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Lecture 6.2 
An introduction to nonlinear least squares 

Trym Vegard Haavardsholm 
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How can solve the indirect tracking problem? 
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How can solve the indirect tracking problem? 
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2
argmin ( )

cw

w
cw cw i i

i
π∗ = −∑

T
T T x u

Minimize geometric error with nonlinear least squares! 
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Problem formulation 

Consider a set of m possibly nonlinear equations  
in n unknowns 𝐱𝐱 = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 𝑇𝑇 written as 

4 

( ) 0, 1, ,ie i m= =x  : n
ie → 



TEK5030 

Problem formulation 

Consider a set of m possibly nonlinear equations  
in n unknowns 𝐱𝐱 = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 𝑇𝑇 written as 

5 

ith equation 

: n
ie → ( ) 0, 1, ,ie i m= =x 



TEK5030 

Problem formulation 

Consider a set of m possibly nonlinear equations  
in n unknowns 𝐱𝐱 = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 𝑇𝑇 written as 
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ith error or residual 

: n
ie → ( ) 0, 1, ,ie i m= =x 
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Problem formulation 

Consider a set of m possibly nonlinear equations  
in n unknowns 𝐱𝐱 = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 𝑇𝑇 written as 
 
 
 
We can write these equations on vector form 
 
 
 
where 
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( ) 0, 1, ,ie i m= =x 
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Problem formulation 

It is often not possible to find an exact solution to this problem. 
 
We can instead seek an approximate solution  
that minimizes the sum of squares of the residuals 
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2( ) ( ) ( ) ( )Tf e e e= =x x x x
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Problem formulation 

It is often not possible to find an exact solution to this problem. 
 
We can instead seek an approximate solution  
that minimizes the sum of squares of the residuals 
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The objective function  

2( ) ( ) ( ) ( )Tf e e e= =x x x x
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Problem formulation 

It is often not possible to find an exact solution to this problem. 
 
We can instead seek an approximate solution  
that minimizes the sum of squares of the residuals 
 
 
 
This means that we want to find the 𝐱𝐱 that minimizes the objective function: 
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2argmin ( ) argmin ( )f e∗ = =
x x

x x x

2( ) ( ) ( ) ( )Tf e e e= =x x x x
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Linear least squares 

When the equations are linear, 
we can obtain an objective function on the form 
 
 
A solution is required to have zero gradient: 
 
 
This results in the normal equations,  
 
 
 
 
 
which can be solved with Cholesky- or QR factorization. 
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Linear least squares 

When the equations are linear, 
we can obtain an objective function on the form 
 
 
A solution is required to have zero gradient: 
 
 
This results in the normal equations,  
 
 
 
 
 
which can be solved with Cholesky- or QR factorization. 
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=
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A Ax A b
x A A A b
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Read more about LLS: 
• http://vmls-book.stanford.edu/vmls.pdf 

 

http://vmls-book.stanford.edu/vmls.pdf
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Nonlinear least squares 

Nonlinear least squares problems cannot be solved directly,  
but require an iterative procedure starting from a suitable initial estimate: 
 

13 

olve the linearized problemS

Linearize the problem

Update the estimate

Choose a suitable inital estimate
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Nonlinear MAP inference for state estimation 

We will use nonlinear least squares to solve state estimation problems  
based on measurements and corresponding measurement models 
 
Let 𝑋𝑋 = 𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑘𝑘  be the set of all state variables,  
and 𝑍𝑍 = 𝐳𝐳1, 𝐳𝐳2, … , 𝐳𝐳𝑚𝑚  be the set of all measurements. 
 
We say that 𝑋𝑋𝑖𝑖 are the state variables involved in measurement 𝐳𝐳𝑖𝑖. 
 
We are interested in estimating the unknown state variables 𝑋𝑋, given the measurements 𝑍𝑍. 
The Maximum a Posteriori estimate is given by: 
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argmax ( | )MAP

X
X p X Z=
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Nonlinear MAP inference for state estimation 

Measurement model: 
 
 
Measurement prediction function: 
 
 
Measurement error function: 
 
 
Objective function: 
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ˆ ( )i i ih X=z

where                       is the Mahalanobis norm  2 1T −=
Σ

e e Σ e



TEK5030 

Nonlinear MAP inference for state estimation 

Measurement model: 
 
 
Measurement prediction function: 
 
 
Measurement error function: 
 
 
Objective function: 
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( ) ( )i i i i ie X h X= − z
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i i i
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f X h X
=

= −∑ Σ
z

It turns out that the nonlinear least squares solution 
to this problem is the MAP estimate! 
 

( ) , ( , )i i i ih X Nη η= +z 0 Σ

ˆ ( )i i ih X=z

where                       is the Mahalanobis norm.  2 1T −=
Σ
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This results in the nonlinear least squares problem: 
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Nonlinear MAP inference for state estimation 

Measurement model: 
 
 
Measurement prediction function: 
 
 
Measurement error function: 
 
 
Objective function: 
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It turns out that the nonlinear least squares solution 
to this problem is the MAP estimate! 
 
Assume for now that all              
This simplifies our objective to: 

where                       is the Mahalanobis norm.  2 1T −=
Σ

e e Σ e

This results in the nonlinear least squares problem: 

.i σ=Σ I
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Example: 
Range-based localization 
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Example: 
Range-based localization 
States: Our location 
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Example: 
Range-based localization 
States: Our location 
 
 
Measurements: Range to landmarks 
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1{ , , }mZ ρ ρ= 
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Example: 
Range-based localization 
States: Our location 
 
 
Measurements: Range to landmarks 
 
 
Measurement model: 
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Example: 
Range-based localization 
States: Our location 
 
 
Measurements: Range to landmarks 
 
 
Measurement model: 
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Example: 
Range-based localization 
Measurement prediction function: 
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Example: 
Range-based localization 
Measurement prediction function: 
 
 
Objective function: 
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Example: 
Range-based localization 
Measurement prediction function: 
 
 
Objective function: 
 
 
 
 
 
Nonlinear least squares problem: 
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We can linearize all measurement prediction functions ℎ𝑖𝑖(𝑋𝑋𝑖𝑖) 
using a simple Taylor expansion at a suitable initial estimate 𝑋𝑋0: 
 
 
 
where the measurement Jacobian 𝐇𝐇𝑖𝑖 is 
 
 
 
 
and 
 
 
 
is the state update vector. 
 

Linearization 
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i i iX X−Δ 

28 
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We can linearize all measurement prediction functions ℎ𝑖𝑖(𝑋𝑋𝑖𝑖) 
using a simple Taylor expansion at a suitable initial estimate 𝑋𝑋0: 
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The Jacobian matrix 
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This results in linear error functions 𝑒𝑒𝑖𝑖(𝑋𝑋𝑖𝑖0 + ∆),  
and we obtain a linear least squares problem in the state update vector ∆: 
 
 
 
 
 
 
 
 
Which, as before, can be solved using the normal equations: 

Solving the linearized problem 
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Example: 
Range-based localization 
Measurement prediction function: 
 
 
Nonlinear least squares problem: 
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Example: 
Range-based localization 
Nonlinear least squares problem: 
 
 
 
Linearized problem at 𝐱𝐱0: 
 
 

32 

( )2

1
argmin ( ; )

m

i i
i

h ρ∗

=

= −∑
X

x x l

( )20

1
argmin ( ; )

m

i i i
i

h ρ∗

=

= + −∑
δ

δ x l H δ

( ; )i ih = −x l x l

( )

0 0

1 2

0 0
1 ,1 2 ,2
0 0

0

0

( ) ( )
i

i i

i i

T

i

i

h h
x x

x l x l

 ∂ ∂
=  ∂ ∂ 
 − −
 =

− −  

−
=

−

x xH

x l x l

x l

x l



TEK5030 

Example: 
Range-based localization 
Nonlinear least squares problem: 
 
 
 
Linearized problem at 𝐱𝐱0: 
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Range-based localization 
Nonlinear least squares problem: 
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Example: 
Range-based localization 
Linearized problem at 𝐱𝐱0: 
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Example: 
Range-based localization 
Linearized problem at 𝐱𝐱0: 
 
 
 
 
 
 
 
 
Solution to the normal equations                      : 
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Solving the nonlinear problem 

We solve the nonlinear least-squares problem 
by iteratively solving the linearized system: 
 

2olve argminS∗ ← −
Δ

Δ AΔ b

, Linearize at tX←A b

1t tX X+ ∗← +Δ

42 

0Choose a suitable inital estimate X
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The Gauss-Newton algorithm 

Given an objective 𝑓𝑓(𝑋𝑋) and a good initial estimate 𝑋𝑋0. 
 

For 𝑡𝑡 = 0, 1, … , 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 
 𝐀𝐀, 𝐛𝐛 ← Linearize 𝑓𝑓(𝑋𝑋) at 𝑋𝑋𝑡𝑡 
 𝚫𝚫 ← Solve the linearized problem with 𝐀𝐀𝑇𝑇𝐀𝐀𝚫𝚫 = 𝐀𝐀𝑇𝑇𝐛𝐛 
 𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝚫𝚫 
  
 Terminate early if 𝑓𝑓(𝑋𝑋) is very small or 𝑋𝑋𝑡𝑡+1 ≈ 𝑋𝑋𝑡𝑡 

43 



TEK5030 

The Gauss-Newton algorithm 

Gauss-Newton actually approximates the Hessian of the objective 𝑓𝑓(𝑋𝑋) as  
 
 
 
 
This approximation is good if we are near the solution and the objective is nearly quadratic. 
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The Gauss-Newton algorithm 

Gauss-Newton actually approximates the Hessian of the objective 𝑓𝑓(𝑋𝑋) as  
 
 
 
 
This approximation is good if we are near the solution and the objective is nearly quadratic. 
 
When the approximation is good: 

– The update direction is good 
– The update step length is good 
– We obtain almost quadratic convergence to a local minimum 
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The Gauss-Newton algorithm 

Gauss-Newton actually approximates the Hessian of the objective 𝑓𝑓(𝑋𝑋) as  
 
 
 
 
This approximation is good if we are near the solution and the objective is nearly quadratic. 
 
When the approximation is poor: 

– The update direction is typically still decent 
– The update step length may be bad 
– The convergence is slower, and we may even diverge 
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Example: 
Range-based localization 
Gauss-Newton optimization 
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Example: 
Range-based localization 
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Example: 
Range-based localization 
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Example: 
Range-based localization 
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Example: 
Range-based localization 
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Example: 
Range-based localization 
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Example: 
Range-based localization 
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Example: 
Range-based localization 
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Trust region 

• The Gauss-Newton method is not guaranteed to converge 
because of the approximate Hessian matrix 
 

• Since the update directions typically are decent, 
we can help with convergence by limiting the step sizes 
– More conservative towards robustness, rather than speed 

 
• Such methods are often called trust region methods, 

and one example is Levenberg-Marquardt 

55 
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The Levenberg–Marquardt algorithm 

Given an objective 𝑓𝑓(𝑋𝑋) and a good initial estimate 𝑋𝑋0. 
 𝜆𝜆 = 10−4 
For 𝑡𝑡 = 0, 1, … , 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 

 𝐀𝐀, 𝐛𝐛 ← Linearize 𝑓𝑓(𝑋𝑋) at 𝑋𝑋𝑡𝑡 
 𝚫𝚫 ← Solve the linearized problem with 𝐀𝐀𝑇𝑇𝐀𝐀 + 𝜆𝜆diag(𝐀𝐀𝑇𝑇𝐀𝐀) 𝚫𝚫 = 𝐀𝐀𝑇𝑇𝐛𝐛 
 if 𝑓𝑓 𝑋𝑋𝑡𝑡 + 𝚫𝚫 < 𝑓𝑓(𝑋𝑋𝑡𝑡)  

 𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝚫𝚫 
 𝜆𝜆 ← 𝜆𝜆/10 

 else 
 𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 
 𝜆𝜆 ← 𝜆𝜆 ∗ 10 
 

 Terminate early if 𝑓𝑓(𝑋𝑋) is very small or 𝑋𝑋𝑡𝑡+1 ≈ 𝑋𝑋𝑡𝑡 
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The Levenberg–Marquardt algorithm 

Given an objective 𝑓𝑓(𝑋𝑋) and a good initial estimate 𝑋𝑋0. 
 𝜆𝜆 = 10−4 
For 𝑡𝑡 = 0, 1, … , 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 

 𝐀𝐀, 𝐛𝐛 ← Linearize 𝑓𝑓(𝑋𝑋) at 𝑋𝑋𝑡𝑡 
 𝚫𝚫 ← Solve the linearized problem with 𝐀𝐀𝑇𝑇𝐀𝐀 + 𝜆𝜆diag(𝐀𝐀𝑇𝑇𝐀𝐀) 𝚫𝚫 = 𝐀𝐀𝑇𝑇𝐛𝐛 
 if 𝑓𝑓 𝑋𝑋𝑡𝑡 + 𝚫𝚫 < 𝑓𝑓(𝑋𝑋𝑡𝑡)  

 𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝚫𝚫 
 𝜆𝜆 ← 𝜆𝜆/10 

 else 
 𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 
 𝜆𝜆 ← 𝜆𝜆 ∗ 10 
 

 Terminate early if 𝑓𝑓(𝑋𝑋) is very small or 𝑋𝑋𝑡𝑡+1 ≈ 𝑋𝑋𝑡𝑡 
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Example: 
Range-based localization 
Levenberg–Marquardt optimization 
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Example: 
Range-based localization 
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Example: 
Range-based localization 
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Example: 
Range-based localization 
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Example: 
Range-based localization 
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Example: 
Range-based localization 
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Example: 
Range-based localization 
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Example: 
Range-based localization 
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Example: 
Range-based localization 
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Example: 
Range-based localization 
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Converged to a local minima 
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Nonlinear MAP inference for state estimation 

Measurement model: 
 
 
Measurement prediction function: 
 
 
Measurement error function: 
 
 
Objective function: 
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It turns out that the nonlinear least squares solution 
to this problem is the MAP estimate! 
 
Assume for now that all              
This simplifies our objective to: 
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100 runs, 𝜎𝜎𝑖𝑖 = 0.1 
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100 runs, 𝜎𝜎1, … , 𝜎𝜎4 = 0.1, 𝜎𝜎5 = 0.3 
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100 runs, 𝜎𝜎1, … , 𝜎𝜎4 = 0.1, 𝜎𝜎5 = 0.3 
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We need to weight each 
measurement according to 
their uncertainty! 
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Weighted nonlinear least squares 

We can rewrite the Mahalanobis norms as 
 
 
 
Hence, we can eliminate the covariances 
by weighting the Jacobian and the prediction error: 
 
 
 
 
This is a form of whitening, 
which eliminates the units of the measurements 
 
 
 

( ) ( ) 22 1 1 2 1 2 1 2TT − − − −= =
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1 2

1 2 0( )
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This results in linear error functions 𝑒𝑒𝑖𝑖(𝑋𝑋𝑖𝑖0 + ∆),  
and we obtain a linear least squares problem in the state update vector ∆: 
 
 
 
 
 
 
 
 
Which, as before, can be solved using the normal equations: 

Weighted linearized problem 

{ }
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100 runs, 𝜎𝜎1, … , 𝜎𝜎4 = 0.1, 𝜎𝜎5 = 0.3 
Unweighted 
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100 runs, 𝜎𝜎1, … , 𝜎𝜎4 = 0.1, 𝜎𝜎5 = 0.3 
Covariance weighted (whitened) 
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Estimating uncertainty in the MAP estimate 

The Hessian at the solution for the weighted problem 
is the inverse of the covariance matrix (the information matrix)! 
 
 
 
 
Using our approximated Hessian,  
we obtain a first order approximation of the true covariance for all states 
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Simple example: 
Two landmarks 
(No noise added to measurements) 
 
 1𝜎𝜎 covariance contours 
 

77 

𝐥𝐥1 

𝐥𝐥2 

1( )T
X X X∗ ∗ ∗

−Σ ≈ A A



TEK5030 

10 runs, 𝜎𝜎1, … , 𝜎𝜎4 = 0.1, 𝜎𝜎5 = 0.3 
 
 1𝜎𝜎 covariance contours 
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Example: 
Range-based localization 
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Summary 

We have seen how we can find the MAP estimate 
of our unknown states given measurements 
 
 
 
by representing it as  
a nonlinear least squares problem 
 
 
 

2olve argminS∗ ← −
Δ

Δ AΔ b

, Linearize at tX←A b

1t tX X+ ∗← +Δ
79 
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We are now almost ready to solve 
 
 
 
 
 
We just need to know how to optimize over poses! 

Summary 
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Further reading 
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http://asrl.utias.utoronto.ca/~tdb/ 
http://asrl.utias.utoronto.ca/~tdb/bib/ba

rfoot_ser17.pdf  

http://frc.ri.cmu.edu/~kaess/pub/Dell
aert17fnt.pdf  

http://vmls-book.stanford.edu/  

http://asrl.utias.utoronto.ca/%7Etdb/
http://asrl.utias.utoronto.ca/%7Etdb/bib/barfoot_ser17.pdf
http://asrl.utias.utoronto.ca/%7Etdb/bib/barfoot_ser17.pdf
http://frc.ri.cmu.edu/%7Ekaess/pub/Dellaert17fnt.pdf
http://frc.ri.cmu.edu/%7Ekaess/pub/Dellaert17fnt.pdf
http://vmls-book.stanford.edu/
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