Lecture 6.1
 Basic epipolar geometry

Thomas Opsahl

Weekly overview - Stereo imaging

Introduction

- Single-view geometry
- Camera model $P \widetilde{X}=\widetilde{\boldsymbol{u}}$
- Finite projective camera $P=K\left[\begin{array}{ll}R & \boldsymbol{t}\end{array}\right]$
- Undistortion
- Estimating P from 3D-2D correspondences
- Calibration

- PnP

Introduction

- Single-view geometry
- Camera model $P \widetilde{\boldsymbol{X}}=\widetilde{\boldsymbol{u}}$
- Finite projective camera $P=K\left[\begin{array}{ll}R & t\end{array}\right]$
- Undistortion
- Estimating P from 3D-2D correspondences
- Calibration
- PnP
- Two-view geometry
- Epipolar geometry is the geometric relationship between two perspective cameras
- Two camera models $P_{1} \widetilde{\boldsymbol{X}}=\widetilde{\boldsymbol{u}}_{1}, P_{2} \widetilde{\boldsymbol{X}}=\widetilde{\boldsymbol{u}}_{2}$
- Next week - General two-view

Introduction

- Single-view geometry
- Camera model $P \widetilde{\boldsymbol{X}}=\widetilde{\boldsymbol{u}}$
- Finite projective camera $P=K\left[\begin{array}{ll}R & t\end{array}\right]$
- Undistortion
- Estimating P from 3D-2D correspondences
- Calibration
- PnP
- Two-view geometry
- Epipolar geometry is the geometric relationship between two perspective cameras
- Two camera models $P_{1} \widetilde{\boldsymbol{X}}=\widetilde{\boldsymbol{u}}_{1}, P_{2} \widetilde{\boldsymbol{X}}=\widetilde{\boldsymbol{u}}_{2}$
- Next week - General two-view
- This week - Stereo view

Epipolar geometry

- Two-view geometry involve several new geometrical entities compared to single-view geometry

Epipolar geometry

- Two-view geometry involve several new geometrical entities compared to single-view geometry
- The epipolar plane is the plane containing \boldsymbol{X} and the two camera centers \boldsymbol{C}_{1} and \boldsymbol{C}_{2}

บกा 4690

Epipolar geometry

- Two-view geometry involve several new geometrical entities compared to single-view geometry
- The epipolar plane is the plane containing \boldsymbol{X} and the two camera centers \boldsymbol{C}_{1} and \boldsymbol{C}_{2}
- The baseline is the line joining the two camera centers

บกा 4690

Epipolar geometry

- Two-view geometry involve several new geometrical entities compared to single-view geometry
- The epipolar plane is the plane containing \boldsymbol{X} and the two camera centers \boldsymbol{C}_{1} and \boldsymbol{C}_{2}
- The baseline is the line joining the two camera centers
- The epipolar lines are where the epipolar plane intersect the image planes

UTIR4690

Epipolar geometry

- Two-view geometry involve several new geometrical entities compared to single-view geometry
- The epipolar plane is the plane containing \boldsymbol{X} and the two camera centers \boldsymbol{C}_{1} and \boldsymbol{C}_{2}
- The baseline is the line joining the two camera centers
- The epipolar lines are where the epipolar plane intersect the image planes
- The epipoles are where the baseline intersects the two image planes

UTIR4690

Epipolar geometry

- Two-view geometry involve several new geometrical entities compared to single-view geometry
- The epipolar plane is the plane containing \boldsymbol{X} and the two camera centers \boldsymbol{C}_{1} and \boldsymbol{C}_{2}
- The baseline is the line joining the two camera centers
- The epipolar lines are where the epipolar plane intersect the image planes
- The epipoles are where the baseline intersects the two image planes
- The baseline and epipoles are uniquely defined by the two camera matrices P_{1} and P_{2}
- The epipolar plane and epipolar lines depends on the observed point \boldsymbol{X}

Example

Example

- Corresponding points lie on corresponding epipolar lines
- Both epipoles are outside of the visible part of the image planes

Example

Example

- Corresponding points lie on corresponding epipolar lines
- Both epipoles are visible as the intersection of epipolar lines

Summary

- Epipolar geometry
- Epipolar planes
- Epipolar lines
- Epipoles
- Topics ahead
- Stereo imaging
- Representing epipolar geometry
- Estimating epipolar geometry
- 3D from epipolar geometry
- Relative pose from epipolar geometry
- More views...
- Additional reading:
- Szeliski: 11 introduction \& 11.1

