐇𝐇𝐮𝐮𝑖𝑖 ,𝐮𝐮′𝑖𝑖 + 𝑑𝑑 𝐮𝐮𝑖𝑖 ,𝐇𝐇−1𝐮𝐮′𝑖𝑖 and 𝑡𝑡 = 5.99𝜎𝜎 where 𝜎𝜎 is the 
expected uncertainty in key-point positions

3. If 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 > 𝑆𝑆𝐼𝐼𝐼𝐼 update 𝑁𝑁, homography and inlier set: 𝐇𝐇 = 𝐇𝐇𝑡𝑡𝑡𝑡𝑡𝑡, 𝑆𝑆𝐼𝐼𝐼𝐼 = 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡
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Image mosaicing

15

• Let us compose these two images into a larger image
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Image mosaicing

• Find key points and represent by descriptors

16
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Image mosaicing

17

• Establish point-correspondences by matching descriptors 
• Several wrong correspondences
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Image mosaicing

18

• Establish point-correspondences by matching descriptors 
• Several wrong correspondences
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Image mosaicing

• Estimate homography 𝐇𝐇�𝐮𝐮 = �𝐮𝐮′

– OpenCV
#include "opencv2/calib3d.hpp"
cv::findHomography(srcPoints, dstPoints, CV_RANSAC);

– Matlab
tform = estimateGeometricTransform(srcPoints,dstPoints,’projective’);

19

𝐇𝐇
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Image mosaicing

• Represent the images in common coordinates  (Note the additional translation!)
– OpenCV

#include "opencv2/calib3d.hpp"
cv::warpPerspective(img1, img2, H, output_size);

– Matlab
img2 = imwarp(img1,tform);

20
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Image mosaicing

• Now we can compose the images

21
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Overwriting
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Blending with a ramp
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Blending with a ramp 
+ histogram 
equalization
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SVD
Singular Value Decomposition
The singular value decomposition of a real 𝑚𝑚 × 𝑛𝑛
matrix 𝐀𝐀 is a factorization 𝐀𝐀 = 𝐔𝐔𝐔𝐔𝐕𝐕𝑇𝑇

Here 𝐔𝐔 is a orthogonal 𝑚𝑚 × 𝑚𝑚 matrix, 𝐕𝐕 is a 
orthogonal 𝑛𝑛 × 𝑛𝑛 matrix and 𝐒𝐒 is a real positive 
diagonal 𝑚𝑚 × 𝑛𝑛 matrix

The diagonal entries of 𝐒𝐒 = diag 𝑠𝑠1, … , 𝑠𝑠min 𝑚𝑚,𝑛𝑛 are 
known as the singular values of 𝐀𝐀 and the columns 
of 𝐔𝐔 = 𝐮𝐮1, … ,𝐮𝐮𝑚𝑚 and 𝐕𝐕 = 𝐯𝐯1, … , 𝐯𝐯𝑛𝑛 are known as 
the left and right singular vectors of 𝐀𝐀 respectively

The nullspace of 𝐀𝐀 is the span of the right singular 
vectors 𝐯𝐯𝑖𝑖 that corresponds to a zero singular value 
𝑠𝑠𝑖𝑖 (or does not have a corresponding singular value)

How to use
• Matlab

[U,S,V] = svd(A);
Right singular vectors are columns in V

• OpenCV
cv::SVD::compute(A, S, U, Vtranspose, 
cv::SVD::FULL_UV);
Right singular vectors are rows in Vtranspose

• Eigen
Eigen::JacobiSVD<Eigen::MatrixXd> svd(A, 
Eigen::ComputeFullU | Eigen::ComputeFullV);
Right singular vectors are columns in svd.matrixV()

25
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SVD
Applications of SVD
Solving homogeneous linear equations like 

𝐀𝐀𝐀𝐀 = 𝟎𝟎

Method
For theoretical problems, 𝐡𝐡 ∈ null 𝐀𝐀 so 𝐡𝐡 is a 
linear combination of the right singular vectors 𝐯𝐯𝑖𝑖
that correspond to a zero singular value 𝑠𝑠𝑖𝑖

𝐡𝐡 = �𝑘𝑘𝑖𝑖𝐯𝐯𝑖𝑖 ; 𝑘𝑘𝑖𝑖 ∈ ℝ, 𝑠𝑠𝑖𝑖 = 0 (or missing)

For practical problems, the presence of noise force 
us to expand the solution by including those right 
singular vectors that correspond to small singular 
values 𝑠𝑠𝑖𝑖 ≈ 0

𝐡𝐡 = �𝑘𝑘𝑖𝑖𝐯𝐯𝑖𝑖 ; 𝑘𝑘𝑖𝑖 ∈ ℝ, 𝑠𝑠𝑖𝑖 ≈ 0 (or missing)

26

Singular Value Decomposition
The singular value decomposition of a real 𝑚𝑚 × 𝑛𝑛
matrix 𝐀𝐀 is a factorization 𝐀𝐀 = 𝐔𝐔𝐔𝐔𝐕𝐕𝑇𝑇

Here 𝐔𝐔 is a orthogonal 𝑚𝑚 × 𝑚𝑚 matrix, 𝐕𝐕 is a 
orthogonal 𝑛𝑛 × 𝑛𝑛 matrix and 𝐒𝐒 is a real positive 
diagonal 𝑚𝑚 × 𝑛𝑛 matrix

The diagonal entries of 𝐒𝐒 = diag 𝑠𝑠1, … , 𝑠𝑠min 𝑚𝑚,𝑛𝑛 are 
known as the singular values of 𝐀𝐀 and the columns 
of 𝐔𝐔 = 𝐮𝐮1, … ,𝐮𝐮𝑚𝑚 and 𝐕𝐕 = 𝐯𝐯1, … , 𝐯𝐯𝑛𝑛 are known as 
the left and right singular vectors of 𝐀𝐀 respectively

The nullspace of 𝐀𝐀 is the span of the right singular 
vectors 𝐯𝐯𝑖𝑖 that corresponds to a zero singular value 
𝑠𝑠𝑖𝑖 (or does not have a corresponding singular value)
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SVD
Example

From [𝐔𝐔, 𝐒𝐒,𝐕𝐕] = 𝑠𝑠𝑠𝑠𝑠𝑠(𝐀𝐀) we get

From this we see that 𝐀𝐀 has:
• 2 left singular vectors

• 2 nonzero singular values

• 3 right singular vectors

Since 𝐯𝐯3 does not have a corresponding singular 
value, 𝐱𝐱 = 𝐯𝐯3 is a non-trivial solution to 𝐀𝐀𝐱𝐱 = 𝟎𝟎 and 
𝐱𝐱 = 𝑘𝑘 � 𝐯𝐯3; 𝑘𝑘 ∈ ℝ\ 0 is the family of all non-trivial 
solutions
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1 2 3 0
4 5 6 0

x
y
z

=

 
     =         

Ax 0

0.3863 0.9224 9.5080 0 0
0.9224 0.3863 0 0.7729 0

0.4287 0.8060 0.4082
0.5663 0.1124 0.8165
0.7039 0.5812 0.4082

− −   
= =   −   

− 
 = − − 
 − − 

U S

V

1 2 3

0.4287 0.8060 0.4082
0.5663 0.1124 0.8165
0.7039 0.5812 0.4082

−     
     = − = = −     
     − −     

v v v

1 29.5080 0.7729s s= =

1 2

0.3863 0.9224
0.9224 0.3863
− −   

= =   −   
u u
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This time singular value decomposition give us the 
following singular values and right singular vectors:

This time all right singular vectors correspond to a 
non-zero singular value, so the equation does not 
have any non-trivial solutions!

If this equation came from a practical problem, instead of 
looking for solutions to 𝐀𝐀𝐀𝐀 = 𝟎𝟎, we might be looking for 
the 𝐱𝐱 that minimize 𝐀𝐀𝐀𝐀

Since 𝑠𝑠1 ≉ 0, 𝑠𝑠2 ≉ 0, 𝑠𝑠3 ≈ 0, we would conclude that 
𝐱𝐱 = 𝐯𝐯3 solves the equation in a least-squares sense

Check:
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1.0792 2.0656 3.0849
4.0959 5.0036 6.0934 0
1.0679 2.0743 3.0655 0
4.0758 5.0392 6.0171

x
y
z

=

 
       =          

 

Ax 0

1 2 3

1 2 3

13.6295 1.0849 0.0506
0.4336 0.8103 0.3942
0.5635 0.0975 0.8203
0.7032 0.5778 0.4143

s s s= = =

− −     
     = − = − = −     
     −     

v v v 3

0.0091
0.4288
0.0105
0.0341

 
 
 =
 −
 − 

Av
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Summary

• Homography 𝐇𝐇�𝐮𝐮 = �𝐮𝐮′

𝐇𝐇 =
ℎ1 ℎ2 ℎ3
ℎ4 ℎ5 ℎ6
ℎ7 ℎ8 ℎ9

• Automatic point-correspondences

• Wrong correspondences are common

• RANSAC estimation
– Basic DLT (Direct Linear Transform)

on 4 random correspondences
– Inliers determined from the reprojection

error 𝜖𝜖𝑖𝑖 = 𝑑𝑑 𝐇𝐇𝐮𝐮𝑖𝑖 ,𝐮𝐮′𝑖𝑖 + 𝑑𝑑 𝐮𝐮𝑖𝑖 ,𝐇𝐇−1𝐮𝐮′𝑖𝑖

• Improve estimate by normalized DLT on 
inliers or iterative methods for an even 
better estimate

• Additional reading
– Szeliski: 6.1.1 – 6.1.3
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