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How can solve the indirect tracking problem?

Minimize geometric error
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How can solve the indirect tracking problem?

Minimize geometric error with nonlinear least squares!
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Problem formulation

Consider a set of m possibly nonlinear equations
in n unknowns x = [x4, ..., x,,]7 written as

e(x)=0, i=1....,m e :R" >R
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Problem formulation

Consider a set of m possibly nonlinear equations
in n unknowns x = [x4, ..., x,,]7 written as

e(x)=0, i=1....,m e :R" >R

ith equation
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Problem formulation

Consider a set of m possibly nonlinear equations
in n unknowns x = [x4, ..., x,,]7 written as

e(x)=0, i=1....,m e :R" >R

ith error or residual
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Problem formulation

Consider a set of m possibly nonlinear equations
in n unknowns x = [x4, ..., x,,]7 written as

e(x)=0, i=1...,m e..:R" >R

We can write these equations on vector form

e(x)=0,
(x) e:R" > R"

where
I e (x) ]

e(x) =

€, (%)
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Problem formulation

It is often not possible to find an exact solution to this problem.

We can instead seek an approximate solution
that minimizes the sum of squares of the residuals

f(x) =e(x)" e(x) = e(x)[
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Problem formulation

It is often not possible to find an exact solution to this problem.

We can instead seek an approximate solution
that minimizes the sum of squares of the residuals

f(x) =e(x)" e(x) = e(x)[

The objective function
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Problem formulation

It is often not possible to find an exact solution to this problem.

We can instead seek an approximate solution
that minimizes the sum of squares of the residuals

f(x) =e(x)" e(x) = e(x)[

This means that we want to find the x that minimizes the objective function:

x =argmin f(x) = argmin||e(X)”2

X X

TEKS5030
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Linear least squares

When the equations are linear,
we can obtain an objective function on the form

() =eo] =|ax=b|
A solution is required to have zero gradient:
VF(x')=2A" (AX"-b)=0

This results in the normal equations,

ATAX " =A'Db
x =(ATA)'ATb
x'=A'b

which can be solved with Cholesky- or QR factorization.

11
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Linear least squares

When the equations are linear,
we can obtain an objective function on the form

() =eo] =|ax=b|
A solution is required to have zero gradient:
VF(x')=2A" (AX"-b)=0

This results in the normal equations,

ATAX " =A'Db
x =(ATA)'ATb
x'=A'b

which can be solved with Cholesky- or QR factorization.

TEKS5030

Read more about LLS:

http://vmls-book.stanford.edu/vmls.pdf
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Nonlinear least squares

Nonlinear least squares problems cannot be solved directly,

but require an iterative procedure starting from a suitable initial estimate:

Choose a suitable inital estimate

Linearize the problem

Solve the linearized problem

Update the estimate

TEKS5030
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Nonlinear MAP inference for state estimation

We will use nonlinear least squares to solve state estimation problems
based on measurements and corresponding measurement models

Let X = {x{,X,, ..., X} } be the set of all state variables,
and Z = {z,,%,, ..., Z,;,} be the set of all measurements.

We say that X; are the state variables involved in measurement z;.

We are interested in estimating the unknown state variables X, given the measurements Z.
The Maximum a Posteriori estimate is given by:

X" = argmax p(X | Z)
X

TEKS5030
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Nonlinear MAP inference for state estimation

Measurement model:

z,=h(X)+n, n~N(@,X)
Measurement prediction function:
z.=h(X))
Measurement error function:
e(X)=h(X,)~—z,
Objective function:
10 =3 x) =,

where ||e||; = e’ X 'e is the Mahalanobis norm

TEKS5030
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Nonlinear MAP inference for state estimation

Measurement model: This results in the nonlinear least squares problem:
z, = h(X;)+n, n~N(0,X) X :argminZ”hl.(Xl.)—zi”i
X im i
Measurement prediction function: It turns out that the nonlinear least squares solution
2 =h(X) to this problem is the MAP estimate!

Measurement error function:
ei(Xi) — hi(Xi) —Z,
Objective function:

f(X) — i”hi(Xz’)_Zi”;

where ||e||; — e’ X 'e is the Mahalanobis norm.

TEKS5030
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Nonlinear MAP inference for state estimation

Measurement model: This results in the nonlinear least squares problem:
z, = h(X;)+n, n~N(0,X) X :argminZ”hl.(Xl.)—zi”i
X im i
Measurement prediction function: It turns out that the nonlinear least squares solution
2 =h(X) to this problem is the MAP estimate!

Assume for now that all X, =ol.

Measurement error function:
This simplifies our objective to:

(X)=h(X) -z, >
e,(X,)=h(X)-z, X* =argmin ¥ | (X,) -z,
X i=1

Objective function:
f(X) — Z”hi(Xi)_Zi”;
i=l

where ||e||; — e’ X 'e is the Mahalanobis norm.

TEKS5030
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Example:
Range-based localization

3.5

25 .

1.5+
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Example:
Range-based localization

States: Our location

X =X

3.5

25 .

1.5+

0.5

0 1 1 1 1 1 1 1
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Example:
Range-based localization

States: Our location
X =X
Measurements: Range to landmarks

Z={Pps s P}

3.5

25 .

1.5+

0.5

0 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5
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Example:
Range-based localization

States: Our location
X =X
Measurements: Range to landmarks

Z={Pps s P}
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Example:
Range-based localization

States: Our location
X =X
Measurements: Range to landmarks

Z={Pps s P}
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Example:
Range-based localization

States: Our location
X =X
Measurements: Range to landmarks

Z={Pps s P}

Measurement model:

pl.:||x—ll.||+77, n~N(0,0%)

TEKS5030
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Example:
ange-based localization |

States: Our location

"y

X =X

.
wamw

easurements: Range to landmarks

anseEEE

Z={Pps s P}

easurement model: :

l.=||x—ll.||+77, 77~N(0,0'2) -

SRR L,

24
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Example:
Range-based localization

Measurement prediction function:

P, =h(x;1,) =[x -1,

TEK5030 2



Example:
Range-based localization

Measurement prediction function:
P, =h(x;1,) =[x -1,

Objective function:

0= 1)~

=2 (Ix-1]-p)
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Example:
Range-based localization

Measurement prediction function:
P, =h(x;1) =|x -1,

Objective function:
f) =2 Jaxs1) -
i=l
=2 (Ix-1]-p)

Nonlinear least squares problem:

X" = argglin;(nx—]i”_pi )2
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Linearization

We can linearize all measurement prediction functions h;(X;)
using a simple Taylor expansion at a suitable initial estimate X°:

h(X)=h(X]+A)~h(X))+HA,

where the measurement Jacobian H; is

A Ghi (Xz)
o0X. X0
and
A2X X!

Is the state update vector.

TEKS5030
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Linearization

We can linearize all measurement prediction functions h;(X;)
using a simple Taylor expansion at a suitable initial estimate X°:

h(X,;)= hi(XiO +A)= hi(XiO)+HiAi

where the measurement Jacobian H; is

A ahi (Xz)
o0X. X0
and
A2X X!

Is the state update vector.

TEKS5030

f:R" > R"
o (x)
Ox,
of(x)| :
oX |, .
)
Oox,

x e R”

f(x) e R"

o, (x)
Ox

n

of,, (x')
Ox

n

e Rmxn
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Solving the linearized problem

This results in linear error functions e; (X + A),
and we obtain a linear least squares problem in the state update vector A:

A" = argmin Z h,- (Xio) + Hz‘Ai —Z H2
A i

2

— argminz HA, - {Zi —h, (Xio)}
A i

= argminz A A, —bl.||2
A i
= argmin”AA —b||2
A
Which, as before, can be solved using the normal equations:

ATAA = A'Db

TEK5030 %






Example:
Range-based localization

Nonlinear least squares problem:
x" =argmin ) (h(x;1,)-p, )
X i=1
Linearized problem at x°:

o = argmini(h(xo;li)+Hi6—pi )2
d i=1

h(x;1,) =|x—1|

_— Oh(x")  Oh(x")
i Ox, Oox,

0 0
xl_lJ xz_ég

==
(x-1)

_ 0
x" -1

TEKS5030
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Example:
Range-based localization

Nonlinear least squares problem:
X' = arg}r{nin Zm:(h(x;li) -p)
P
Linearized problem at x°:
o = arggnini(h(xo;li) +H.0 - p, )2
P

= argmin Zm:(Hlﬁ — {,Ol. — h(xo;li)})z

5 -

TEKS5030
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Example:
Range-based localization

Nonlinear least squares problem:
X' = arg}r{nin Zm:(h(x;li) -p)
P
Linearized problem at x°:
o = arggnin i(h(xo;li) +H.0 - p, )2
)

. — N ’
— arggnln ;(Hﬁ — {,Ol — h(XO’ li)})

= argmini(Alﬁ —bl.)2

o i=1

TEKS5030
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Example:
Range-based localization

Nonlinear least squares problem:
X' = arg}r{nin Zm:(h(x;li) -p)
P
Linearized problem at x°:
o = arggnin i(h(xo;li) +H.0 - p, )2
)

. — N ’
— arggnln ;(HZS — {,Ol — h(XO’ li)})

m
= argmin Z
d i=1

(A8-b,)

i

P;

0

TEKS5030
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Example: o 1.507 [1.507 [2.007 [2.507 [1.80
Range-based localization L :{1.50}’{2.00}’[1.75}’{1.50}’{2.50}

Nonlinear least squares problem: ;= {0.64, 1.23,1.17,1.47, 1.61}
g S ) y PSO}
X =argmin x;1)—p, =
- ,.:1(( )=p) 3.50
Linearized problem at x°: 0307
T
5 S (h(x%51) + B3 - p,) a g X0 (200
" =argmin x:;1.)+Hd-p, =H, = =
R~ CGL)+HS=p S 0.30
2.00

. — N ’
— arggnln ;(HZS — {,Ol — h(XO’ li)})

=argmin Y (A,5-b,)’

o i=1
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Example:
Range-based localization

Nonlinear least squares problem:
X' = arg}r{nin Zm:(h(x;li) -p)
P
Linearized problem at x°:
o = arggnin i(h(xo;li) +H.0 - p, )2
)

. — N ’
— arggnln ;(HZS — {,Ol — h(XO’ li)})

m
= argmin Z
o i=1

(Ad-b,)

L 1.507[1.507 [2.007] [2.507 [1.80
" 111.501’1 2.00 1’| 1.75 "] 1.50 || 2.50

p, =1{0.64,1.23,1.17,1.47,1.61}

. [1.80
X =
3.50

0.307)
A =H -y _(_200}
S L {0.30}
2.00
[0.30 2.00]

=[0.15 0.99]

2.02

37
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Example:
Range-based localization

Nonlinear least squares problem:
X' = arg}r{nin Zm:(h(x;li) -p)
P
Linearized problem at x°:
o = arggnin i(h(xo;li) +H.0 - p, )2
)

. — N ’
— arggnln ;(HZS — {,Ol — h(XO’ li)})

m
= argmin Z
d i=1

(A8-b,)

L 1.507[1.507 [2.007] [2.507 [1.80
" 111.501’1 2.00 1’| 1.75 "] 1.50 || 2.50

p, =1{0.64,1.23,1.17,1.47,1.61}

. [1.80
X =
3.50

0.307)
A =H -y _(_200}
S L {0.30}
2.00
_[030 2.00] _ [0.15 0.99]
2.02

b, = p, —h(x’1)=0.64—2.02 =—1.38
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Example: 1507 [1.507 [2.007 [2.507 [1.80
Range-based localization lz:{ H H H H }}

1.50 "1 2.00 '{ 1.75 || 1.50 |’| 2.50
Nonlinear least squares problem: ;= {0.64, 1.23,1.17,1.47, 1.61}
L »_[1.80
= g}t(mn;(h(xali) o) X {3.50}
Linearized problem at x°:
8*:argmini(h(x°;ll_)+Hi6— pl.)2 [ 0.15 0.99] (—-1.38"
©o 0.20 0.98 0.29
=arg£ninZ(Hi8—{p,-—h(xo;ll-)})z A=[-0.11 099 b=|-0.59
- ~0.33  0.94 —~0.65
=argmin > (A3-b,)’ 0 1.00]  0.62

o i=1 -

= argmin ||A6 - b||2
0

TEKS5030
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Example:
Range-based localization

Linearized problem at x°:

0 = argmin||A6 —b||2
0

C0.15 0.99] —1.38]
0.20 0.98 ~0.29
A=|-0.11 099 b=|-0.59
~0.33  0.94 —~0.65
0 1.00 0.62

Solution to the normal equations A" A" = A'b:

=012 o TLes
6 = X =X —|—6 =
—-0.47 3.03

TEK5030 4



Solving the nonlinear problem

We solve the nonlinear least-squares problem
by iteratively solving the linearized system:

Choose a suitable inital estimate X"
A,b < Linearize at X'

A" < Solve argmin”AA —b||2
A

X X'+ A

TEKS5030

42



The Gauss-Newton algorithm

Given an objective f(X) and a good initial estimate X°.
Fort=0,1,..,tM%*
A,b « Linearize f(X) at Xt
A < Solve the linearized problem with ATAA = ATb
Xt =X +A

Terminate early if f(X) is very small or Xt*1 ~ Xt

TEKS5030
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The Gauss-Newton algorithm

Gauss-Newton actually approximates the Hessian of the objective f(X) as
" Ge(x) f e (x
e(X ¢ e,
+ > e(x
fj (: OX tj 2; 3 )[:8X8XT

This approximation is good if we are near the solution and the objective is nearly quadratic.

0" f(x)
oOxox"

OX

t

X X

_ (86()()

j:ATA+QzATA

TEKS5030
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The Gauss-Newton algorithm

Gauss-Newton actually approximates the Hessian of the objective f(X) as
" Ge(x) f e (x
e(X ¢ e,
+ > e(x
fj (: OX tj 2; 3 )[:8X8XT

This approximation is good if we are near the solution and the objective is nearly quadratic.

0" f(x)
oOxox"

OX

t

X X

j:ATA+QzATA

_ (86()()

When the
— The
— The
— We obtain almost

TEKS5030
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The Gauss-Newton algorithm

Gauss-Newton actually approximates the Hessian of the objective f(X) as
(ex)| ), & 0%, (%)
e(X ¢ e,
+ > e(x
th ( Ox XJ ; 3 )(ﬁxéxT

This approximation is good if we are near the solution and the objective is nearly quadratic.

0" f(x)
oOxox"

J:ATA+QzATA

[ Oe(x)
y | oox

t
X

When the approximation is poor:

— The
— The update step length may be bad
— The , and we may even diverge

TEKS5030
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Trust region

» The Gauss-Newton method is not guaranteed to converge
because of the approximate Hessian matrix

« Since the update directions typically are decent,
we can help with convergence by limiting the step sizes

— More conservative towards robustness, rather than speed

« Such methods are often called trust region methods,
and one example is Levenberg-Marquardt

TEKS5030
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The Levenberg—Marquardt algorithm

Given an objective f(X) and a good initial estimate X°.
A=10"*
Fort=0,1,..,t"%
A,b « Linearize f(X) at Xt
A < Solve the linearized problem with (ATA + Adiag(ATA))A = ATb
if F(XE+A) < f(XH
Xt =Xxt+A
A< 1/10
else
Xt+1 — Xt
A<= 1%10

Terminate early if f(X) is very small or Xt*1 ~ Xt

TEKS5030
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The Levenberg—Marquardt algorithm

Given an objective f(X) and a good initial estimate X°.

A=10"*

Fort=0,1,..,t"%
A,b « Linearize f(X) at Xt
A < Solve the linearized problem with (ATA + Adiag(ATA))A = ATb
if F(XE+A) < f(XH

Xttl=Xxt+A Accept update, increase trust region
A< 1/10

else -
Xt+1 — Xt

— Reject update, reduce trust region
A<= 1%10

==

Terminate early if f(X) is very small or Xt*1 ~ Xt

TEKS5030
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Example:

Range-based localization

Levenberg—Marquardt optimization

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

/,
/I/ /1

0 0.5 1

TEKS5030
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Example:
Range-based localization
Levenberg—Marquardt optimization

i

35 . ovenborgMorquarc

3'_

15}

WL

05F

% 1 2 3 4 5 5 .
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Example:
Range-based localization

Levenberg—Marquardt optimization

------ Gauss-Newton
35+ —=— Levenberg-Marquardt

Cost
N
N (&)] w _

151

0.5
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Example:
Range-based localization

Levenberg—Marquardt optimization

------ Gauss-Newton
——— Levenberg-Marquardt
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Example:
Range-based localization
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------ Gauss-Newton
——— Levenberg-Marquardt

TEKS5030




Example:
Range-based localization
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——— Levenberg-Marquardt

TEKS5030



Example:
Range-based localization

Levenberg—Marquardt optimization

------ Gauss-Newton
——— Levenberg-Marquardt
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Example:
Range-based localization

Levenberg—Marquardt optimization

------ Gauss-Newton
——— Levenberg-Marquardt
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Example:
Range-based localization
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Example:
Range-based localization

Levenberg—Marquardt optimization
- Slightly different initial estimate

4 r

35}

3_
251
7]
o -
8 2

151

' Converged to a local minima
05 with higher cost!

0 !

0 1 2 3 4 5 6 7
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Nonlinear MAP inference for state estimation

Measurement model: This results in the nonlinear least squares problem:
z, = h(X;)+7, 1n~N(0,X) X :argminZ”hl.(Xl.)—zl.”i
X im i
Measurement prediction function: It turns out that the nonlinear least squares solution
2 = h(X) to this problem is the MAP estimate!

Measurement error function:
ei(Xi) — hi(Xi) —Z,
Objective function:

f(X) — i”hi(Xz')_Zi”;

where ||e||; — e’ X 'e is the Mahalanobis norm.

TEKS5030
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What about
measurement noise?

100 runs, g; = 0.

90

03 04 05 06 07 08 09 1
Cost

TEK5030 o



What about
measurement noise?

100 runs, a4, ...,0, = 0.1,0; = 0.3

60

0 01 02 03 04 05 06 07 038
Cost

.
aaneeendegat

...“

-
YT Ll

CCCT L] .
ws®
-
e
mamumE® .
.
- anes®®
LA

..
L LTTT]

TEKS5030
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4 _ .
What about
measurement noise?

amEEEE L.,

100 runs, a4, ...,0, = 0.1,0; = 0.3

3 -
60 251
ol )| | o
w0l We need to weight each ‘
measurement according to
30

their uncertainty!

1_
0.5
1 1 | | 1 ] 0 1 |
0 0.1 02 03 04 05 06 07 08 09 1

TEKS5030
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Weighted nonlinear least squares

We can rewrite the Mahalanobis norms as
el 27z e= (e (=) = = e

Hence, we can eliminate the covariances

by weighting the Jacobian and the prediction error:
A =X "H,
b, =X,V (z, - (X))

This is a form of whitening,
which eliminates the units of the measurements

TEKS5030
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Weighted linearized problem

This results in linear error functions e; (X + A),
and we obtain a linear least squares problem in the state update vector A:

A" = argminz h(X)+HA, _ZiH
A i

2
X

N b, = Zi_l/z (Zi —h, (Xio))

= argminz A A, —bl.||2
A i

= argmin”AA —b||2
A

Which, as before, can be solved using the normal equations:

ATAA = A'Db

TEK5030 "



What about
measurement noise?

100 runs, a4, ...,0, = 0.1,0; = 0.3
Unweighted

60
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40

30

20

10
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0.2

0.3

0.4
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What about
measurement noise?

100 runs, a4, ...,0, = 0.1,0; = 0.3
Covariance weighted (whitened)

45 -
40
35
30
25
20
15

10

0 2 4 6 8 10 12 14 16

P TTTTT T

Lantt hLTT

- Ty
e

*a

L L L LT,
"
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Estimating uncertainty in the MAP estimate

The Hessian at the solution for the weighted problem
is the inverse of the covariance matrix (the information matrix)!

2
af(XT) :A:Z—l
OxXox" |

Using our approximated Hessian,
we obtain a first order approximation of the true covariance for all states

(AT -1
2. ~(ATA )

TEKS5030
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Simple example:
Two landmarks

(No noise added to measurements)

1o covariance contours

(AT -1
. ~(ALA L)

TEK5030 "



Example:
Range-based localization

10 runs, oy, ..., 0, = 0.1, 0%

1o covariance contours

~ (A;AX* )!

X*

e

ST

.y,

LETT
Tam,

TEKS5030
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Summary

We have seen how we can find the MAP estimate
of our unknown states given measurements

X" = argmax p(X | Z)
X
L Choose a suitable inital estimate X
by representing it as
a nonlinear least squares problem
. L 5 A,b < Linearize at X'
X =argmin Z ||hl (X,)—z, ||Z
X i=1 ’

A" < Solve argmin”AA —b||2
A

XM X'+ A
TEK5030 "



Summary

We are now almost ready to solve

* . oW
T. =argmin Z Hﬂ(Tcwxl. )—u
Tew i

We just need to know how to optimize over poses!

TEKS5030
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Further reading

Foundations ond Trends® in
Robatics
61-2

e
ESTIMATION
FOR ROBOTICS

Stephen Boyd
Lieven Vandenberghe

Introduction to
Applied Linear Algebra

Vectors, Matrices, and Least Squares

i / [ r
TIMOTHY D. o
BARFOOT T g
http://vmls-book.stanford.edu/ http://asrl.utias.utoronto.ca/~tdb/ http://frc.ri.cmu.edu/~kaess/pub/Dell
http://asrl.utias.utoronto.ca/~tdb/bib/ba aert17fnt.pdf

rfoot_ser17.pdf

81
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